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Understanding the causes of variability in the recruitment of marine fish stocks has been the “holy grail” of fisheries scientists for more
than 100 years. Currently, debate is ongoing about the functionality and performance of traditional stock–recruitment functions used
during stock assessments. Additionally, the European Commission requires European fishery scientists to apply the ecosystem
approach to fisheries in part by integrating environmental knowledge into stock assessments and forecasts. Motivated to understand
better the recent years of reproductive failures of commercially valuable North Sea herring, we studied large-scale climate changes in
the North Atlantic Ocean and their potential effects on stock regeneration. Applying traffic light plots and time-series (TS) analyses, it
was possible not only to explain the most recent reproductive failures, but also to reconstruct the full TS of recruitment from climate
cycles, indexed by the North Atlantic Oscillation and the Atlantic Multidecadal Oscillation. A prognostic model was developed to
provide predictions of herring stock changes several years in advance, allowing recruitment forecasts to be incorporated easily into
risk assessments and management strategy evaluations, to promote a sustainable herring fishery in the North Sea. Insights gained
from the analysis permit reinterpretation of the sharp decline in the North Sea herring stocks in the 1970s.
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Introduction
European fishery managers strive to maximize landings (or econ-
omic value) on a sustainable and precautionary basis. An impor-
tant constraint is the limited understanding of the typically
fluctuating regeneration process of exploited fish populations
and how this process interacts with exogenous factors.
Rothschild and Shannon (2004) said that “Multi-decadal fluctu-
ations in fish-population abundance . . . are often dramatic in
magnitude. . . . Understanding the variability in fish populations
related to regime shifts is complicated because the abundance of
fish populations is driven by both environmental forcing and
fishing. . . . New insights into the cause . . . will be valuable
because managers will be able to adjust fishing effort to match
the productivity of the ocean environment”.

Here, we explore linkages between fish population dynamics
and environmental cycles on a global multidecadal scale in a
manner that both reproduces emergent properties of the system,
such as regime shifts, and that facilitates implementation of the
results into stock assessments and fishery management.
Motivated to understand the recent years of reproductive failure
of commercially valuable North Sea herring (Clupea harengus),
we studied large-scale climate changes in the North Atlantic
Ocean and their potential effects on herring stock regeneration.
Therefore, the main objective of our study was to estimate the
extent to which North Sea herring recruitment can be recon-
structed over the period 1960–2006 using the indices of large-scale

climate forcing, so allowing the development of an integrated
prognostic recruitment model to improve management pro-
cedures. A second objective was to contribute to an ongoing
debate on the functionality and performance of conventional
stock–recruitment functions, such as Ricker and Beverton and
Holt (B/H) curves (Beverton and Holt, 1957), or segmented
regressions, typically used in stock assessments to set quotas and
to forecast future fish production. Recruits (R) are herring off-
spring that join the adult herring stocks and are fished after hatch-
ing, metamorphosis, and rearing in nursery areas (Figure 1). Not
only do stock–recruitment curves often fit the observations
poorly, but failure to incorporate environmental effects into the
analysis could lead to erroneous forecasts upon which manage-
ment decisions are based. This is one of the main reasons the
European Commission requires European fishery scientists to
put the ecosystem approach into practice (CEC, 2001).

North Sea autumn-spawning (NSAS) herring consist of four
stock components (Shetland, Buchan, Banks, and Downs),
which co-mingle most of the year except at spawning time,
which begins in late August around the Shetland and Orkney
Islands and continues until January in the southern North Sea
(Figure 1). Given extensive annual fluctuations in larval mortality,
a variable number of larvae survive their drift to nursery areas in
shallow waters near the coast (Heath et al., 1989).

Recently, NSAS herring experienced a period of poor recruit-
ment (Figure 2), in which adults produced large numbers of
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eggs and larvae [MLAI (multiplicative larval abundance index);
ICES, 2007] over the years 2000–2006, but very few survived to
maturity during the overwintering period, September–
February/March [MIK (Methot Isaacs–Kidd) index; ICES,
2007]. We hypothesize that (i) most fluctuations in herring
recruitment are driven by variability in large-scale climatic
factors during the overwintering period, and (ii) the periodicity
of these climatic factors is responsible for the strong cyclical
pattern in recruitment.

Methods
Biological and environmental data
To test our hypotheses, we obtained time-series (TS) of two differ-
ent larval surveys, the MLAI and the MIK (ICES, 2007), from the
Herring Assessment Working Group (HAWG) of the International
Council for the Exploration of the Sea (ICES). The number of
recruits (fish aged 1 year), R, and spawning-stock biomass (SSB)
are estimated annually by the HAWG using integrated catch analy-
sis (ICES, 2007). Two climate indices were used representing

large-scale processes that may influence the recruitment of many
fish stocks in the North Atlantic Ocean: the North Atlantic
Oscillation (NAO) and the Atlantic Multidecadal Oscillation
(AMO). These climate proxies are standardized and may be con-
sidered latent factors that average out and “bundle” more regiona-
lized effects that are difficult to compare individually and
inter-regionally, which helps to avoid potential “bathtub” pro-
blems generated by redundancy, multi-collinearity, or error
inflation (Fahrmeir et al., 1996).

