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Changes in the structure and attributes of a fleet over time will break down the proportionality of catch per unit effort (cpue) and
stock biomass. Moreover, logbook data from commercial fisheries are hierarchical and autocorrelated. Such features not only compli-
cate the analysis of cpue data but also seriously limit the application of a generalized linear model approach, which nevertheless is
applied commonly. We demonstrate a linear mixed model application for a large hierarchical dataset containing autocorrelated obser-
vations. In the analysis, the key idea is to explore the properties of the error term of the model. We modified the residual covariance
matrix, allowing the introduction of assumed fisher behaviour, influencing the catch rate. Fisher behaviour consists of accumulated
knowledge and learning processes from their earlier area- and time-specific catch rates. Also, we investigated the effects of vessel-
specific parameters by introducing random intercepts and slopes in the model. A model with the autoregressive moving average
residual covariance matrix structure was superior over the block-diagonal and autoregressive (AR1) structure for the data, having a
time-dependent correlation among trawl hauls. The results address the benefits of statistically advanced methods in obtaining
precise and unbiased estimates from cpue data, to be used further in stock assessment. Fisheries agencies are encouraged to
monitor the relevant vessel and gear attributes, including engine power and gear size, and the deployment practices of the gear.
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Introduction
Commercial catch per unit effort (cpue) data are used widely as
an indicator of stock abundance. Generalized linear models are
often applied to develop quantitative statement of fish stock
status using cpue data (Large, 1992; Marchal et al., 2001).
A limitation of these models is their difficulty in accounting
for the possible correlation of observations caused by the
hierarchical structure of the data. A simplified assumption of
uncorrelated observations is often made in a standard use of gen-
eralized linear models. Some writers recognize the restrictions of
the generalized linear model approach (Hilborn and Walters,
1992; Marchal et al., 2002; Maunder and Langley, 2004), but in
applications, the consequences of ignoring the correlation of
observations generally have not been considered with sufficient
statistical rigour. Clearly, alternative models are needed for
sound interpretation of commercial cpue data. We propose a
mixed modelling approach for this purpose.

Observations from fisheries typically constitute several levels
of hierarchy (Figure 1). In a hierarchical setting, the lowest
(i.e. the gear haul) level observations are nested with the vessel
level, constituting a two-level cross-sectional structure. This
structure generates intra-cluster or intra-vessel correlation
between observations, because trawl hauls are clustered by

vessels. If repeated measurements are available for each vessel,
the additional temporal level of hierarchy introduces autocorrela-
tion of the observations. From a modeller’s perspective, an exciting
challenge with most commercial cpue datasets is the temporal
dynamics in fishing power as the number and characteristics of
vessels in the fleet change year on year. Typically, just a fraction
of the vessels operate through the whole time-series being ana-
lysed, many vessels retiring or moving to another area, and new
vessels entering the fishery.

Vessel and skipper characteristics (Hilborn and Ledbetter,
1985) contribute to an increase in the intra-vessel correlation,
which tends to become stronger than the between-vessel corre-
lation in cpue data. In fact, multiple correlations among location,
time, and vessel attributes of basic observations are evident in any
commercial fishery. For example, a vessel will likely not change the
area of operation if the recent catch was as good as expected, or
better. It is also possible that vessels learn from each other
through communication systems. Mangel and Clark (1983) mod-
elled the cooperation in a fleet and Little et al. (2004) modelled the
learning process of individual vessels, i.e. how a fleet finds high
densities of fish more effectively than a single vessel operating
alone. However, Little et al. (2004) did not apply their model to
a real dataset.
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Bishop et al. (2004) compared three approaches in an earlier
attempt to achieve statistically robust analysis of commercial
cpue data. They recommended modelling approaches that allow
alternative correlation and variance structures, such as generalized
estimation equations (GEE; Diggle et al., 1994) and mixed models
(Brown and Prescott, 1999; McCulloch and Searle, 2001). Linear
mixed models in particular permit flexible modelling of complex
intra-cluster and autocorrelation structures. Therefore, an
assumption of homogeneity of variance, which limits the use of
generalized linear models, can be relaxed (McCulloch and Searle,
2001). Modelling the correlation structure of observations rigor-
ously will increase the precision of model parameter estimates
(Brown and Prescott, 1999), manifest as decreased standard
errors. In principle, this would reduce bias simultaneously.

