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Population dynamic models used for fisheries management assume that stocks are isolated entities, ignoring the influence of environ-
mental factors on stock productivity. An operating model parameterized for North Sea cod, plaice, and herring is developed, in which
the link between recruitment and environment is assumed to be known and described by generalized additive models. This tool is
used to compare the performance of harvest control rules (HCRs) when recruitment is independent of the environment or when
recruitment is affected by an environment varying according to different scenarios. The first HCR exploited the stock with a fixed
fishing mortality (F ) corresponding to maximum sustainable yield, and in the second HCR, F was set equal to the precautionary
approach F (i.e. Fpa), but reduced from Fpa when stock biomass fell below Bpa. The performance of the HCRs altered only slightly
in a randomly varying environment compared with a constant one. For a detrimental change in the environment, however, no
HCR could prevent a massive decrease in stock size. The performance of the HCRs was also influenced by the stock characteristics,
such as recruitment variability or the shape of the stock–recruitment relationship. The performance of “environmental” HCRs
(eHCRs), in which F varies depending on environmental conditions, was compared with that of conventional HCRs. The gain in
using the eHCR was small, except for a detrimental change in the environment, where the eHCR performed markedly better than
a conventional HCR. The benefits of using the eHCR were the greatest for the stock with the strongest environment–recruitment
relationship.
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Introduction
With the development of an ecosystem approach to environmental
management (UN, 1992; EC, 2002), fisheries research broadened
its approach. Fish are recognized as functioning within a wider
ecosystem and are dependent on complex and dynamic inter-
actions with their environment. One of the key processes that
needs to be integrated for an ecosystem approach is the influence
of the variability of environmental conditions on a fish stock’s pro-
ductivity, particularly on recruitment. After almost a century since
Hjort’s (1914) pioneering work studying recruitment variability,
many of the processes linking recruitment to the environment
have been understood, and several general recruitment hypotheses
synthesizing these processes have been developed (see Houde,
2008, for a recent review). Despite this, for a vast majority of
stocks, we are still unable to provide reliable recruitment predic-
tions; most environment–recruitment models explain only a
small part of the variability, and they generally fail when retested
with updated data (Myers, 1998). Although the importance of
environmental effects on recruitment is increasingly acknowledged
by the stock-assessment community, the lack of a formal recruit-
ment model to integrate these effects makes it difficult to incor-
porate environmental factors in stock assessment methodologies
and management procedures. Consequently, stock assessment
and management methods for many stocks still rely on the

assumption that fish stocks are isolated entities whose dynamics
are determined by fishing mortality alone.

For most stocks, management is based on measures of the
state of the stock (e.g. spawning-stock biomass, SSB) and the
level of exploitation (e.g. fishing mortality, F), the standard
outputs of stock assessments. Management procedures aim to
keep the stock within safe biological limits, which are represented
by reference values for SSB and F. Management operates following
so-called harvest control rules (HCRs), which are essentially for-
malized decision rules defining the level of F that can be applied
to the stock in the future, given the current position of SSB and
F relative to their reference values. The likely benefits of designing
management procedures that take environmental variability into
account have been explored (e.g. Planque et al., 2003; Kell et al.,
2005; MacKenzie et al., 2008), but in practice, the assumption is
still that environmental variability does not seriously affect the
productivity of a stock. However, HCRs defined under such an
assumption of no environmental effect may not be appropriate
if the dynamics of the stock are indeed affected by environmental
variability. A simulation approach for the walleye pollock
(Theragra chalcogramma) fishery in Alaska, in which an environ-
ment–recruitment relationship is explicitly modelled, indicated
that under different scenarios of future climate change, the man-
agement strategy currently used performed poorly, both in terms

# 2010 International Council for the Exploration of the Sea. Published by Oxford Journals. All rights reserved.
For Permissions, please email: journals.permissions@oxfordjournals.org

1051

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/67/5/1051/608950 by guest on 10 April 2024



of keeping the stock within safe biological limits and in achieving
high and stable yields (A’Mar et al., 2009). Those authors proposed
an alternative management strategy accounting for environmental
variability, which performed considerably better than the conven-
tional one.