Whereas the NAO is an atmospheric sea-level pressure (SLP)
anomaly based on the difference in the normalized SLP between
Iceland and either the Azores or Portugal (Rogers, 1984; Tunberg
and Nelson, 1998; Stenseth et al., 2004), the AMO is an index of
long-term sea surface temperature (SST) in the North Atlantic
Ocean (Enfield et al., 2001). Both the NAO and the AMO are
updated monthly and may be averaged over different periods.
Given the focus on the overwintering period, in both cases, we
used the winter indices from December to March. For the NAO,
we used the mean normalized values of the difference in the
normalized SLP among Lisbon, Portugal, and Stykkisholmur/

Figure 1. Schematic map of important hatching sites (dark shaded) and nursery areas (cross-hatched) of NSAS herring. Timing of spawning
activity ranges from August/September to January/February, and it progresses from north to south.
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Reykjavı́k, Iceland (http://www.cgd.ucar.edu/cas/jhurrell/indices.
html/), and for the AMO, we used data generated from the
unsmoothed version of the index from 1856 to present (http:
//www.esrl.noaa.gov/psd/data/correlation/amon.us.long.data). For
detail on the NAO, see Hurrell and van Loon (1997) and Hurrell
and Dickson (2004), and for detail on the AMO, see Enfield et al.
(2001) and http://www.esrl.noaa.gov/psd//data/timeseries/AMO/.

Data analyses
The influence of biotic and climatic factors on recruitment pro-
cesses was evaluated by considering TS indices of small (MLAI)
and large (MIK) larvae (Figure 2a). Annual estimates of R were
used as the biological response variable, and estimated SSB was
taken as one of the potential biotic factors influencing recruit-
ment. For comparison, we fitted three conventional R–SSB
models (Ricker curve, B/H relationship, segmented regression)
to the data. We compared their diagnostics with that of a linearized
Ricker curve extended by climate as a potential abiotic factor
(winter AMO and winter NAO), as well as that of an ARIMAX
model (transfer function) based on the technique of
autoregressive-integrated moving averages that also utilizes
exogenous climate information. Additionally, other TS techniques,
such as spectral analysis (SA) and cross-correlations, were
employed to specify the ARIMAX model correctly.

Fitting R–SSB models
All three conventional recruitment models assume positive
density-dependence at low stock size. However, after reaching its

maximum, the Ricker curve assumes a strong negative density-
dependence with increasing SSB, whereas the other two functions
assume no density-dependence either after asymptotically reach-
ing a plateau (B/H) or after linearly reaching a breakpoint (seg-
mented regression).

To test the hypothesis whether SSB solely affects R or in com-
bination with other exogenous factors, such as climate, we com-
pared the fit diagnostics of the three conventional R–SSB
models with that of a simple linearized version of the Ricker
curve extended by winter AMO and winter NAO (perhaps lagged):

ln
Rt

SSBt�1

� �
¼ lnðb1Þ þ b2 SSBt�1 þ b3 winter AMOt�lag1

þ b4 winter NAOt�lag2; ð1Þ

where t is the time, b1, b2, b3, and b4 the constants, and lag1 and
lag2 the time-lags for the winter AMO and the winter NAO,
respectively. We implemented a version of Equation (1) that is cor-
rected for autocorrelation using stationary TS and appropriate lags
for winter AMO and NAO, making use of information from cross-
correlations (see below).

Time-series analysis
TS models are designed to forecast the future states of the system.
In contrast to simple (linear or non-linear) regression, TS analysis
attempts to identify systematic, self-contained information in the
data, such as serial correlation and periodicity, usually without
using further external information. Working with TS requires

Figure 2. Herring TS plots: (a) SSB (grey shaded), MLAI (as relative abundance, line and dots), and MIK index (in numbers, line and
open circles) over the period 1961–2006; (b) herring recruitment R (standardized numbers, needle bars; Gröger et al., 2001) and SSB (grey
shaded) for the period 1961–2006; (c) traffic light plot of the normally distributed 20th percentiles of R, MLAI, MIK, and SSB from 1976
to 2006. The cells display the quintiles in which the data fall for that year from white (lowest quintile) to black (highest quintile): “20” stands
for 0 , x � 20%, “40” for 20 , x � 40%, “60” for 40 , x � 60%, “80” for 60 , x � 80%, and “100” for 80 , x � 100%.
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D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/67/3/454/732742 by guest on 19 April 2024



careful treatment of the data in ways that differ from other types of
data. Therefore, we employed three sequential TS analyses:

(i) Cross-correlation analysis—to detect potential delayed exter-
nal effects, we first cross-correlated the recruitment data with
incrementally lagged climate data (i.e. winter NAO and
winter AMO);

(ii) SA—we then studied the cyclicity of recruitment and of the
(delayed) external factors detected to be influential, and
overlaid these with each other to look for corresponding
time-trajectories;

(iii) ARIMA modelling—given the information from cross-
correlation and SA, we finally integrated the delayed external
factors and patterns identified into one ARIMAX recruit-
ment model to be used for prognostic forecasts.

The five steps of model identification are (i) stabilizing and pre-
whitening the TS, (ii) process identification (influencing factors,
lag-structures), (iii) estimation of model parameters, (iv) diagnos-
tics, and (v) prediction (forecasting). For details of the three
methods in a marine biological context, see Gröger and Rumohr
(2006) and Gröger et al. (2007a). For a purely statistical descrip-
tion, see for instance Box and Jenkins (1970), Schlittgen (2001),
and Schlittgen and Streitberg (2001). Analyses were performed
with the SAS procedures PROC REG, PROC AUTOREG, PROC
ARIMA, PROC SPECTRA, and PROC NLIN version 9.2.

Measuring cross-correlations and model performance
In contrast to simple correlation, cross-correlation functions
(CCFs) require two treatments of the data before they can be cross-
correlated to avoid bias: (i) make both TS stationary, and (ii) pre-
whiten both TS. These two treatments change the association of the
two variables to be compared; the first detrends the data, and the
second filters the data by removing autocorrelation. This is necess-
ary to preclude false signals of correspondence that can result
simply from the sequential order of the data that do not reflect a
true underlying relationship among the two variables. In our
case, we carried out the first step by differencing the TS, converting
the data from absolute values to sequential changes in time (rates).
The second step involved removing autocorrelation, as identified,
by applying specific autoregressive models to the TS.

