
Investigating agreement between different data sources
using Bayesian state-space models: an application to estimating
NE Atlantic mackerel catch and stock abundance

E. John Simmonds, Enrique Portilla , Dankert Skagen, Doug Beare and Dave G. Reid

Simmonds, E. J., Portilla, E., Skagen, D., Beare, D., and Reid, D. G. 2010. Investigating agreement between different data sources using Bayesian
state-space models: an application to estimating NE Atlantic mackerel catch and stock abundance. – ICES Journal of Marine Science,
67: 1138–1153.

Bayesian Markov chain Monte Carlo methods are ideally suited to analyses of situations where there are a variety of data sources,
particularly where the uncertainties differ markedly among the data and the estimated parameters can be correlated. The example
of Northeast Atlantic (NEA) mackerel is used to evaluate the agreement between available data from egg surveys, tagging, and
catch-at-age using multiple models within the Bayesian framework WINBUGS. The errors in each source of information are dealt
with independently, and there is extensive exploration of potential sources of uncertainty in both the data and the model. Model
options include variation by age and over time of both selectivity in the fishery and natural mortality, varying the precision and cal-
culation method for spawning-stock biomass derived from an egg survey, and the extent of missing catches varying over time. The
models are compared through deviance information criterion and Bayesian posterior predictive p-values. To reconcile mortality esti-
mated from the different datasets the landings and discards reported would have to have been between 1.7 and 3.6 times higher than
the recorded catches.
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Introduction
Assessments of fish stocks are often based on catch-at-age data,
using a VPA or statistical catch-at-age framework, and a wide
range of approaches using a variety of data is available. These
may vary from the simplest form of just biomass or biomass and
recruitment models (Trenkel, 2008). Some standard approaches
based on catch matrices are provided by tuned VPA, such as
Extended Survivors Analysis (XSA; Shepherd, 1999), Integrated
Catch-at-Age analysis (ICA; Patterson and Melvin, 1996), and
ADAPT (Mohn and Cook, 1993; Patterson and Kirkwood,
1995). However, in some cases, such as the example for
Northeast Atlantic (NEA) mackerel (Scomber scombrus) presented
here, the catches may not include some discards, slippage, or
illegal, unregulated, and unreported (IUU) catches. To deal with
this issue, some methods use only survey data, e.g. SURBA
(reviewed in Mesnil et al., 2009), time-series analysis (Fryer,
2002; also reviewed in Mesnil et al., 2009), and the biomass
random-effects model (Trenkel, 2008). Others use survey or
catch data (Cotter et al., 2007) to provide a simple catch curve
analysis for catch per unit effort (cpue)-at-age with the aim of
determining total mortality Z, assuming that the mortality signal
will not be distorted by variable selection at age in either the

survey or the fishery. Although uncertainty in catches is acknowl-
edged often, in only a few are attempts made to estimate the actual
catches. One example where this is incorporated is for the assess-
ments of cod (Gadus morhua) in the North Sea using a two-period
method. The assessment was calibrated with catch in an initial
period where catch was considered to be accurate (ICES, 2009a),
then catches were calculated in the remaining period assuming
an unknown unreported component. However, the method
requires arbitrary choices on smoothing in the second period
and depends on the choice of calibration period. Methods such
as Stock Synthesis (Methot, 2009) and GADGET (e.g. Taylor
et al., 2007) provide complex frameworks that cope with almost
all data types and qualities. However, even within these compre-
hensive and complex methods, it is hard to control all the
aspects required for a variety of multivariate data involving, age-
based catch with bias, biomass from egg surveys, and total mortal-
ities from tags, which we use here in the example of NEA mackerel.