There are two ways in which environmental information could
be incorporated in stock management (Basson, 1999): (i) using an
environment-based recruitment forecast for short-term stock pro-
jections and (ii) varying reference points according to prevailing
environmental conditions. Making short-term predictions of the
state of the stock and catches 2 years ahead, under a range of differ-
ent values of F, is a standard practice in ICES stock assessments.
For lack of a reliable predictive model for recruitment, the
assumption of constant recruitment is generally made and the geo-
metric mean over a long period tends to be used. Occasionally,
recruitment is predicted from a stock–recruitment (SR) model.
In both cases, only crude estimates of future recruitment are
used, a source of uncertainty for short-term stock projections.
If recruitment is strongly linked to the environment, such
uncertainty could be reduced using an environment–stock–
recruitment relationship (referred to as eSR hereafter) to forecast
future recruitment (MacKenzie et al., 2008). However, this
would require that the environmental conditions affecting recruit-
ment can be either measured before the stock assessment working
group meets or forecast accurately, neither of which may be poss-
ible. Pacific sardine (Sardinops sagax) off the US west coast is cur-
rently the only stock in the world for which such an approach is
used for management (PFMC, 2007). Adjusting the reference
points according to the prevailing environmental conditions is
the other way to incorporate environmental information in
stock management. Environmental variability is responsible for
long-term trends in recruitment of fish (Brunel and Boucher,
2007) or of sudden switches from one regime to another
(Beaugrand, 2004; Alheit et al., 2005). Adaptive management
through environment-driven changes in F reference points is a
way to tune the level of exploitation to the current level of pro-
ductivity of the stock (ICES, 2006).

Basson (1999) investigated both these approaches and con-
cluded that using environmental information for short-term
recruitment predictions did not improve the performance of man-
agement. However, using environmental information to adjust the
fishing mortality reference points could improve management if
the link between recruitment and the environment is strong
enough.

Simulation is routinely used to evaluate the performance of
management strategies (Schnute et al., 2007), and it has also
proved useful in exploring the likely benefits and feasibility of
incorporating environmental factors in management procedures
(Basson, 1999; Kell et al., 2005; A’Mar et al., 2009). In the
current study, simulation was used to evaluate the performance
of two HCRs to (i) compare the performance of management
strategies when recruitment is affected by the environment and
when it is not and (ii) investigate whether incorporating environ-
mental effects in management procedures would improve man-
agement. To that end, we created eSR models and developed a
method to revise management reference points when there is a
major change in the prevailing environmental conditions. With
these tools, we evaluated the performance of the two HCRs specifi-
cally contrasting conventional HCRs with a so-called environ-
mental HCR (eHCR). This evaluation is based on three case
studies with different life histories and recruitment dynamics:

herring (Clupea harengus), plaice (Pleuronectes platessa), and cod
(Gadus morhua) in the North Sea.

Material and methods
An operating model representing the dynamics of the three stocks
was used to investigate the performance of two HCRs (and the cor-
responding eHCRs). The operating model can be configured to
simulate either North Sea herring, plaice, or cod using stock-
specific biological and exploitation parameters. Historical
environmental and SR data were used to determine the eSR
relationships for the three stocks individually. These were then
used in the operating model to represent recruitment. The
model was used to simulate the development of the stocks over
a 50-year period, considering the two HCRs and the two eHCRs
that regulate the exploitation under four different environmental
scenarios. The simulations generated data that were used to
produce a set of diagnostics on the performance of the HCRs.

Operating model
Basic model
A simple, age-structured population model was used to represent
the dynamics of the stocks, including fishing mortality,
selectivity-at-age, natural mortality, and growth and recruitment
parameters. Fishing mortality for each age group in a given year
(Fa,y) is the product of an annual fishing mortality Fy, fixed accord-
ing to the HCR, and a selectivity-at-age vector. For the
selectivity-at-age of each stock, the average of the historical selec-
tion pattern, as estimated by the ICES stock assessment working
groups, was used for herring (ICES, 2007a), cod, and plaice
(ICES, 2007b). Natural mortality was also taken from these ICES
reports.

Growth was modelled by a von Bertalanffy equation with con-
stant parameters (Table 1) throughout the simulation period, with
an additional stochastic component representing interannual
variability:

Wa;y ¼ Wa þ 1gða; yÞ; ð1Þ

where Wa is the weight-at-age a from the von Bertalanffy model,
and 1g(a, y) is white noise generated according to a normal distri-
bution Nð0;s2

g;aÞ. Both parameters of the von Bertalanffy equation
and the temporal variability in weight-at-age (s2

g;aÞ were estimated
for each stock from the weight-at-age data given in the ICES
reports.

Recruitment was modelled as the sum of the prediction from
the eSR relationship (see below) according to the SSB and environ-
mental factors in the previous year and of a lognormal stochastic
component representing the variability in recruitment not
explained by stock or environment variations:

Ry ¼ RpredðSSBy�1; envy�1Þ þ 1RðyÞ; ð2Þ

where 1R(y) is a stochastic component having a lognormal distri-
bution logNð0;s2

RÞ. The variance s2
R is equal to the difference

between the variance of the historical recruitment time-series
and the variance explained by the eSR model.