The main task in parameterizing linear mixed models is to
develop a parsimonious but well-fitting correlation structure of
the observations. This is executed by parameterizing models
with alternative correlation structures. We propose an efficient
and statistically sound approach to develop parameter estimates,
their standard errors, and evaluation criteria to choose between
alternative models. For practical application, it is useful to con-
sider the implications of changes in the estimated quantities
along with changes of the assumed correlation structures. This
we establish for the northern Baltic Sea herring (Clupea harengus)
fishery, for which tuning of the sequential population analysis
(XSA; Shepherd, 1999), is exclusively based on commercial catch
and effort data (ICES, 2004). Therefore, cpue information standar-
dized for changes in fishing power in the fleet is vital for quantitat-
ive stock assessment. We estimate also the relationship between
stock abundance and cpue, because strict proportionality has
been assumed between them for most age groups in the popu-
lation analysis (ICES, 2004), owing to software limitations
(Darby and Flatman, 1994). Overall, we demonstrate the utility
of analysing detailed vessel, gear, and catch data in improving
interpretations of the factors controlling cpue. This improvement
in knowledge is gained by rigorous modelling of the error term.

Material and methods
Fishery data
The data were retrieved from the register of the Finnish Game and
Fisheries Research Institute containing logbook data of catch and
effort for the Finnish herring trawl fishery. The dataset contains
53 227 trawl hauls by 190 herring trawlers in ICES Subdivision

30 (the Bothnian Sea) between 1990 and 2003. A map of fishing
rectangles is presented in the Appendix (Figure A1). The
number of operating vessels decreased, and the average cpue
increased towards the end of the period. Logbook data include
also conventional temporal and spatial (in 50 � 50 km rectangles)
information on trawl hauls and the trawling method (single or
pairtrawling). The data were assigned with information on vessel
length and engine power obtained from the vessel registry by the
national maritime administration. It is known a priori that the
average area of the capture opening of the gear has increased
considerably in the herring trawling fleet (Rahikainen and
Kuikka, 2002). Those authors modelled average gear size in the
fleet using information on the sale of new herring trawls and
their sizes, and about the service life of trawls. Therefore, an
index of the annual average trawl size was used as an explanatory
variable in the analyses.

The estimate for ICES Subdivision 30 herring stock biomass is
derived by virtual population analysis tuned with XSA, using com-
mercial cpue as an index of stock abundance. The estimates were
taken from ICES (2004). As we studied the relationship between
total herring biomass and cpue, the fact that tuning data influence
the estimated biomass raises the danger of circular argument. To
avoid this, data for the year 2003 were excluded from the analyses
of catch rate. With this removal, the estimation and testing results
clearly changed from the results analysing all data. It appeared
unnecessary to exclude more data, because changes remained
slight with further removals. It is important to ensure that
tuning impacts directly the fish stock estimates for the terminal
year only. The impact of tuning decreases swiftly for earlier
years, mainly because tri-cubic time weighting has been applied
for this particular fish stock in the XSA (ICES, 2004), and
because the tuning information does not extend to the earliest
years of data. ICES (2004) applied cpue data for three tuning
fleets with equal weights, commercial trapnets, and pelagic and
demersal trawls, to calibrate the XSA, but we analysed partially
different datasets from the trawl fleets only. Further, the annual
biomass used in our analysis is highly aggregated, with little
variation, but the unit of analysis is a low-level entity with large
variation in cpue, so giving additional protection against possible
technical problems in the estimation procedure. Hence, we con-
sider the biomass estimate used in the analysis to be valid.

The distribution of cpue showed a clear skewness (Figure 2),
violating the normality assumption needed for rigorous modelling
using linear models (McCulloch and Searle, 2001). A logarithmic

Figure 1. Levels of hierarchy in typical fisheries data. Note that some of the hauls by vessels 1 and 2 have been pairtrawled.
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transformation was used such that the distribution of the logarith-
mic cpue fulfils the normality assumption reasonably well. Some
of the explanatory variables were also log-transformed to investi-
gate their linear relationship with the logarithmized cpue.

Basic linear mixed model
Mixed models are extensions of general (or generalized) linear
models (GLMs; McCulloch and Searle, 2001). A mixed model
is constructed by incorporating a random component, denoted
Zu, into the conventional formula of a linear model, given by
y = Xb + 1. The random component is needed in the analysis of
hierarchical data where the independence and homogeneity
assumptions of standard linear models are not met. This is invari-
ably true regarding commercial fisheries data. With good choices
of the matrix Z, different covariance structures Cov(u) and
Cov(1) can be defined and fitted. Successful modelling of
variances and covariances of the observations provides valid
statistical inference for the fixed effects (b) of the mixed model.