We choose a Bayesian approach to include error in observations
explicitly and to evaluate model misspecification, and specifically
to obtain posterior parameter distributions that incorporate corre-
lation among estimated parameters. The use of Bayesian methods
in fisheries has extended from just a few examples to a more
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mainstream approach over the past 10 years. Punt and Hilborn
(1997) pointed out the utility of Bayesian methods, and
McAllister and Ianelli (1997) proposed a Bayesian approach for
a catch-at-age assessment for yellowfin sole (Limanda aspera) in
the eastern Bering Sea. Since then, Bayesian approaches have
become more generally accepted, and in a small number of
cases, have been used directly for management advice. The
eastern Bering Sea walleye pollock (Theragra chalcogramma;
Ianelli, 2005) and Bay of Biscay anchovy (Engraulis encrasicolus;
Ibaibarriaga et al., 2008; ICES, 2009b) are examples. In those
cases, catches were assumed to be unbiased. Millar and Meyer
(2000) pointed out, though, that fitting such a model is only the
starting point in an analysis. We follow this philosophy by explor-
ing an extensive range of model options to test the precision and
robustness of the conclusions, not just to the errors in the obser-
vations, but also to the assumptions in the model.

Methods
For NEA mackerel, we apply an underlying assessment model for-
mulation that conforms to the ICES approach (Patterson and
Melvin, 1996), but with a range of different model options to esti-
mate catch as a combination of the reported catch, together with a
factor that is applied to the magnitude of catch. This approach was
chosen to allow direct comparison with the ICES benchmark
assessment (ICES, 2008a) and to simplify model validation. The
model was numerically validated by matching initial model set-
tings and parameter values to those used in the ICES assessment,
checking that the maximum likelihood estimates matched. Model
symbols and parameters are given in Table 1.

Process equations
The process equations for the baseline model can be expressed in a
state space form as a Leslie matrix (Leslie, 1945, 1948), where the
numbers N at age a þ 1 in year y þ 1 are derived from N at age a in
year y. The transition function for a single cohort is

Naþ1;yþ1 ¼ Na;y expð�Za;yÞ; a , 12; ð1Þ

where Za,y(¼Fa,y þMa,y) is the total mortality at age a in year y
and is the sum of fishing mortality Fa,y and natural mortality
Ma,y. The oldest age (12) is a plus-group.

The model is structured in a similar manner to the ICES assess-
ment model (ICES, 2008a) with two periods, an early part based
on VPA, and a separable model part for the last 13 years, calculated
using Equation (1) but for year y – 1 derived from year y. The use
of two periods complicates the modelling, but there were changes
in the fishery in the 1990s, with a transition from a fleet working
purse-seines to one predominantly operating midwater trawls; this
led to changes in selection-patterns-at-age during that period. The
formulation of Fa,y and Ma,y is as follows. M is estimated in the
model as independent of age and year; other formulations allow-
ing age or time-trends or a fixed value of M ¼ 0.15 (ICES,
2008a) were tested (see model variants below). For the separable
period, F is defined as the sigmoidal function

Fa;y ¼
�Fy

1þ expð� lnð19Þða� S1yÞ=S2yÞ
; ð2Þ

where S1 is the age at 50% selection, S2 the age difference from 50
to 95% selection, and ln(19) a scaling factor resulting from the
choice of 50 and 95 percentiles as controlling variables (see

Haddon, 2001, for a slightly different formulation). The annually
varying parameter values for the selection ogive are related using a
random walk:

S1y ¼ S1y�1 þ 1; S2y ¼ S2y�1 þ 1; 1 � Nð0;ssÞ: ð3Þ

S10, S20, and ss are estimated in the model. Other formulations
with Fa,y independent of Fa21,y and ss fixed a priori were tested
(see below).

For the VPA period, the catches (Ca,y) multiplied by a factor
(Qy) are assumed to be exact, and N and F are calculated following
Pope’s approximation (Pope, 1972):

Na�1;y�1 ¼ Na;y exp Ma�1;y�1 þ Qy�1Ca�1;y�1 exp
Ma�1;y�1

2

� �� �

Fa�1;y�1 ¼ ln
Na�1;y�1

Na;y

� �
�Ma�1;y�1:

ð4Þ

Table 1. Summary of model parameters and symbols separated
into process equations, observation equations, and some output
parameters.