Environment–SR relationships
The eSR relationships for the three species were mixtures of SR
relationships and environment–recruitment relationships. For
each stock, three SR models were fitted (Ricker, Beverton and
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Holt, and segmented regression), and the best was selected based
on the lowest AIC (Akaike Information Criterion, where AIC ¼
2k 2 2 log L, with k and L being the number of parameters and
the likelihood of the model, respectively). The SSB and recruit-
ment data for the three species were taken from the ICES
working group reports. The best-fitting SR models are the
segmented regression for herring and the Ricker model for cod
and plaice.

The environment–recruitment relationships were investigated
using generalized additive modelling (GAM). This method calcu-
lates the response variable (recruitment) as the sum of non-
parametric functions (represented by a penalized regression
spline) of the explanatory variables (environmental factors); it
has been used in several studies to investigate the effects of the
environment on recruitment (e.g. Daskalov, 1999; Cardinale and
Arrhenius, 2000; van Deurs et al., 2009).

The environmental factors considered here were the North
Atlantic Oscillation (NAO) index and various measures of temp-
erature and salinity, the last two taken from a three-dimensional
coupled biophysical model of the North Sea (ECOSMO model;
Schrum et al., 2006). Monthly values of temperature and salinity
were averaged over the relevant periods of the year and spatial
areas to produce indices of the conditions experienced by the
fish at different stages of their life cycle (e.g. bottom temperature
during the spawning season in a specific spawning area). An
exploratory analysis was first performed to select a relevant set

of environmental factors and to avoid redundancy. The selection
of the “best” GAM for each species was made based on the
lowest AIC.

For herring, the best model included the effect of the
September–November average of bottom salinity on the spawning
grounds around the Orkney Islands (right panels of Figure 1). For
cod, recruitment was influenced by the average temperature
during the first half of the year (Figure 1, left panels). For plaice,
recruitment was significantly related to the winter NAO index 1
year before spawning, the May–September average bottom temp-
erature on the feeding grounds in the northern North Sea, and the
annual minimum bottom temperature over the spawning grounds
in the southern North Sea (Figure 1, centre panels).

The eSR model was then constructed by multiplying the SR
relationship by the environment–recruitment relationship:

RpredðSSBy�1; envy�1; . . .Þ ¼ fSRðSSBy�1Þ

� fGAMðenv1y�1; . . .Þ; ð3Þ

where Rpred is the recruitment predicted from the eSR relationship
as a function of SSB of the previous year and environmental con-
ditions, fSR the stock effect component (modelled by the segmen-
ted regression or Ricker SR model), and fGAM the environmental
effect component (predictions from the GAM centred on 0 by sub-
tracting the mean of the historical recruitment time-series).

Table 1. Biological characteristics of the three stocks simulated.

Parameter Cod Plaice Herring

Maturity
A50 (years) 3.73 3.50 1.80
Slope (year21) 1.62 2.13 4.27

Growth
K (year21) 0.27 0.19 0.41
Winf (kg) 16.4 1.10 0.32
CV(W ) 0.12 0.16 0.11

Recruitment
CV(R) 1.21 0.69 0.64
R2env 0.19 0.53 0.14
R2SR 0.15 0.00 0.19
R2eSR 0.26 0.53 0.39

Biomass
BMSY (t) 275 576 404 040 2 191 920
Bpa (t) 150 000 230 000 1 300 000
Blim (t) 70 000 160 000 800 000
MSY (t) 544 785 171 304 716 515

Mortality
Natural mortality (M) 0.8, 0.35, 0.25, 0.2 (ages 1, 2, 3, 4þ) 0.1 1, 0.3, 0.2, 0.1 (ages 0–1, 2, 3, 4þ)

ICES reference points
Fpa (age 2–4) 0.65 (age 2–6) 0.60 (age 2–6) 0.25
Flim 0.86 0.74 Not defined

Calculated reference points
FMSY 0.86 0.25 0.21
Fpa 1.08 0.39 0.33
Flim 1.29 0.46 0.50

A50 and slope are the age at which 50% of the fish are mature and the slope of the maturity ogive, respectively; K and Winf are the growth coefficient and
the asymptotic weight from the von Bertalanffy growth curve, respectively; CV(W ) is the average over all age classes of the coefficients of variation in
weight-at-age; CV(R) is the coefficient of variation in recruitment; and R2env, R2SR, and R2eSR are the proportion of recruitment variance explained by the
GAM of the environment–recruitment relationship, the SR model, and the eSR relationship, respectively. The F reference points are calculated using the eSR
relationship for environmental conditions corresponding to the constant scenario using the method described in the text, and the values of M, Bpa, and Blim

are taken from ICES stock assessment reports.
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The focus of this study was not to provide the exact mechanism
through which environmental factors influence the recruitment of
the three stocks. Although we attempted to find the best eSR
relationship for each stock to make this exercise as realistic as
possible, the eSR relationships presented here may not be
robust. They should not, therefore, be used in a management
context or to describe the likely effects of climate change on
these three stocks. Therefore, the population models used here
should not be viewed as a representation of reality, but rather as

a tool for comparing how different HCRs perform under different
environmental scenarios.