Using matrix notation, a linear mixed model can be written as
follows:

y ¼ Xbþ Zuþ 1; ð1Þ

where y is the vector of measurements of the study variable, Xb
the fixed part of the model (similar to standard linear models)
such that X denotes the (n � p) observation or design matrix,
and b denotes the unknown (p � 1) vector of fixed intercept
and slope effects of the model. Zu + 1 is the random part,
where u is a (q � 1) vector of random intercept and slope
effects, with an assumed q-dimensional normal distribution
with zero expectation and (q � q) covariance matrix denoted
by G, and Z is the (n � q) design matrix of the random
effects. Note that the structure of the covariance matrix G is
not specified. The residuals 1 can be correlated, and the possibly
non-diagonal covariance matrix of the residuals is denoted by R.
A multivariate normal distribution can be assumed for the obser-
vations with expectation Xb and covariance matrix V, which is
given by V = ZGZ + R.

The models were built in a stepwise manner by incorporating
the explanatory x-variables one-by-one into the model. At each
step, we examined the change in model characteristics. In addition
to the fixed effects, statistically significant random intercept and
slope effects were incorporated into the models to allow vessel-
specific variation in the model coefficients. The fit of the models

was improved by postulating powerful structures for the residual
covariance matrix R. In addition to a block-diagonal structure
(referring to Model 1 below), we introduced an autoregressive
structure (Model 2) and an ARMA (autoregressive moving
average) structure (Model 3) for the residual covariance matrix.

In selecting a realistic model for the data, we did not look for
the best fit, but for a parsimonious and sufficiently well fitting
model. The significance of model terms was tested with a t-test
for single fixed effects and with a large-sample Wald test for
single random effects.

We used the SAS procedure MIXED (SAS Institute Inc., 1999)
and the R function lme (R Development Core Team, 2005) in
fitting the models. Restricted or residual maximum likelihood
and generalized least squares were used in parameter estimation
(McCulloch and Searle, 2001). A “sandwich” estimator (Diggle
et al., 1994; Lehtonen and Pahkinen, 2004) of the covariance
matrix of the estimated fixed effects coefficients was used (cor-
responding to the EMPIRICAL option of the SAS procedure
MIXED). In computation, we used the services of CSC (www.
csc.fi), a State IT centre for scientific research. CSC servers were
used because computing the correlation structures used in our
model needs large memory capacity. The latest desk computers
are, however, capable of similar analysis. A more technical descrip-
tion of mixed modelling can be found, for example, in Pinheiro
and Bates (2000) and McCulloch and Searle (2001).

Model evolution
At the unit level, Model (1) can be rewritten as

yijt ¼ ðb0 þ uiÞ þ ðb1 þ v1iÞx1ijt þ ðb2 þ v2iÞx2ijt þ � � �

þ ðbm þ vmiÞxmijt þ 1ijt; ð2Þ

where yijt refers to the log-transformed cpue assigned to trawl haul
j by vessel i at point in time t (a given month of a given year),
xkijt (k = 1,. . ., m) constitute the measured quantities (log-
transformed in some cases) of the continuous predictor variables
and the values of the constructed indicator variables, b0 is the fixed
intercept common to all vessels, bk are the fixed slope effects also
common to all vessels, ui are the random, vessel-specific, inter-
cepts, and vki are the random slope effects. It is customary for all
possible random effects not to be included, but some of these
effects are set to zero in advance or based on empirical evidence.
In contrast, a random effect can appear in a model with the corre-
sponding fixed effect set to zero.

The mixed models constructed are special cases of the basic
model [Equation (2)]. For all models, we used the following
explanatory variables (or variable groups) for the fixed effects:
annual log-estimate of the biomass, trawl size index, engine
power (logarithmic), indicator of pairtrawling, type of gear
(pelagic or bottom trawl), year, and month. An interaction
between engine power and the indicator of pairtrawling was
included in the models.

In addition to the fixed intercept effect b0 common to all
vessels, vessel-specific random intercepts ui were included in all
models, allowing variation in the vessel-wise levels of log cpue.
If a variable had a significant effect on the variance of the log
cpue, then a random effect vki was assigned. The effects of the
trawl size index, the type of trawl, and the month-effect were speci-
fied as vessel-specific random effects, but all other effects are
common to all vessels. For example, the average trawl size of the

Figure 2. Distribution of the average and logarithmic cpue. The unit
of cpue is kilogramme of herring per actual hour trawled.
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Finnish herring fleet, measured as the mouth area of the trawl,
more than doubled (increment 135%) between 1990 and 2002
(Rahikainen and Kuikka, 2002). Applying trawl size as a random
effect is reasonable because there are major differences in trawl
size among vessels, but vessel-specific data on trawl size are
lacking. The random effects had to be assumed to be mutually
independent, because modelling the dependence structure was
not possible with the computation capacity to which we had
access.