In cases of non-linearity, it is difficult to quantify how good the
model is in absolute terms: the best model can only be judged in
relation to others. Hence, for each model, rperformance was estimated
as the coefficient of correlation between predicted and observed
values in an approach similar to that of Kruse and Tyler (1989).
As this approach does not account for varying degrees of
freedom, we used a bias-corrected version of Akaike’s information
criterion (AIC) to select the best model (Hurvich and Tsai, 2008):

AICCk ¼ lnðs2
kÞ þ

2� k

ðn� k� 2Þ
; ð2Þ

in which s2
k is the residual variance, n the length of the TS, and k the

number of parameters estimated. Because the AICC is larger than
the AIC and has the tendency to select models with fewer estimated
parameters, it is often used in situations where the sample size is
small. As s2

k is not independent of the number of estimated par-
ameters (Schlittgen, 2001), it is normally estimated as MSEk ¼

SSE/(n 2 k), in which MSE is the mean squared error, SSE the
sum of squared residuals, n the sample size (length of the complete

TS), and k the number of parameters estimated (Schlittgen and
Streitberg, 2001). However, the maximum likelihood estimate of
MSE assuming s2

k ¼ s2 was used. The SAS procedures PROC
CORR, PROC REG, PROC NLIN, and PROC ARIMA version 9.2
were applied to calculate most of the measures above.

Statistical significance and standardization of recruitment
values
We generally set our significance level to a ¼ 0.05. In cases of non-
linear models fitted numerically, the tests were based on the
asymptotic assumptions requiring large sample sizes (n . 30).
For distributional tests of normality, we chose a higher a-value
of 0.1, increasing the power (1 2 b) of the test (with b being
the type II error and depending on a) to reject the null hypothesis
of a normal distribution of residuals (Hartung, 2002).

To better reveal the inherent periodicity in R (as in Figure 2b),
we standardized recruitment observations by

Rstandard ¼
R� m

s
; ð3Þ

where m is the mean and s the standard deviation of R, respect-
ively. Standardization was conducted using the SAS procedure
PROC STANDARD version 9.2.

Results
Conventional recruitment models
All three models and their parameter estimates were significant (all
p , 0.05). Except for R in the years 1981–1983, the null hypoth-
esis of positive density-dependence associated with low SSB is sup-
ported; negative density-dependence at high SSB values is
supported by most observations except R in 1962, 1964, and
1965 (Figure 3a). However, none of the models fitted the data
well over the full range (Table 1). All models tended to underesti-
mate R at low values of SSB, to overestimate R at intermediate
values of SSB, and to underestimate R again at high SSB
(Figure 3b); such systematic bias is characteristic of a mis-specified
model. Coefficients of determination (r2

performance) indicate that all
three models explain only 22–26% of the variability in observed R
(Table 1). Further, model parameter estimates are highly corre-
lated, as the symmetrical off-diagonal values of the approximate
correlation matrices show (segmented regression 20.96; Ricker
0.89; B/H 0.75).

Changes in the winter NAO and winter AMO patterns
Traffic light plots of quintiles of monthly values provide a simple
visual method to observe systematic changes in seasonal and
annual patterns in NAO and AMO over the period 1900–2007
(Figure 4). When values of both indices are normalized by
month across all 107 years to give a mean of 0 and a standard devi-
ation of 1, a systematic (wave) pattern with two cooling periods
(dark blue, light blue, and green) are evident for AMO, approxi-
mately 1903–1925 and 1965–1979 (AMO panel of Figure 4a).
Transitions between cool and warm periods tend to be smooth,
making it difficult to identify clear breakpoints between warm
and cool periods. Nonetheless, it appears that the first cool
period is much longer (22 years) than the second (14 years). In
contrast, large and small NAO values appear to be more evenly dis-
tributed without obvious systematic patterns (NAO panel of
Figure 4a). Yet, when the quintiles are based on normalized data
for each year across all 12 months, a clear systematic change in
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the patterns is only evident for the NAO during the last 18 or 19
years, with a tendency to low values during the period August–
November and high values from December to February (NAO
panel of Figure 4b), indicating a shift in the NAO. However,
there is also some similarity to the first period of the 20th
century (NAO panel of Figure 4b). In contrast, large and small
AMO values appear to be more evenly distributed without
obvious systematic patterns (AMO panel of Figure 4b).

Cross-correlation and spectral analyses
After detrending and pre-whitening of the TS, we examined the
CCFs between R and winter AMO, and between R and winter
NAO, with lags of up to 10 years (�25% of the total timespan)
to detect potential climatic effects during the overwintering
period. Given different autocorrelation structures, pre-whitening
was handled slightly differently for the two climate variables. For
winter NAO, first-, second-, and fourth-order autoregressive com-
ponents were fitted to both the detrended NAO and R dataseries.
For winter AMO, only first- and second-order autoregressive com-
ponents were fitted to both the detrended AMO and R dataseries;
no moving average components were significant in both cases.
Bartlett confidence intervals were used to set confidence limits
(Schlittgen, 2001). The results indicate that winter AMO and
NAO exert their greatest influence on R at lags of 3 and 5 years,
respectively (Figure 5a and b).