Evaluation of HCRs in the context of a varying
environment
HCRs tested
The HCRs investigated here are based on reference points for the
state of the stock and for its exploitation. Reference points here

Figure 1. eSR relationships for the three stocks. The effect of environmental factors on recruitment is represented by the GAMs (top three
panels) and the effect of stock size is represented by the SR curves (bottom panels).
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were defined according to ICES standards (ICES, 2007c). Limit
reference points represent the biomass threshold below which
there is an increased probability of impaired recruitment (Blim),
and the fishing mortality (Flim) leading to Blim at equilibrium.
The precautionary reference point Bpa represents the stock level
above which the risk that the stock falls below Blim is low, consider-
ing the uncertainties in the assessment, and Fpa is the fishing mor-
tality leading to Bpa at equilibrium. The biomass BMSY, at which the
maximum sustainable yield (MSY) is achieved, is currently not used
to manage fish stocks in the ICES Area, but given the increasing pol-
itical commitment towards managing all fish stocks to achieve MSY
(FAO, 2003; CEC, 2007), this reference point is also considered here.
The values of the Bpa and Blim biomass reference points were taken
from ICES reports. The value of BMSY and the F reference points
were calculated from the model (see below).

The performance of the two HCRs was investigated (Table 2).
The first (HCR1) consisted of exploiting the stock with constant
F equal to FMSY, the fishing mortality leading to MSY in an equili-
brium situation. The second (HCR2) was similar to the manage-
ment strategy currently in use for North Sea herring and cod. At
SSB above Bpa, fishing mortality was set equal to Fpa. When SSB
fell below Bpa but remained above Blim, fishing mortality decreased
from Fpa to a lowest possible F-value, Fmin, proportional to
(Bpa2SSB)/(Bpa2Blim). If SSB was below Blim, then fishing mor-
tality was set to Fmin. The values of Fmin used by the herring and
cod assessment working groups are derived from complex simu-
lation studies. The ratio between the values Fmin and Fpa used by

ICES is 0.4 for herring and 0.5 for cod. As no HCR such as
HCR2 is used for the management of North Sea plaice, we arbitra-
rily chose to use the ratio 0.4 to calculate Fmin from Fpa for that
stock.

We use the convention that the HCR2 in this study would
determine the level of exploitation for the coming year (y þ 1)
based on the state of the stock observed in the present year (y),
which is a simplification of what is done in practice by ICES. To
take account of the uncertainty in the estimates of SSB produced
by the assessment method, the estimated state of the stock in
year y ( ^SSBy) was sampled in a normal distribution of mean
SSBy, the true state of the stock in year y, and of CV ¼ 8.5%
(value taken from the report of the herring assessment working
group). Therefore, Fyþ1 ¼ HCR2ð ^SSByÞ, with ^SSBy sampled in
N(m ¼ SSBy, s ¼ 0.085 � SSBy).

Finally, the eHCRs, eHCR1 and eHCR2, are the variants of
HCR1 and HCR2, but with the reference points FMSY and Fpa,
respectively, changing in time according to the environmental
conditions, as detailed below.

Fpa was calculated as the fishing mortality leading to Bpa at
equilibrium under the environmental condition prevailing at the
start of the simulation. To do so, a value of recruitment at Bpa

(Rpa) was required and predicted from the eSR relationship,
using Bpa as the input value of SSB, and the average over the
first 5 years of the simulation for the environmental variable(s).
To estimate BMSY and FMSY, the value of SSB at equilibrium and
the corresponding catch were calculated for a range of values of
F, and the values of SSB and F for which the highest catch was
observed were taken as BMSY and FMSY.

For HCR1 and HCR2, the FMSY and Fpa reference points were
defined at the start of the simulation period and were constant
in time. For eHCR1 and eHCR2, the value of FMSY and Fpa

changed in time according to environmental conditions; if the
environment deteriorated, then FMSY and Fpa were reduced, and
vice versa. The method used to determine Fpa (the same applies
for FMSY) was based on the eSR relationship (Figure 2). Setting
SSB ¼ Bpa, the environment–recruitment function was predicted
using a set of 1000 equally spaced values of the environmental vari-
ables, ranging from the lowest to the highest value observed
(Figure 2a). These recruitment values were divided into three

Figure 2. HCR integrating the changes in the environment (eHCR2). (a) The response function of recruitment to environment (illustrative
example) is used to define three possible states of the environment. (b) Three different SSB–F relationships can be used to set the F reference
point according to SSB, depending on the state of the environment.

Table 2. Description of the four HCRs investigated.