Alternative methods are available in a model selection pro-
cedure for linear mixed models. We used a likelihood ratio
test for nested models, a new model being obtained by adding
new parameters into the current model. If the models to be
compared were not nested, for example, because of different
covariance-structure, the comparison was made with infor-
mation criteria. Akaike’s Information Criterion (AIC) and
Schwarz’s Bayesian Criterion (BIC, SBS) were used. In addition,
statistical measures used for choosing the effects include the
multiple correlation coefficient r2 and an adjusted r-statistic of
goodness-of-fit proposed for mixed models by Vonesh et al.
(1996).

The basic model formulation is

yijkv ¼ ðb0 þ uiÞ þ b1x1v þ ðb2 þ v1iÞx2iv þ b3x3i þ b4x4ijkv

þ b5x5ijkv þ ðak þ vikÞ þ dv þ gijkv þ v2ix6ijkv þ 1ijkv; ð3Þ

where yijkv is the logarithmic cpue of trawl haul j made by vessel
i in month k of year v, i = 1,. . ., n, where n is the number of
vessels, j = 1,. . ., mi, where mi is the number of trawl hauls made
by vessel i, k = 1,. . ., 12, and v = 1990,. . ., 2002; (b0 + ui) is a
fixed intercept effect common for all vessels plus a random, vessel-
specific intercept effect for vessel i; x1v is the logarithmic biomass
for year v; x2iv is the trawl size index for vessel i in year v; x3i is the
logarithmic engine power for vessel i; x4ijkv is the indicator of
pairtrawling (1, pair; 0, single) for haul j of vessel i in month k
and year v; x5ijkv is an interaction of engine power and the indi-
cator of pairtrawling for haul j of vessel i in month k and year v;
x6ijkv is an indicator of trawl type (pelagic or bottom trawl) for
haul j of vessel i in month k and year v; (ak + vik) is a fixed intercept
effect for month k plus a vessel-specific random month effect for
vessel i in month k; dv is a fixed intercept effect for year v; gijkv

is a fixed intercept effect of location of haul j of vessel i in
month k and year v; b1, b2, b3, b4, and b5 are fixed effects
common for all vessels; v1i and v2i are the vessel-specific random
effects; and 1ijkv is the residual term.

The key difference between the specific models was in the
assumed structure of the residual covariance matrix, which
explicitly models the dependence of cpue on past catch rates.
We interpret this dependence as fishers’ behaviour related to
the use of information of past cpue in decisions on their
spatial and temporal allocation of fishing effort, i.e. where and
when to fish. We selected three different structures with increas-
ing complexity, referred to here as Models 1, 2, and 3. We
describe the covariance structures of the residuals applied for
the three models below.

Model 1
In Model 1, the covariance matrix of residuals R was postulated as
a block-diagonal containing vessel-specific diagonal (co-)variance
matrices Ri. For example, for vessel i with four trawl hauls, the

structure of Ri is given by

Ri ¼

s 2
i 0 0 0

0 s 2
i 0 0

0 0 s 2
i 0

0 0 0 s 2
i

2
664

3
775:

This residual covariance structure implies that information on
catch rates received via the preceding fishing trips is not utilized
at all in decisions concerning the next trip. The covariance
matrix G of the random effects is also block-diagonal, with vessel-
specific covariance matrices Gi as its elements.

Model 2
In developing the more complex Model 2, we assumed that fishers
make decisions about future fishing strategy using information
from the most recent fishing trips, so that the latest ones have
the greatest influence on decisions, and the significance of pre-
vious trips vanishes quickly.

This suggests an autocorrelative covariance structure between
successive trawl hauls, where the correlation declines with increas-
ing time-lag. For this model, we postulated an autoregressive
AR(1) structure for the residuals, which gives the vessel-specific
covariance matrices Ri. The matrices are of the form

Ri ¼ s 2

1 r r2 r3

r 1 r r2

r2 r 1 r

r3 r2 r 1

2
664

3
775;

where r denotes the autocorrelation coefficient. The structure
assumes an equal residual variance s2 for all vessels.

Model 3
In the most complex Model 3, the residuals were assumed to
follow an ARMA(1,1) structure. In addition to the autocorrelation
coefficient r, a moving-average parameter g was included. The MA
structure makes the correlation between observations decline at
different rates compared with the pure AR structure. In this
model, past observations contribute to the autoregressive structure
of successive hauls more strongly than in Model 2. This modifi-
cation is based on the assumption that fishers use long-term
experience in planning their next fishing trip, not only the
recent catches. In the model, this experience is allowed to extend
over years and even decades, because the moving-average par-
ameter is constant for all observations for a vessel.

In Model 3, vessel-specific residual covariance matrices Ri are
of the form

Ri ¼ s2

1 g gr gr2

g 1 g gr

gr g 1 g

gr2 gr g 1

2
664

3
775:

For simplicity and computational reasons, equivalence of the
residual variances for all the vessels was again assumed.