To avoid misinterpretation, it should be noted that CCFs
cannot be compared with Pearson’s correlation coefficients or
with rperformance measures. Such an invalid comparison would be
misleading because the magnitude of the latter two may be artifi-
cially inflated by serial correlation reducing the effective degrees of
freedom (Pyper and Peterman, 1998) and may be biased by non-
stationarity. In contrast, CCFs are based on stationary (detrended)
and pre-whitened (autocorrelation-free) TS. For this reason,
Pearson’s correlation coefficients or rperformance measures tend to
yield larger values than CCFs.

Fluctuations in observed and fitted R and fitted winter AMO
using SA techniques (wave decomposition) provide some interest-
ing insights into the nature of the apparent relationship between
SST and R. A strong correspondence between winter AMO and
R persists over the years 1960–1981; high (low) values of R are
associated with high (low) values of winter AMO. However,
after about 1982, this strong association becomes much weaker.
Although the cause of this change in relationship is not certain,
we suspect that it results from a switch in the dominance of
winter NAO over winter AMO effects. A decomposition of the
winter NAO signal into its wave components using SA (similar
to the winter AMO decomposition) revealed that the long-wave
component has an inflection point around 1982, with lower
values before 1982 and higher values thereafter (Figure 5c).
Although atmospheric SLP anomalies do not directly affect
herring recruitment, oceanographic and ecological processes
associated with westerlies typical of the positive phase of the
NAO may dominate only when the winter NAO is strongly posi-
tive, so trumping winter AMO effects.

ARIMAX modelling
Given our findings from cross-correlation and SA, and the under-
lying first-order autoregressive process in the recruitment
residuals, we combined R with the lagged winter NAO and
AMO by setting up an ARIMAX model (Figure 6). The
5-year-lagged winter NAO and the 3-year-lagged winter AMO
were not correlated (r ¼ –0.14, p ¼ 0.37), so multi-collinearity
between input variables was not an issue. Therefore, we deter-
mined the following integrated ARIMAX model based on station-
ary R (i.e. with differentiation order d ¼ 1) and with the help of
Table 2 as a generalized transfer function, with AR order p ¼ 0,
MA order q ¼ 0, and winter NAO and AMO as exogenous vari-
ables (both pre-whitened and made stationary) lagged by 5 and

Table 1. Parameter estimates and quality-of-fit information from
fits of stock–recruitment models.

Model

Model parameters Model diagnostics

b1 b2 rperformance AICC

Segmented regression 130.7 356 091 0.49 33.9384
Ricker 167.4 1.154E– 6 0.51 33.9069
Beverton and Holt 0.002 85 54 137 400 0.47 33.9607

All three models and the single parameters associated with them were
asymptotically significant at a 5% level.

Figure 3. (a) Observed recruitment R (millions, dots) plotted against
observed SSB (t). The three curves represent the fitted segmented
regression (continuous line with increasing and horizontal
components), the Ricker curve (short dashed line), and the B/H
curve (long dashed line). Values of reduced recruitment in the most
recent years (2002–2006) are indicated as open dots (point labels
enlarged, lower right). (b) TS plot of observed R (standardized
numbers, needle bars; Gröger et al., 2001), SSB (grey shaded), and
estimated residual R from the three stock–recruit models
(segmented regression, continuous line; Ricker, short dashed line;
B/H, long dashed line) for the period 1960–2006.
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Figure 4. Traffic light plots of the normally distributed 20th percentiles of AMO and NAO from 1900 to 2007 and months January–
December. The colour of the cells display the quintiles (x) in which the data fall for that year and month, respectively: dark blue represents x ¼
0%, light blue means 0 , x � 20%, light green means 20 , x � 40%, yellow means 40 , x � 60%, orange means 60 , x � 80%, and red
means 80 , x � 100%. (a) Data normalized for each month across all 107 years; horizontal lines separate cooling from warming periods.
(b) Data normalized for each year across all 12 months; the black rectangle indicates a higher concentration of seasonally very low NAO
quintiles during late summer/autumn when comparing the last two decades with all other previous decades back to 1900.

Figure 5. CCFs with 95% confidence bounds (horizontal lines) of R up to a lag of 10 years with (a) winter AMO and (b) winter NAO
after detrending and pre-whitening the TS. Arrows mark significant CCFs (exceeding the confidence bounds) at a lag of 3 years in (a) and at a lag of
5 years in (b). (c) Time-trajectories of observed R (standardized numbers, dark grey bars; Gröger et al., 2001), fitted R (cosine–sine SA model,
continuous line), observed SSB (million tonnes, light grey bars), fitted winter AMO (�1021, cosine–sine SA model, short dashed line), and fitted
winter NAO (�1021, cosine–sine SA model, long dashed line).
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3 years, respectively:

ð1� BÞRt ¼ mþ
v1

ð1� d1;1B� d1;2B2 � d1;3B4Þ
ð1� BÞNAOt�5

þ
v2

ð1� d2;1B� d2;2B2Þ
ð1� BÞAMOt�3 þ 1t; ð4Þ

where Bl ¼ yt – l is a shift parameter of order l, and (1 – B)d ¼

(yt 2 yt – d) is a differentiation parameter of order d. The
estimated parameter values are m ¼ 2984 756, v1 ¼ 23 615 901,
v2 ¼ 46 403 321, d1,1 ¼ 25 458 727, d1,2¼ 22 599 460, d1,3 ¼

22 314 394, d2,1 ¼ 241 147 565, and d2,2 ¼ 238 037 078. By
including the two delayed climate effects as input series, the first-
order serial correlation of the pure R has been removed as indicated
by a generalized Durbin/Watson test (DW ¼ 2.68, pDW ,, 0.05),
such that the residuals (and hence the error term et) now appear as
white noise and normal (Figure 6b), making it unnecessary to fit an
extra ARIMA model to them. This also indicates that no other
exogenous systematic process is involved. In addition, all other

model restrictions (e.g. homoscedasticity, the smallest information
criterion AICC) are also fulfilled.