HCR Description

HCR1 F constant at FMSY

HCR2 F constant at Fpa if SSB � Bpa

F constant at Fmin if SSB � Blim

F ¼ Fmin þ (Fpa 2 Fmin)(Bpa 2 SSB)/(Bpa 2 Blim) if
Blim , SSB , Bpa

eHCR1 As for HCR1, but with FMSY varying according to
environmental conditions

eHCR2 As for HCR2, but with Fpa varying according to environmental
conditions
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classes of equal size (R1, R2, and R3), and based on these three
recruitment classes, three environmental classes were created
(Env1, Env2, and Env3, respectively, which do not necessarily
have to be the same size). The median values (Env High, Mid,
and Low) of these three environmental classes were used to calcu-
late the corresponding levels of Fpa (Fpa High, Mid, and Low,
respectively), which were used to determine the three SSB–F
relationships that represented the eHCR2 for each environmental
condition (Figure 2b). For each year, the median value of the
environmental variable(s) over the previous 8 years was calculated,
and depending on the class of environmental conditions to which
it belonged, the state of the environment and the corresponding
SSB–F function was determined. This function is the basis of
the eHCR2 used for that year’s (y) management that determines
the level of exploitation for the following year.

Environmental scenarios tested
Unlike studies modelling the effect of future climate change on fish
stocks (Kell et al., 2005; Röckmann et al., 2007; A’Mar et al., 2009),
we decided not to use realistic climatic scenarios (e.g. that of the
International Panel on Climate Change, IPCC), but generated
four environmental scenarios for which the range of variation in
the environmental factors was approximately the same as observed
in the historical data. The rationale for this exercise was that extra-
polation of recruitment produced by the GAM-based eSR relation-
ship for values of the environmental factors outside the observed
range is questionable.

The scenarios used to evaluate the HCRs consisted of 50-year
time-series of the environmental factor affecting recruitment
(Figure 3). In the constant scenario (C), the environmental vari-
able used for the simulation was constant over time, equal to the
mean of its observed values. That scenario aimed to test the behav-
iour of the stock not affected by environmental variation, with
recruitment varying only because of random noise. For the
random scenario (R), the value of the environmental factor was
generated by sampling from a normal distribution with the same
mean and variance as the actual time-series, i.e. without any
trend or change over the longer term. The scenarios
trend-unfavourable (TU) and trend-favourable (TF) represented
a gradually changing environment, i.e. respectively, from a favour-
able (Env High) to an unfavourable (Env Low) state, and the
reverse. For these two last scenarios, a white noise of variance
equal to the variance of the actual time-series minus the variance
in the long-term trend was added to the trend. By doing so, the
variance of the environmental factors in scenarios R, TU, and
TF was roughly equal to the variance of the actual environmental
time-series.

Evaluation of HCR performance
For the three stocks, the performance of the two HCRs and the two
eHCRs was tested for all four environmental scenarios by running
the model 200 times with an identical model setting, i.e. in terms
of biological and exploitation parameters. These 200 runs were
used to investigate the variability in stock behaviour resulting
from the stochastic components in the growth and recruitment
models. From the 200 runs, the following diagnostics were calcu-
lated: (i) Yield, the sum of the annual yields taken from the stock
for each run over the 50 years of the simulation (in tonnes), (ii)
Fbar, the average fishing mortality over the 50 years of simulation,
and (iii) Below Bpa and Below Blim, the percentages of the years in
each run for which the stock was below Bpa and Blim, respectively.

A well-performing HCR was defined as an HCR resulting in (i)
a low risk for the stock (i.e. low Below Bpa and Below Blim), (ii) a
maximized catch (high Yield), and (iii) a low impact of the fishery
on the stock and the ecosystem (low Fbar).

Results
Performance of the HCRs
In general, the four HCRs performed well in preventing the stocks
from attaining levels where they would have been at risk (Below
Blim was almost always equal to zero in Figures 4–6). Stock col-
lapse (defined as SSB ,1% of pristine) was observed for none
of the stocks (results not shown). The MSY HCRs (HCR1 and
eHCR1) were always more precautionary (lower Below Bpa) and
resulted in lower fishing pressure (Fbar lower by 17% for cod
and 58% for herring in the constant scenario) and, generally,
resulted in a higher cumulative yield than HCR2 and eHCR2
(from 5% in herring to 14% in plaice in the constant scenario).

Figure 3. Visual representation for the four environmental scenarios.
This is an example used for North Sea cod, where only one
environmental variable (temperature) influences recruitment.
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The effect of environmental variability
Our first aim was to compare the performance of the conventional
HCRs (HCR1 and HCR2) when the environment is constant and
when it varies. There were relatively few differences in the per-
formance of the two HCRs in a randomly varying environment
compared with that in the constant-environment scenario. The
main difference was a sensibly lower yield (of about 5–10%) in
the random scenario compared with the constant one (except
for HCR1 for cod). The average F was always unchanged. The
time spent below Bpa increased in the random scenario, only

slightly for HCR1 (except for cod), but more significantly for
HCR2 (about 0.1 for the three species). The time spent below
Blim always remained at zero.