Results
The major difference among Models 1, 2, and 3 is in the assumed
covariance structure of the residuals. The choice of a specific
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structure reflects to some extent the analyst’s understanding and
interpretation of the data-generating process and the fishers’
behaviour in the herring fishery. We first compare the fit of the
models. Model 1, with the simplest covariance structure for the
residuals, acts as a reference model.

Comparison of the information criteria (Table 1) shows that
Model 3 with the ARMA(1,1) covariance structure for the
residuals is clearly the best. Compared with Models 1 and 2,
both the AIC and the BIC are at their minimum for Model
3. Moving from Model 2 to Model 3, the likelihood ratio test of
model improvement gives an observed value of 2 (log(L2) 2

log(L3)) = 3164. This indicates strong statistical significance
when referring to the x2 distribution with 1 d.f. For Models 1
and 3, we obtain 2 (log(L1) 2 log(L3)) = 10 975.7, which is very
large and indicates a substantial model improvement in favour
of Model 3 (in this case, though, the likelihood ratio test is not
completely valid, because Models 1 and 3 are not nested and the
degrees of freedom cannot be defined uniquely).

The goodness-of-fit statistics also show that Model 3 fits the
data well. The multiple correlation coefficient r2 for Model 3 is
0.425, and the observed value of the adjusted r-statistic is 0.597.
Both statistics indicate that the model explains a large proportion
of the total variation.

We now need to evaluate in more detail the results for the
covariance structures of Models 2 and 3. In Model 2, an autore-
gressive structure was assumed for the residuals. The estimated
AR(1) parameter was positive and highly significant, indicating
strong positive autocorrelation (r̂ = 0.3895) between consecutive
trawl hauls. The correlation decreased with increasing temporal
difference between hauls. This type of correlation structure
seems realistic, because stronger correlation can be expected for
trawl hauls with a small temporal difference than for hauls that
are more separated.

In Model 3, both residual covariance parameter estimates of
the ARMA model, r̂ and ĝ, are positive and highly significant
(Table 2). This indicates a strong autoregressive structure (par-
ameter r), supplemented with a strong moving average structure
(parameter g). The estimates of the statistically significant covari-
ance parameters in Table 2 are variance components which
describe the additional variance within vessels. For example, vessel-
specific variation in cpue is larger in August than in October. These
estimates varied only little between Models 1, 2, and 3.

In Model 1, covariances between successive hauls are assumed
to remain equal, which is unrealistic. In Model 2 with its more rea-
listic AR(1) structure, covariances decline quickly with increasing
time-lag between hauls. Model 3 with the ARMA(1,1) structure
provides a compromise between the equal covariances assumption

and the AR(1) covariance structure. In Model 3, covariances tend
to decline with increasing time difference, but the moving average
parameter flattens the rate of decline.

Estimates of fixed effects for Model 3 are displayed in Table 3.
The cpue increases with engine power. For example, if engine
power increases by 50 kW, cpue increases in pairtrawling by
exp(0.691 log(50)) = 14.9 kg h– 1 and in single trawling by
exp(0.691 log(50) 2 0.209 log(50)) = 6.6 kg h – 1. In North Sea
bottom-trawl fisheries, fishing power increased with horsepower
too (Marchal et al., 2002).

Cpue increases with stock abundance (Table 3). The relation-
ship between the two is not strictly proportional (Figure 3), but
of the type referred to as “hyperdepletion” by Hilborn and
Walters (1992). In this type of relationship, the cpue drops
much faster than abundance at virgin stock size, whereas the
change in cpue will be smaller than the change in abundance
when stock size is considerably reduced from its original level.
As a diagnostic check for Model 3, the boxplots of residuals
(Figure 4) show that when plotted against biomass, the residuals
do not indicate any trend. This confirms that it is safe to use a loga-
rithmized linear predictor model in this case.

The cpue of the herring trawl fishery varies seasonally (Table 3).
Using August as the reference, because the average cpue in August
was nearest to the median of the monthly unit effort, the greatest
positive effects are during the spawning season of Baltic herring, in
May and June. The clearest negative effects are for September and
October. The effects of January, November, and December were
not statistically significant. Significant positive effects were also
noted for February, March, and April. The number of levels of
the month-effect, as well as the levels of year and location
effects, was reduced in a stepwise manner to ease the computation
of the models. Only the statistically significant levels of the vari-
ables were included in the final model.

ICES Subdivision 30 is divided into 27 geographic rectangles to
specify the location of trawl hauls. Only five rectangles had a sig-
nificant effect on cpue (Table 3), and these were used in the final
analysis, whereas the effects of the other rectangles were fixed to
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Table 1. Comparison of information criteria for Models 1, 2, and 3.