The good fit (Figure 6a) is demonstrated by two features. First,
the correlation between predicted and observed R values
(Figure 6c) is strong (rperformance ¼ 0.80, p ,, 0.05, AICC ¼
33.4960, nobservations ¼ 47, nresiduals ¼ 37, k ¼ 10), with no values
exceeding the 95% forecast intervals (Figure 6a). Second, to deter-
mine whether the forecasts of our model are stable and plausible,
we performed a diagnostic forecast experiment. We did this by
successively omitting observations at the end of the TS until a
total of 10 years of observations had been reached. After each
step, we performed a 1-, 2-, and 3-year prognosis in which we sim-
ultaneously forecast either 1, 2, or 3 years ahead; simultaneously
forecasting more than 3 years ahead is not possible given the
specific lag structure of the ARIMAX model. We estimated the
deviations of the forecast values from the known true values as
well as the forecast error, both expressed as a percentage of the
observed value (for details on the concept of forecast error and
how to calculate it, see Pindyck and Rubinfeld, 1991). The forecast
error is used to construct the forecast interval and among others
contains two major elements: the residual variance and the dis-
tance between the centre (year) of the data and the year of the fore-
cast. Therefore, the forecast error increases the further one
forecasts into the future as the second component increases
which the first component remains constant.

This experiment shows that the relative forecast errors are
highly dependent on the number of years being forecast simul-
taneously; the size of the forecast error is reflected by the size of
the two-sided 95% forecast intervals in Figure 6a. Forecast errors
for a 1-year prognosis range from 216 to þ6% over the 10 iter-
ations with an average of around 25% relative to the forecast

Figure 6. ARIMAX modelling. (a) Observed (dots connected by broken line) and fitted (thick continuous line) R values with forecast intervals
(thin continuous lines, a ¼ 0.05). Owing to the lag structure of the model, the forecasts start in 1970. Values for 2005 and 2006 were omitted
from the analysis to allow forecasting them for cross-validation. (b) Q–Q plot of residual values with test results. (c) Observed against
predicted R. (d) Box plots of relative forecast errors against the number of years forecast simultaneously. (e) Box plots of relative deviations of
forecast values from true values against the number of years forecast simultaneously.

Table 2. The ACF and PACF patterns relative to the type of
process.

Process ACF PACF

AR Tails off exponentially or in
sine-waves

Drops off after lag p

MA Drops off after lag q Tails off exponentially or in
sine-waves

ARMA Tails off exponentially or in
sine-waves

Tails off exponentially or in
sine-waves
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D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/67/3/454/732742 by guest on 19 April 2024



error (being 17 960 801) of the full observation period 1960–2006.
In contrast, forecast errors for a 2-year prognosis range from 19 to
50% with an average of �35%, and those for a 3-year forecast
range from 46 to 84% with an average of �64%. In fact, only
the relative forecast error of the 1-year ahead prognosis did not sig-
nificantly differ from 0 (F-test; p . 0.05; see the 95% box plots in
Figure 6d), whereas 2- and 3-year averages did (p ,, 0.05). In
contrast to the relative forecast error, the actual forecast values
did not differ significantly from the true values in all three cases
(all three vertical confidence bars include zero in Figure 6e); more-
over, the three averages of actual forecast values did not differ sig-
nificantly from each other (p .. 0.05). Interestingly, the 3-year
prognosis seemed to perform slightly better than the 1- or
2-year forecasts because the expected value was closer to zero.

Extended Ricker curve
To explore the effects of an interrelated SSB–climate effect, we
evaluated a linearized Ricker curve extended by two linear terms
related to winter AMO and winter NAO in a manner similar to
Equation (1). The Ricker curve was selected because it gave the
best quality-of-fit results among the conventional R–SSB curves,
and it also took into account a potential density effect
(Figure 3). Unsurprisingly, because the response variable was
changed from R to ln(R/SSB), the CCF analyses revealed signifi-
cant spikes at different lags (lag 6 for both winter NAO and
winter AMO) than for the ARIMAX model for both climate
indices. Whereas the performance of the extended Ricker curve
was better than that of the conventional R–SSB models, it per-
formed somewhat more poorly than the ARIMAX model
(rperformance ¼ 0.74, p ,, 0.05, AICC ¼ 33.7532, nobservations ¼

47, nresiduals ¼ 38, k ¼ 9). There was also no obvious signal
between SSB and either winter NAO or winter AMO, as revealed
by the CCFs between SSB and climate (p . 0.05).

Comparisons among alternative models
In summary, the performance measures for the five R–SSB models
were as listed below.

(i) B/H model: rperfomance ¼ 0.47, AICC ¼ 33.9607;

(ii) Ricker model: rperfomance ¼ 0.51, AICC ¼ 33.9069;

(iii) Segmented regression model: rperfomance ¼ 0.49, AICC ¼
33.9384;

(iv) ARIMAX [Equation (4)]: rperfomance ¼ 0.80, AICC ¼
33.4960;

(v) Extended Ricker model [Equation (1)]: rperfomance ¼ 0.74,
AICC ¼ 33.7532.