Differences in the performance of the HCRs were more pro-
nounced between the constant scenario and the two scenarios
with a trend in the environmental variables. For a favourable
trend, yield was unchanged (cod) or lower (plaice and herring)
than in the constant scenario for HCR1, whereas for HCR2,
yield was unchanged (plaice and herring) or higher (cod).
Always (except herring for HCR1), average F was substantially

Figure 4. Performance of the four HCRs for North Sea cod for four environmental scenarios. For each environmental scenario (presented in
columns), the boxplots show the distribution of the four performance diagnostics of the HCRs (in rows) for the 200 stocks simulated for each
of the four HCRs tested.
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lower for the favourable trend scenario than for the constant one.
The time spent below Bpa in the TF scenario was unchanged for
HCR1, but was much lower than in the constant scenario for
HCR2. Again, the time spent below Blim always remained at zero.

The TU scenario resulted in a higher cumulative yield for cod
and herring and a lower yield for plaice, for both HCRs. Average
F was always much higher than in the constant scenario (except
HCR1 for herring). The time spent below Bpa increased dramati-
cally (also except HCR1 for herring), reaching high values for
HCR2 for cod and plaice (Below Bpa . 0.6). Plaice and cod also
spent a substantial part of the time below Blim with both HCR1
and HCR2.

Comparison of HCRs and eHCRs
Our second aim was to investigate whether the use of reference
points varying according to environmental conditions (eHCR1
and eHCR2) instead of being fixed (HCR1 and HCR2) improved
management performance. For the three stocks, HCR1 and HCR2
performed well independent of the environmental scenario, so
using the eHCRs only resulted in relatively marginal
improvements.

For the constant and random environmental scenarios, the
eHCRs performed equally well as their conventional counterparts.
For a favourable change in the environment, eHCR1 led to an
improvement in the cumulative yield compared with HCR1

Figure 5. Performance of the four HCRs for North Sea plaice for four environmental scenarios (see Figure 4 for explanation).

1058 T. Brunel et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/67/5/1051/608950 by guest on 10 April 2024



(plaice and cod), with no significant change in Below Bpa and
Below Blim, but with a markedly higher average F. eHCR2 also
resulted in a higher average F compared with HCR2, but with a
much larger proportion of time spent below Bpa, and a decrease
in the cumulative yield. The only case for which eHCRs performed
clearly better than the conventional HCRs was for an unfavourable
change in the environment, for which the eHCRs resulted in
higher yield than the conventional HCRs, lower average F, a
decrease in the time spent below Bpa, and a reduction in the
time spent below Blim, at almost zero.

Discussion
Unlike other management-strategy-evaluation studies (Clark et al.,
2003; Kell et al., 2005; A’Mar et al., 2009), our study did not aim to
produce state-of-the-stock projections of the state of the stock
managed with a given procedure and based on realistic environ-
mental scenarios. Instead, we used fictional scenarios, covering a
range of environmental changes. For the sake of convenience, sim-
plifications were made and compared with reality. These simplifi-
cations were made to create a generic tool that aimed to compare
the performance of a set of eHCRs under various environmental

Figure 6. Performance of the four HCRs for North Sea herring for four environmental scenarios (see Figure 4 for explanation).
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scenarios and for different types of species in a standardized fra-
mework. First, our simulation tool did not include any stock-
assessment module, so the uncertainty linked to the stock assess-
ment method was not directly integrated in our model.
However, an artificial error component of CV equal to 8.5% was
applied to SSBy to take account of this uncertainty in testing the
performance of the HCRs. Then the way the decision on future
F is taken is simplified; here, Fyþ1 is a function of SSBy, whereas
in reality, e.g. North Sea herring, Fyþ1 is decided based on
SSByþ1, which was not observed at the time of the assessment
but projected under assumptions on the current Fy. As there is
uncertainty associated with the projection, this could add noise
in the management procedure and may result in a decrease in per-
formance. However, for North Sea herring, the imprecision on the
projection of SSB 1 year ahead is very low (on average 4%;
M. Dickey-Collas et al., pers. comm.). Moreover, the dependence
of HCR on SSByþ1 makes it possible to incorporate the most recent
information on the stock, e.g. the number of juveniles in present
year y that will become mature in year y þ 1. Consequently, the
real HCR implemented for North Sea herring is probably more
reactive and hence performs better than the HCR2 tested here.
Finally, the stock is exploited in our model exactly with the Fy

value set by the HCR, whereas in practice it could differ, e.g. scien-
tific advice not followed by the managers, quota under/overshoot-
ing. This situation is observed for many stocks and is a major cause
of ineffective management (Cardinale and Svedäng, 2008).
However, as the present study focused only on the performance
of the HCRs, not of the whole management system, trying to inte-
grate in the model the discrepancy between the advised and the
realized F was beyond our scope.