Criterion Residual covariance structure

Model 1 Model 2 Model 3
Variance
components

AR(1) ARMA(1,1)

22 � residual log-likelihood 95 660.3 87 848.6 84 684.6

AIC 95 686.3 87 876.6 84 714.6

Bayesian information
criterion (BIC)

95 728.5 87 876.7 84 763.3

The fixed and vessel-specific random parameters are the same for all
models, and only the covariance structures vary.
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Table 2. Estimates of variance component parameters for Model 3.

Covariance
parameter

Subject Estimate Standard
error

Z-value Probability
Z

Intercept id 0.019 0.012 1.51 0.0659

Type of
trawl

id 0.041 0.007 5.59 ,0.0001

Trawl size
index

id 0.011 0.003 3.28 0.0005

January id 0.036 0.012 2.88 0.0020

May id 0.060 0.012 4.75 ,0.0001

June id 0.018 0.007 2.40 0.0083

July id 0.182 0.037 4.81 ,0.0001

August id 0.244 0.043 5.68 ,0.0001

September id 0.157 0.028 5.58 ,0.0001

October id 0.018 0.008 2.12 0.0169

November id 0.026 0.008 3.00 0.0014

December id 0.020 0.009 2.20 0.0137

r id 0.872 0.004 189.99 ,0.0001

g id 0.419 0.006 65.79 ,0.0001

Residual – 0.365 0.003 92.95 ,0.0001
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zero to reduce the number of estimated parameters. The effects
were negative, indicating that in these rectangles, cpue tends to
be lower than on average, although in these rectangles the total
catches are quite high, signifying high fishing effort too. Most of
these rectangles are near main fishing ports and/or have trawling
areas which are either traditional or pose low risk of trawl damage
through unfavourable seabed structure. A shorter time spent
steaming to fishing areas decreases costs and may well compensate
for the lower catch rate.

Statistically significant year-effect estimates indicate differences
in fishing power among years, caused by attributes other than
trawl size and engine power in the fleet. The year term is used to

eliminate the effects of unknown variables which might affect
the catch rate, and we can only make educated guesses as to
which factors might cause a significant year-effect. Possible
reasons might be meteorological conditions: ice conditions in
winter, warm/cold summers, or storm frequencies and intensities.
In 1990, the cpue was higher than average, attributable to
unknown factors included in the year term, whereas in 1993,
1998, and 2000, cpue was lower than the average and the effect
could not be explained by other variables in the model, so the
year term became significant. Observed and predicted cpue
values are presented in Figure 5, with a trend line representing
the increase in cpue. Clearly, variation in the monthly average
cpue is considerable between and within years, but an increasing
trend is still obvious. Even the high cpue values in 1990, discussed
above, do not influence this trend line.

When the estimates of fixed effects derived by the three alterna-
tive models for logarithmic biomass, logarithmic engine power, and
trawl size index are considered, they are similar only in terms of
trawl size. Pivotally, interpretation of the results is influenced by
the model structure in terms of the impact of logarithmic biomass
and logarithmic engine power on cpue (Figure 6). The other differ-
ence among a simple model and more elaborate ones is in the
improvement of the accuracy of the estimate. In Model 1, the esti-
mated parameter for the stock response is only slightly greater
than 1, i.e. the relationship between cpue and stock size is close to
proportional. Note too that strict proportionality has been
assumed between stock biomass and cpue in XSA. Non-linearity
of the relationship becomes clearer with more sophisticated
models, indicating that cpue decreases faster than stock abundance.

As a further diagnostic check, fitted values calculated for Model
3 predict quite well the annual and monthly variation at a unit
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Table 3. Estimates of fixed effects and their significance for Model 3.