Symbol Parameter description (process parameters)

Fa,y, Fy Fishing mortality at age a in year y, or fully selected F at
the oldest ages in year y

Ma, My, M Average natural mortality at age a, or in year y, or as a
constant over years

Na,y Number in the population at age a in year y
Qm0 and

ab

Multiplier on natural mortality at age 0, linearly declining
with age to 1 at age ab

Sa Selection at age a in the catch
S1, S1y Age at 50% level on selection in the fishery, varying with

year y
S2, S2y Age at 95% S1, S1y selection in the fishery, varying with

year y
Fa,y Total mortality at age a in year y
ss Standard deviation of Gaussian distribution for random

variable used to link S1y with S1yþ1 and S2y with S2yþ1

Parameter description (observation parameters)

Aa, y Proportion of adults at age spawning
PF, PM Proportions of fishing and natural mortality before

spawning each year
Q, Qy Estimated multiplier on catch, varying with year y
Qs Coefficient of the slope when Qy is applied with a linear

trend in time
SSBMES SSB estimated from the triennial mackerel egg survey
Wa,y Weight-at-age in the population
ZTag,a,y Total mortality at age a in year y estimated from tag

returns
sc, sc,a Standard deviation of estimated log catch, varying with

age
sTMES,y Standard deviation of deviation of triennial mackerel egg

survey (TMES) estimate of log SSB varying with year y
sr Standard deviation of Gaussian distribution for random

variable used to link Qy with Qyþ1

sT Standard deviation of estimated tag mortality

Parameter description (output parameters)

SSB Spawning-stock biomass estimated in the model for
comparison with the ICES assessment

F Mean fishing mortality at ages 4–8 estimated in the
model for comparison with the ICES assessment

Investigating agreement between different data sources using Bayesian state-space models 1139

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/67/6/1138/733749 by guest on 20 April 2024



In the baseline model, Qy and Ma, y are assumed independent
of age and year. Always M- and F-at-age are estimated
simultaneously.

Observation equations
The observations are based on three sources of information:
spawning-stock biomass (SSB) estimated from triennial mackerel
egg surveys (MES), here referred to as SSBMES, ZTag estimated
from a tagging programme, and third reported catches.
The first two are assumed to be unbiased. In contrast, reported
catches are allowed to be biased by using an age-independent
multiplicative factor Qy [Equation (4)], which for the baseline
model is independent of year. The observation equations are
given below.

Estimates of SSB from triennial mackerel egg surveys
Estimates of SSBMES are assumed to have a lognormal error distri-
bution:

lnðSSBMES;yÞ¼ ln

 X
a

Na;y expð�Fa;yPF�Ma;yPMÞWa;yAa;y

!
þ1y

1y �Nð0;sMESÞ;

ð5Þ

where PF and PM are the proportions of annual fishing and natural
mortality occurring before the spawning season, Wa, y the mean
weight, and Aa,y the fraction of adults all estimated without
error (ICES 2008a).

To estimate the modelled SSB from the population N, the
plus group is also required, although this is not fitted elsewhere
in the objective function and does not follow from the N11,y, but
instead uses the formulation from Patterson and Melvin (1996)
with F11,y the fishing mortality at the oldest true age. The
plus group N12þ,y is estimated directly from the plus-group
catch QyC12,y as

N12þ;y ¼ QyC12þ;yðF11;y þM11;yÞ=F11;y= expð�F11;y �M11;yÞ:

ð6Þ

Estimates of total mortality from tagging studies
Using tag return data for fish belonging to year class y, the total
mortality Z(i, j, y), between years i and j is obtained using the
Jolly–Seber estimator (Ricker, 1975):

Zði; j; yÞ ¼ log
Srði; k; yÞ

Srð j; k; yÞ
�

Rð j; yÞ

Rði; yÞ

� �
; ð7Þ

where R(i, y) is the number of tagged fish of year class y that were
released in year i, R( j, y) the number of tagged fish of the same year
class that were released in year j ( j . i), and Sr(i, k, y) the
numbers of such tagged fish that were recaptured in the years k
summed over all k . j. The error in the estimates of Z is
assumed to be normally distributed:

ZTag;a;y ¼ Fa;y þMa;y þ 1a;y: ð8Þ

The standard deviation sT is estimated in the model.