To the current exercise, we created eSR relationships using
GAMs, a method that has already been used with the same aim,
but which may be criticized in terms of the lack of underlying
theory for the shape of the relationships observed. The choice of
the SR model used was also critical, because it affects the relation-
ship between F and SSB at equilibrium and, hence, the estimation
of the F reference points. The F reference points calculated were
different from those determined by ICES for the three species
(Table 1), but the difference was very small for plaice and
herring. For cod, however, the F reference points estimated from
our model were twice the values used by ICES. This discrepancy
may be because ICES reference points were calculated in 1998,
and therefore based on stock and recruitment data 10 years
shorter than the time-series used here and probably using a differ-
ent method. However, because of the lack of documentation on
calculating North Sea cod reference points, we could not check
the source of this discrepancy rigorously.

The first conclusion of this study was that, although the per-
formance of the two conventional HCRs was not altered in a ran-
domly varying environment compared with a constant one, this
was not the case for a favourable environmental change, for
which the yield dropped with HCR1, or for an unfavourable
environmental change, for which neither HCR could prevent the
stock from declining below Blim. For a favourable trend, HCR1
still performed better than HCR2 in minimizing both the time
spent below Bpa and Blim, and the fishing pressure, but was no
longer optimal in terms of yield. As the environment became
more favourable, stock productivity increased and MSY moved
to higher stock size and levels of F. Applying the HCR1 using
FMSY calculated at the start of the simulation period, therefore,
resulted in a stock becoming steadily underexploited. The

situation was the opposite for HCR2, for which the Fpa calculated
at the start of the period moved gradually closer to MSY as this
parameter moved towards higher levels as a result of environment
change.

For an unfavourable trend in the environment, HCR1 outper-
formed HCR2 in terms of yield, but resulted in a proportion of the
time spent below Blim equal to or higher than HCR2. The
unfavourable environmental change decreased stock productivity,
and the FMSY calculated at the start of the period corresponds to
overexploitation at the end of the period, explaining why the
stocks fell below Blim. For HCR2, the Fpa level also led to overex-
ploitation, but as F decreased proportionally to SSB, the stock
only spent a limited proportion of time below Blim. The extent
to which the stock was affected by the unfavourable change in
the environment was related to the shape of the SR curve. For
cod and plaice, owing to the shape of the Ricker curve, recruitment
declined when the stock fell below Bpa, which accentuated the
unfavourable effect of environmental change. For herring,
however, owing to the flat shape of the segmented regression
curve, recruitment was unchanged when SSB fell below Bpa, and
even below Blim (down to about 500 000 t). Some other differences
in performance of the HCRs were also observed between the three
species. HCR1, exploiting the stock with a constant F equal to
FMSY, resulted in an average annual yield of 98 and 99% of MSY
in the constant scenario for plaice and herring, respectively. For
cod, however, the yield was just 76% of MSY. Cod recruitment is
twice as variable as the other two stocks, and much of the variability
is stochastic, i.e. not explained by the eSR relationship. Such a varia-
bility in recruitment is probably responsible for the variability in SSB,
which prevented the stock from remaining exactly at MSY; the stock
would vary around MSY, so resulting in catches not being maximal.
This seems to be the case too in a randomly varying environment for
the three stocks, which all had yields significantly lower than MSY
(ranging from 85% in herring to 75% in cod).

Designing management procedures that integrate the effect of
the environment on stock productivity is one of the most challen-
ging tasks for fisheries science. One of the major impediments to
achieving this goal is the difficulty in representing, in a formal
mathematical model, the complexity of the mechanisms through
which environmental factors can affect recruitment. The three
eSR relationships used here were based only on an empirical
GAM approach and had no other purpose than to serve as
examples of the functional relationship linking recruitment to
SSB and environmental conditions. These eSR relationships
allowed us to propose and test two eHCRs in which the F reference
points change according to the status of the environment.

The benefits of using eHCRs rather than conventional HCRs
were different among the environmental scenarios. In the
random scenario, interannual fluctuations in environmental con-
ditions were filtered by the 8-year moving median, and the F refer-
ence points were unchanged throughout the simulation period.
The eHCRs therefore behaved like the conventional ones. Using
the eHCRs was clearly beneficial in the event of an unfavourable
change in the environment. The decrease in FMSY and Fpa as the
environment deteriorated prevented a stock from falling below
Blim, which was not the case with conventional HCRs. As a conse-
quence of the higher levels of biomass maintained, the eHCRs also
yielded higher catches than the HCRs. However, although eHCR1
still performed better than HCR1 in the TF scenario, this was not
the case for eHCR2, which resulted in lower Yield and higher
Below Bpa (and higher Below Blim for plaice) than HCR2. One
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would have expected that increasing Fpa with eHCR2 as conditions
became more favourable would allow one to take advantage of the
increased productivity of the stock, with no increase in risk. For
that scenario, however, HCR2 maintained Fpa at a lower level,
allowing stock biomass to increase to a point that later resulted
in better catches and reduced risk.