Only the AICC values of models (i)–(iv) can be compared
directly because they are based on the same dependent variable,
namely R. Model (v), where the endogenous variable is ln(R/SSB),
had to be back-transformed first to yield absolute recruitment
values and to allow a full comparison of the AICC values
because they are not scale-invariant. Based on the inspection of
both performance values, it is clear that the ARIMAX model is
superior not only to the conventional R–SSB models (i)–(iii)
but also to the extended Ricker model (v). Improvement resulting
from the inclusion of climate information while at the same time
removing SSB as a potential factor is apparent. Therefore, recruit-
ment forcing seems to be mainly climate-driven rather than
SSB-related. The best model to predict future recruitment is

hence model (iv) because it requires neither independent forecasts
of another exogenous variable, such as SSB, nor back-
transformation as long as the prognosis does not exceed 3 years
ahead. Hence, the lag structure of the ARIMAX model (climate
effects delayed by 3 and 5 years, respectively) restricts forecasts
to 3 years ahead of time.

Discussion
Although it is intuitively appealing to assume that reproductive
success depends on parental biomass, for North Sea herring the
superior performance of the ARIMAX recruitment model over
those models involving SSB indicates that climate was the
primary determinant of herring recruitment over the period con-
sidered. This is not to imply that there is no stock effect, but rather
that climate effects appear to dominate to the degree that a stock
effect cannot be detected statistically. Conflicting evidence for
reduced R at high SSB stems largely from recent (2002–2006)
observations (Figure 3a), which resulted in statistically non-
significant, better measures of fit for the Ricker curve (Table 1).
Interestingly, during the summer acoustic survey in 2007, we
observed cannibalism of large larvae by adult herring. This could
be related to our observations of unusually long residence times
of post-spawning adult herring in shallow waters (nursery areas,
German Wadden Sea) during that survey, which may further
explain the decline in the MIK index while the MLAI index
increased in recent years (Figure 2a and c). Cannibalism provides
a potential mechanism for a density-dependent effect at high levels
of SSB. However, it appears to operate only in years when adult
herring have extended residence in shallow water, which is not
generally the case (Bailey and Steele, 1992). As a result, there is
conflicting evidence for density-dependence in the stock–recruit
relationship at high SSB values, based on data from the 1960s vs.
data from the 2000s (Figure 3a). We speculate that climate varia-
bility causes interannual changes in prey availability and therefore
the need for adult herring to resort to cannibalism in any one year.
Directed field research is necessary to understand better the appar-
ent ephemeral role of cannibalism in North Sea herring.

The analysis of potential SSB effects on R involves several non-
trivial technical issues that warrant discussion. For instance, analy-
sis of R solely by ARIMAX modelling may ignore an inherent SSB
effect. Yet, a failure to remove a potential SSB effect from R is only
problematic if SSB is independently influenced by climate (e.g.
winter NAO and winter AMO) and functions as a mediator.
There may be two ways to handle this situation: either directly
to take into account a significant SSB effect by including SSB or
to remove an inherent SSB effect from R. Plots of R on SSB
reveal that this relation is usually non-linear, so the inclusion of
SSB linearly into an ARIMAX model would not make sense.
Therefore, we used a linearized approach instead, based on the
extended Ricker curve [Equation (1)]. Alternatively, within the
context of an ARIMAX model, the potential SSB influence may
be removed by fitting a conventional R–SSB model leading to

Residuals ¼ f ðclimatic factorsÞ; ð5Þ

in which the residuals stem from one of the three conventional R–
SSB models. These residuals (Rresidual) would then be used to fit an
ARIMAX model. However, there are three reasons not to do this.
First, if SSB is not linked directly to a time-trend being removed,
then removing the SSB effect from R could make even stationary
recruitment dataseries non-stationary; this would seriously
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violate the assumptions of TS methods. Second, for large uncer-
tainty in the stock–recruit relationship, none of the conventional
models would fit well; this is currently the debate regarding con-
ventional R–SSB models, as mentioned in the Introduction.
Given this, it would be poor statistical practice to calculate
residuals by removing a poorly fitted model from observed data
because this would erode the quality of the recruitment data to
be explained by exogenous factors. Third, our goal was to find a
prognostic model of the type

Recruitment ¼ f ðclimatic factorsÞ; ð6Þ

which can forecast future recruitment for prognostic purposes and
not forecast residuals as in Equation (5), which cannot be con-
verted into real recruitment values owing to the lack of a valid
R–SSB model.

Our finding of non-statistically significant effects of SSB on R
differs from those of Nash and Dickey-Collas (2005), who found
that SSB was related to recruitment in 80% of years. It should be
noted that our study makes use of a much longer, more complete
TS (46 vs. 22 years) and includes modelled recruitment (VPA),
providing more information than the survey data alone, as used
by Nash and Dickey-Collas (2005). Before a full comparison can
be made between these studies, it would be necessary to re-run
the Nash and Dickey-Collas (2005) approach by including all
years back to 1960 and by taking into account autocorrelation as
we have done.

Perhaps the most striking feature of the SSB and R time-series is
the decline in the 1960s and 1970s. The fishery certainly contrib-
uted because fishing mortality is estimated to have been very
high then, perhaps accelerating a decline into a stock collapse
(Bailey and Steele, 1992). However, the historical decline in
North Sea herring is widely viewed today as resulting solely from
overfishing. For overfishing to explain this decline fully, there
needs to be clear causality in the relationship between R and
SSB. However, not only does our analysis reveal uncertainty in
this relationship, we identified a significant reverse causality
SSB ¼ f(R), because additional cross-correlation experiments
revealed significant peaks at negative lags of SSB with delays of 2
and 3 years, indicating a feedback situation (Bailey and Steele,
1992; Schlittgen, 2001). Rather, two findings indicate that year-
class strength is largely determined at the larval stage, specifically
after yolk-sac absorption. First, the abundance of small yolk-sac
larvae is linearly correlated with SSB (Gröger et al., 2001; ICES,
2007). Second, among our cross-correlations of MLAI and MIK
indices with winter (December–March) values of AMO and
NAO, only the MIK index showed significant spikes at exactly
the same lags of winter NAO and winter AMO as for R. Taken
together, this implies to us that abundances of eggs and small
larvae are mainly determined by adult herring biomass, whereas
the abundance of post yolk-sac larvae is mainly determined by
environmental factors linked to climate.