Effect Estimate Standard error d.f. t-value Probability > jtj

Intercept 215.922 3.216 135 24.95 ,0.0001

Logarithmic engine power 0.691 0.092 52E3 7.47 ,0.0001

Logarithmic total biomass 1.403 0.238 52E3 5.89 ,0.0001

Pairtrawling (0) 1.076 0.468 52E3 2.30 0.0216

Log engine power � pairtrawling (0) 20.209 0.080 52E3 22.59 0.0097

Trawl size index 0.318 0.051 156 6.23 ,0.0001

February 0.172 0.021 52E3 8.08 ,0.0001

March 0.162 0.024 52E3 6.69 ,0.0001

April 0.182 0.023 52E3 7.69 ,0.0001

May 0.268 0.032 137 8.32 ,0.0001

June 0.435 0.028 114 15.22 ,0.0001

July 0.148 0.051 101 2.91 0.0044

September 20.106 0.044 115 22.38 0.0189

October 20.228 0.024 113 29.34 ,0.0001

Rectangle 22 20.102 0.028 52E3 23.60 0.0003

Rectangle 31 20.063 0.017 52E3 23.54 0.0004

Rectangle 34 20.125 0.031 52E3 24.00 ,0.0001

Rectangle 36 20.183 0.018 52E3 29.71 ,0.0001

Rectangle 37 20.203 0.045 52E3 24.42 ,0.0001

Year 1990 0.342 0.053 52E3 6.42 ,0.0001

Year 1993 20.171 0.029 52E3 25.84 ,0.0001

Year 1998 20.132 0.032 52E3 24.02 ,0.0001

Year 2000 20.155 0.025 52E3 26.05 ,0.0001

Figure 3. Relationship between cpue and stock size estimated with
Model 3 (curved line), and strictly proportional dependence (straight
line).
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level. Figure 7 shows that residuals of Model 3 are reasonably well
distributed normally, even if there is a slight kurtosis. The few out-
liers in the scatterplot of residuals and predictions (Figure 8) can
probably be explained by failures in gear setting. The normal prob-
ability plot of the residuals (Figure 9) also suggests that the
residuals follow the normal distribution, except for a long tail at
the lower end, which is also evident in Figure 7.

Discussion
The main practical goal of the analysis was to determine factors
influencing the cpue of herring trawlers in the Bothnian Sea.
This type of analysis is important when used in association with
assessment procedures where commercial cpue data are applied
as tuning series. The results indicate that linear mixed models
provide powerful and flexible tools for analysing cpue data. We
applied linear mixed models because the independence of trawl

hauls cannot be assumed within vessels. Not only the correlation
structure but also the vessel-specific variation among different
factors could be taken into consideration with mixed models. It
is naive to assume that fishing power would not increase over
time (Branch et al., 2006). Therefore, adjustment for changes in
fleet and gear properties is essential to obtain a valid interpretation
of commercial cpue data.

Several studies have used GLMs in cpue analysis (e.g. Large,
1992; Marchal et al., 2001). In our opinion, a pure GLM is the
wrong method for such data, because such models cannot take
account of a possible correlation of observations caused by the
hierarchical structure of the data. However, we made a few
additional tests with a GLM, revealing that the models with covari-
ance structures in the residuals were superior to GLMs. For

Figure 4. Boxplots of residuals against total biomass for Model 3.

Figure 5. Observed (solid line) and predicted (dashed line) cpue values, with a trend line representing the increase over time of cpue.

Figure 6. Estimates with their standard errors of three fixed
parameters (log engine, log biomass, and trawl size) for Models 1, 2,
and 3.

Figure 7. Distribution of residuals for Model 3.
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example, the coefficients of determination for GLMs with the same
set of variables were �30%, whereas it was .40% for Model
3. Additionally, the residuals of the GLMs seemed to be autocor-
related, against the underlying assumptions of the model.

Here, the cpue data were tested using three models, starting
with a simple one, including only the most important effects,
and concluding with a model containing several fixed and vessel-
specific effects in which the residuals were fitted by including an
ARMA structure. Of the range of models tested, Model 3 was
the best using standard information criteria. It explained .40%
of the variability in the data, which is considered to be high
taking into account the stochasticity of the fish capture process.
The modelling assumptions between three models (use of autocor-
relation) can be linked logically to the behaviour of fishers, i.e. the
impact of the skippers’ accumulated knowledge in decisions con-
cerning spatial and seasonal distribution of fishing effort. In Model
3 with its ARMA(1,1) structure, covariances tended to decline with
increasing time difference between the trawl hauls, but the moving
average parameter reduces the rate of decline. This is a realistic
assumption of the behaviour of fishers, who utilize knowledge
accumulated during many years and even over generations to allo-
cate their fishing effort. Previous research applying random utility
models has confirmed that fishers have a great degree of fidelity to
past fishing patterns (Holland and Sutinen, 1999; Hutton et al.,
2004). In those two analyses, the recent and previous year’s
catch rate appeared to be significant variables affecting location
choice for fishing activity. Our results indicate that fishers

integrate and utilize information on catch rate over much longer
periods than just a few days or a year when making decisions
about where and when to fish.

The most important effects that interact with the variation of
cpue are the engine power, the estimated biomass of the herring
stock, the trawling method (single vs. pairtrawling), the size
of the trawl, and the time and the area of the fishing trip.
The effects cannot be arranged according to their influence
because they are not standardized effects. Moreover, the vessel-
specific variation was explained by the trawling method, the size
of the trawl, and the fishing month. A mixed model structure,
used here, allows one to compute vessel-specific estimates of
fishing power. By adding fishing area as a vessel-specific predictor,
it would also be possible to analyse for instance the fishing power
per area of individual vessels. Likewise, random effects provide
estimates of the influence of trawl size, trawling method, and
month on catch rate by each vessel. Consequently, it would be
possible to identify vessels that are effective on just a few fishing
grounds and vessels that are effective in several fishing areas.