Plaice was the species for which the difference in performance
between HCRs and eHCRs was greatest. The GAM model
explained 53% of the variability in plaice recruitment, whereas
for herring and cod, it explained a lesser part of recruitment varia-
bility. The greater benefits of using the eHCR in the case of plaice,
therefore, stem from the stronger link between the environment
and recruitment in our model for that species. This would
confirm the findings of Basson (1999) that the gain by incorporat-
ing environmental factors into management procedures depends
on the strength of the environment–recruitment relationship.

The eHCRs proposed here were relatively simple and similar to
the “level” approach developed by Basson (1999). Environmental
conditions were classified into three groups corresponding to
three different levels of recruitment productivity, with these
three levels used to define three F–SSB relationships. In this
“level” approach, the FMSY and Fpa reference points could each
take three values, corresponding to good, average, and poor
environmental conditions.

There are several explanations for the relatively limited improve-
ment provided by the eHCRs. First, because the choice of which of
the three levels of FMSY and Fpa should be used in a given year is
based on environmental conditions over the past eight years, this
eHCR acts with a delay to the environmental changes. Because of
this delay, an inappropriate level of F can be maintained for several
years during which the stock may be suboptimally exploited. Using
a shorter moving window to determine the state of the environment
would make the eHCRs react more quickly when there is a significant
environmental change, but would also make them too sensitive to
interannual variability in the environment. Alternatively, eHCRs
could be improved by using forecasts of future variations in environ-
mental factors, then basing the choice of F on a 5-year median of the
predicted environment (Basson, 1999). Planque et al. (2003) showed
that it was possible to forecast temperature in the North Sea using a
statistical model, given the observed temperature, and to forecast cod
recruitment accurately based on these predictions. However, in that
study, temperature was only predicted several months ahead, and no
weather forecast model is currently able to give accurate predictions
at a 5-year horizon.

The second limitation of the “level” approach is that it does not
permit fine tuning Fpa to the exact level of stock productivity. The
eHCRs react to environmental change by threshold response; as
long as the median of past environmental conditions remains in
a given environmental class, F reference points are unchanged,
and as soon as the class changes, F reference points switch to
another level. It would have been theoretically possible to calculate
for each year the exact value of FMSY and Fpa corresponding to the
observed environmental conditions, and to use them instead of the
three levels approach. This would have resulted in more reactive
eHCRs, in which F reference points change annually and can
have an infinite number of possible values. This, however, may
be an issue in the practical application of such eHCRs in a manage-
ment context and in terms of its acceptance by stakeholders. A
pragmatic alternative could be to revise reference points only
when a significant environmental change has occurred, which is
what the current eHCRs do.

Actual implementation of the eHCRs is hampered by a lack of
robust eSR models. A purely statistical description of the relation-
ship between recruitment and environmental factors (such as our
eSR relationships), unless it is supported by a convincing expla-
nation of the underlying biological mechanisms, cannot be con-
sidered sufficiently robust to be used for managing a stock.
Besides, considering the reality of a changing climate, we would
expect conditions in future that have not been observed in the
past, and for which the validity of the eSR relationships established
based on historical observations remains to be proven. Therefore,
before eHCRs can be implemented, further work is needed to
develop eSR models that not only describe the dynamics of year-
class strength, but are also built on an understanding of the mech-
anisms through which environmental factors influence
recruitment.
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Röckmann, C., Schneider, U. A., St John, M. A., and Tol, R. S. J. 2007.
Rebuilding the eastern Baltic cod stock under environmental
change—a preliminary approach using stock, environmental and
management constraints. Natural Resource Modeling, 20:
223–262.

Schnute, J. T., Maunder, M. N., and Ianelli, J. N. 2007. Designing tools
to evaluate fishery management strategies: can the scientific com-
munity deliver? ICES Journal of Marine Science, 64: 1077–1084.

Schrum, C., Alekseeva, I., and St John, M. 2006. Development of a
coupled physical–biological ecosystem model ECOSMO. 1.
Model description and validation for the North Sea. Journal of
Marine Systems, 61: 79–99.

UN. 1992. The Rio Declaration on Environment and Development
and Agenda 21. A/CONF.151/26 (Vol. 1).

van Deurs, M., van Hal, R., Tomczak, M. T., Jónasdóttir, S. H., and
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