We reach the same conclusion when we focus on the most
recent decline of 2001–2006, which cannot be explained by high
fishing mortality (from 2001 to 2006, all values of F-at-age-1
were ,0.07, and all values of F averaged over ages 2–6 were
,0.31; ICES, 2007). Additionally, the more recent decline
cannot be explained by parent stock size, which remained
relatively high. Another observation is that in years such as
1989–1990 and 2000–2005, the production of eggs and small
larvae (MLAI) and SSB were quite high (Figure 2a), but the

resultant abundances of larger larvae (MIK; Figure 2a) and recruit-
ment were poor (Figure 2b). Moreover, we see similar trends of
16–24 mm larvae that are still on the hatching grounds compared
with trends of large (�30 mm) larvae indexed by the MIK in the
following spring. Collectively, these historical and recent obser-
vations suggest to us that recruitment is likely driven primarily
by external factors, which most likely operate shortly after the
yolk-sac stage and continue through the overwintering period
until larger larvae are seen in early spring (MIK).

Cross-correlations suggest that environmental conditions
related to winter NAO and winter AMO are largely responsible
for the variability in R. In this case, lags of 3 (AMO) and 5 years
(NAO) imply delayed effects of physical forcing on herring recruit-
ment about which one can only speculate. These time-lags indicate
to us that both physical processes are not directly influencing the
larvae, but are instead operating via intermediate ecological pro-
cesses. Such time-lags could develop from a combination of
delayed development of ocean features, such as ocean currents
and properties of the water mass (e.g. temperature and salinity),
in response to NAO- and AMO-related physical forcing, or
sequenced ecological processes involving food-chain effects. It is
logical that the indirect influence of the AMO is faster because it
indexes a large-scale sea surface effect, whereas the indirect influ-
ence of the NAO is slower because it indexes a large-scale atmos-
pheric effect.

The NAO and AMO indices were chosen for this analysis
because they reflect large-scale climate and ocean dynamics,
thereby increasing the utility of our approach for other fish
stocks in the North Atlantic. Decadal or multidecadal shifts in
AMO and the recent seasonal shifts in high AMO SSTs and low
NAO values during autumn reflect large-scale changes that likely
translate into regional dynamics of ocean currents and water prop-
erties (e.g. temperature). These directly or indirectly interact with
early life stages of fish stocks, including herring. One of the more
well-known examples of this is the Russell Cycle, which describes
major regime shifts in fish fauna in the English Channel associated
with systematic changes in the NAO, ocean circulation, and zoo-
plankton species composition and abundance (Cushing and
Dickson, 1976; Southward, 1980). Whereas regime shifts provide
extreme examples of the coupled response of marine ecosystems
to climate change, regional changes in climate and oceanography
are often more subtle; and individual fish stocks may respond to
climate indirectly through the population dynamics of their prey
organisms, so leading to more gradual and delayed responses.

Lagged effects involving the winter NAO are not limited to
herring. For instance, the recruitment dynamics of pikeperch
(Sander lucioperca) in a Baltic lagoon lagged changes in the
winter NAO by 5 years, and temperature and salinity by 3–5
years (Gröger et al., 2007a). Preliminary analyses indicated that
these lagged effects were probably attributable to cycles of the
prey of pikeperch (Gröger et al., 2007a). An identical delay of 5
years involving the winter NAO was found for benthic organisms
in the Baltic Sea (Gröger and Rumohr, 2006). In a more general
context, Post (2004) distinguished between three fundamentally
different mechanisms of population time-lag responses, including
influences of (i) atmospheric processes, (ii) species life history, and
(iii) trophic interactions. These are discussed below.

(i) Atmospheric processes—Lagged population responses to
large-scale climatic variability may arise when the proximal
abiotic factor influencing the population dynamics is itself
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correlated with regional atmospheric processes at some time
in the past (Post, 2004). Physical mechanisms functioning
between global proxies and regional variables are complex.
Depending on the region, the leading pattern of regional
SST anomalies in the North Atlantic or the Gulf Stream is
related directly to anomalous air–sea fluxes associated with
the NAO with lags between 1 and 3 years (Taylor and
Stephens, 1998; Watanabe and Kimoto, 2000; Conversi
et al., 2001; Marshall et al., 2001).

(ii) Species life history—Climate-driven effects usually act only
on specific components of the life cycle and could be
manifest as lagged effects through reproduction (Post,
2004). In our case, winter NAO and winter AMO indices
(lagged or non-lagged) do not show any statistically signifi-
cant correlations with herring SSB. Ecologically this makes
sense, because adult herring are expected to be less vulnerable
to changes in their environment than early life stages. For
instance, adults may swim away from unfavourable con-
ditions, such as very cold temperatures perhaps associated
with poor feeding conditions (Jacobsson and Østvedt,
1996; Maravelias, 1997). Of the early life stages, inability to
avoid adverse conditions is most acute for the egg stage,
during which anoxia events can cause mass mortality
(Morrison et al., 1991). With increasing body size of
herring, resistance to starvation increases. The early life-
history stages of herring are most critical for year-class
success.