The annual changes in catch rate and in the number of active
vessels were notable during the observation period. Seasonal vari-
ation was considered by including a monthly effect in the models.
The interaction between month and area factors was also tested,
but it was not significant in the overall model and did not increase
the explanation capability of the model significantly.
Vessel-specific month effects take account of the seasonal differ-
ences in fishing areas, because skippers know where to go during
different seasons. All the models we tested here used the vessels
as a grouping factor, taking into account the dynamics in the
structure of the fishing fleet as the number and the type of
vessels participating in a fishery change over time. The effective-
ness of the vessels generally increases over time owing to technical
development, including improvements in gear and the hydraulics
to manoeuvre the gear, and in electronic navigational aids (Robins
et al., 1998). Ignoring these factors may lead to a far too optimistic
view about stock trends.

Our results confirm that unweighted cpue data are a biased esti-
mator of stock abundance (Figure 3) and that stock size estimates
will be biased when these data are used to tune a population analy-
sis. The clear non-linear relationship between stock size and cpue
suggests that changes in stock size have been overestimated in
stock assessments. The hyperdepletion pattern may be caused by
fisher behaviour if effort is allocated to the best areas in terms of
catch rate (Hilborn and Walters, 1992). Also, fish concentration
profiles may cause hyperdepletion (Clark, 1982).

The estimated effect of trawl size on the catch rate raises
additional uncertainty in a stock assessment. Once the trend in
trawl size in the Finnish herring fishery had been discovered
(Rahikainen and Kuikka, 2002), the cpue time-series was adjusted
by the estimated increase in the stock assessments (ICES, 2007).
The adjustment was made in fishing effort data by multiplying
the effort by the gear size index. Trawl size has a significant positive
effect on the cpue (Table 3), as would be expected. The estimate is
clearly below 1, denoting that a pay-off in terms of fishing power is
smaller than the increase in the trawl size and that the average trawl
size as such is not an adequate indicator of fishing power. The
result is as anticipated, because the factors that determine the effi-
ciency of a gear are complicated, and many details of gear technol-
ogy, gear deployment, and fish behaviour have been omitted
from our analysis. Clearly, alterations in the bridle path, i.e. the
width swept by the otter boards, bridles, and sweeps, were not

Figure 8. Scatterplot of residuals against predictions for Model 3,
with a horizontal trend line.

Figure 9. Normal probability plot for the residuals of the model.
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considered. Also the density of fish ahead of the trawl mouth and
diel vertical migrations of the fish may affect swimming behaviour
and catchability (Godø et al., 1999; Petrakis et al., 2001). The esti-
mate we have now obtained suggests that the increase in fishing
power is not strictly proportional to gear size, as has been
assumed in the assessment process for this stock thus far (ICES,
2007).

We suggest that fisheries agencies be encouraged to assemble
in-depth information on vessels and their gear. Obviously,
engine power and trawl size contribute significantly to fishing
power and catch rate. Detailed data on positioning systems and
acoustic equipment on board would likely be of use in interpreting
cpue data. Information on the time budget allocated to searching
for herring aggregations and actually trawling was also an attrac-
tive explanatory variable, but logbooks of this fishery do not
possess data on searching time. During the past 10 years, the
Finnish herring fleet has polarized into vessels targeting herring
for human consumption and for the fishmeal market (Salmi and
Salmi, 1998; Stephenson et al., 2001; Rahikainen et al., 2004).
This divergence in supply strategy implicates major differences
in the fishing tactics and on-site dynamics of fishing vessels.
Skippers fishing for the fishmeal market simply aim to maximize
their catch rate, whereas skippers fishing for the human consump-
tion market have to consider the size distribution of herring they
intend to land, likely reducing their potential catch rates. Clearly,
interpretations of cpue data may be misleading if the fishing strat-
egy is not properly monitored. Unfortunately, cpue data cannot be
assigned with information on fishing strategy currently. Indeed,
past fishery evaluations of the ICES Subdivision 30 herring stock
have had little predictive capability largely because of the impact
of changing biological and industrial aspects of the fishery that
have not been incorporated into stock assessments (Rahikainen,
2005).
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Appendix
Figure A1 presents a map of fishing rectangles in the Baltic Sea.
Data from rectangles 21–47 are used in this study.

doi:10.1093/icesjms/fsn135

Figure A1. Fishing rectangles in the Baltic Sea. Data from rectangles
21–47 are used in this study.
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