(iii) Trophic interactions—Interactions among species may also
produce time-lags (Post, 2004). Because climate factors,
such as atmospheric pressure, are unlikely to produce signifi-
cant direct effects on recruitment (in our case, the CCFs
between R and NAO as well AMO at lag 0 are insignificant),
a plausible trophic linkage involves larval herring prey (e.g.
the nauplii of Calanus finmarchicus). In the North Sea, zoo-
plankton species composition and abundance are linked to
increased (warm) or decreased (cold) inflows of
nutrient-rich oceanic water from the North Atlantic
(Beaugrand et al., 2002; Reid et al., 2003). Periods of
enhanced inflows are associated with increased westerlies
associated with changes in wind patterns and increased
wind strength, phenomena highly correlated with the NAO
and SSTs (Beaugrand et al., 2002; Reid et al., 2003). In the
Gulf of Maine, C. finmarchicus abundance in summer was
positively related to winter SST 2 years earlier or to the
NAO index 4 years earlier (Conversi et al., 2001).

In addition to the abundance and species composition of their
prey, the timing of prey availability may be critical for larval
feeding success and survival. For instance, the point of no return
(the point at which fish become too weak to feed and recover) is
just 5–6 d for newly hatched larvae and increases to 15 d �90 d
after hatching, when larvae are larger (Blaxter and Ehrlich,
1974). The sensitivity of first-feeding larvae to prey availability
and quality led to Cushing’s (1969, 1995) match–mismatch
hypothesis, which posits that when the spring bloom is poorly
matched with the relatively fixed spawning time of fish, poor sur-
vival will lead to a weak year class. This hypothesis may be sup-
ported by the fact that the marginal increase in North Sea SST
during the past decade led to a significant (�1 month) delay of
the spring phytoplankton bloom and a subsequent change in the

zooplankton species composition, including the nauplii upon
which herring larvae feed (Wiltshire and Bryan, 2004; see also
Nash and Dickey-Collas, 2005). Climate effects on herring prey
may, however, be twofold, either operating directly on their physi-
ology (e.g. temperature regulation of growth and reproduction) or
operating indirectly via oceanographic processes. Additional ana-
lyses (not shown here) suggest that SST in February and March is
the proximal environmental variable responsible for the climate
connection.

An alternative mechanism was proposed by Corten (1986), who
suggested that climate-driven changes in North Sea circulation dis-
rupted the advection of herring larvae from spawning to nursery
grounds, contributing to the recruitment failures of the 1970s.
Windstress drives ocean circulation patterns in the North Sea
during winter; winds vary greatly, alternating between periods of
strong southerly or southeasterly winds lasting for days to weeks,
to westerly flows more typical of that time of year (Bartsch et al.,
1989). Therefore, although advection modelling showed that
eastward transport was the dominant mode, patterns of larval dis-
persal vary annually depending on meteorological conditions
(Bartsch et al., 1989). Still, the relative role of larval advection
on the annual variability in North Sea herring recruitment
remains unknown.

Although details of the underlying operative mechanisms
linking the NAO and AMO to herring recruitment remain to be
resolved, an ideal feature of the ARIMAX model [Equation (4)]
is that it can be used easily for short-term prediction as part of
North Sea herring assessments. We simply need to replace the con-
ventional R–SSB function (currently either a segmented regression
or a Ricker curve) by our ARIMAX model and leave the remaining
equations untouched (for an illustration, see Gröger et al., 2007b).
Forecasting the recruitment for the scenarios is then straightfor-
ward because the input values for NAO and AMO are known 5
and 3 years back, respectively, so do not need to be forecast. The
shorter lag of 3 years fixes the maximum length of the planning
horizon at 3 years. As an example, suppose we want to forecast
the recruitment for the years 2010–2012. To predict R2010, we
need only insert the known values for NAO2005 and AMO2007

into Equation (4), for 2011 those of NAO2006 and AMO2008, and
for 2012 those of NAO2007 and AMO2009. In contrast to this, for
prognostic purposes, all other approaches [models (i)–(iii) and
(v) as specified above] require independently forecast values of
SSB. However, forecast error in SSB leads to additional forecast
error in the recruitment model. Moreover, Equation (1) requires
some back-transformation to obtain real R values from the pre-
dicted (forecast) ln(R/SSB) values and does not account for auto-
correlation in the residuals; this most likely results in biased
parameter estimates. The resulting short-term predictions from
the ARIMAX model appear from the prognostic indicators to be
rather reliable (Figure 6d and e).

Although our best model does not incorporate an SSB effect on
R in the particular case of North Sea herring, this should not in any
way be misconstrued from a fisheries management perspective.
Evidence for density-dependence (i.e. a reduced frequency of
good year classes) at low stock sizes strongly implies the need to
avoid overfishing. Our results (see SA and Figure 5c) imply that
initial declines in R in the 1960s and 1970s stemmed from environ-
mental causes, but that the complicit effects of overfishing con-
verted the SSB decline into stock collapse (Bailey and Steele,
1992). Stocks driven to such low levels, as in the 1970s, increase
the risk of delayed recovery and prolonged periods of drastic
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management measures, such as fisheries closures. Therefore, when
the stock regeneration process is seemingly compromised, regard-
less of cause (e.g. overfishing, periods of poor recruitment attribu-
table to unfavourable environmental conditions, or increases in
natural mortality), it is incumbent on fishery managers to
reduce the total mortality by reducing the exploitation rate (i.e.
fishing mortality F). Management strategy evaluations (Kell
et al., 2005; A’mar et al., 2008) provide an approach to evaluate
quantitatively the trade-offs among alternative harvest strategies
to sustain North Sea herring stocks and fisheries under the com-
bined effects of fishing and climate fluctuations.
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