Reported catches
The catch equation is modified to account for potential bias in
reporting. The reported catches are modelled as a fraction (1/Q)
of the true catches, and they follow a lognormal error distribution:

lnðCa;yÞ ¼ ln
Na;yFa;y

Fa;y þMa;y

1� expð�Fa;y �Ma;yÞ

Qy

� �
þ 1a;y;

1a;y � Nð0;sc;aÞ:

ð9Þ

In the baseline case, sc,a is assumed to be independent of year and
age and is estimated in the model. Model variants with age-
dependence of the standard deviation sc,a (O’Brien et al., 2001;
Simmonds et al., 2001) were also tested (see below).

Process and observation equations were set up using the
Bayesian Markov Chain Monte Carlo (MCMC) framework
WINBUGS (Spiegelhalter et al., 2003), which was used for both
parameter estimation and diagnostics.

Data
Commercial catch data
For NEA mackerel, ICES assembles catch-at-age data annually.
Data for ages 0–12þ covering the period 1975–2007 (ICES,
2008a) were used.

SSB from triennial mackerel egg surveys
ICES coordinates the triennial mackerel and horse mackerel egg
survey (ICES, 2009c), and the data collected are used to estimate
the total annual egg production (TAEP) by spawning mackerel
along the 200-m depth contour west of the British Isles. Then,
by making estimates of fecundity and atresia per gramme of
female (ICES, 2005), the SSB of NEA mackerel can be calculated.
These estimates of egg production are based on the abundance of
eggs at development stage I, taking into account duration at that
stage. Estimation, however, assumes that there is zero mortality
of the eggs before capture during the relatively short stage I,
which is clearly not the case. Here, we use specific values for egg
mortality (Portilla et al., 2007) and directly consider the variation
in duration at stage I attributable to temperature (Lockwood et al.,
1981), giving a revised series of triennial estimates of SSB
(SSBMES). The surveys are carried out triennially because of their
high cost and, because there are only six surveys from 1992 on,
it is difficult to estimate precision sTMES within the Bayesian
model, so the parametric bootstrap method reported by
Simmonds et al. (2003) was used to provide values for sTMES.

Other methods have been proposed for estimating the spatial
sampling precision of the egg survey. The ICES survey working
group examined the variance for its more limited calculations in
2005, but with the additional factors included here, it is not com-
plete. Imrie et al. (2003), for example, gave more precise estimates,
with standard deviations of �80% of the estimates used here. To
test the influence of precision on the results, different values were
tested in the model (see later). The full procedure followed for cal-
culating total egg production and its precision is not given expli-
citly elsewhere, so it is briefly included here as Appendix 1. As the
method used to estimate precision involved several different types
of distribution associated with different factors (egg abundance,
fecundity, mortality, etc.), the parametric distributions used in
the model to describe the error in the observations were obtained
by fitting to the bootstrap distributions by year (Figure 1). The
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precision used in the baseline model depends on the year of the
survey and is approximately equivalent to a CV of 30%.

Total mortality from tag information
A tagging programme for NEA mackerel has been carried out in
most years from 1983 on. A single missing year in the tagging pro-
gramme, however, removes two estimates of annual mortality, and
continuous data are available only from 1988 to 2003. Here, the

tag-data estimates of Z are based on ratios between the number
of tags recovered from consecutive releases (6). These estimates
are only sensitive to the variation in initial tagging losses, not to
the magnitude of the tagging losses, and, most importantly, they
are independent of the proportion of catches sampled. The tag
estimates of Z are highly variable (Figure 2a), with little consistent
structure, over either time or age. The noise is so great that Z at
some ages in some years is negative; this could be removed by

Figure 1. Estimated log(SSB) from bootstrap analysis of 6 years of triennial mackerel egg survey data (points), including errors in stage I egg
abundance, egg mortality, fecundity, and atresia and fitted lognormal distributions (lines).

Figure 2. Estimated total mortality (ZTag,a,y) by age and year from tag data. (a) Point values and (b) a pdf with fitted Gaussian distribution (see
text).
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smoothing, but doing so would distort the error structure, and for
this analysis, it is important to bring the correct level of variability
into the analysis. The variability may be caused by variation in
initial tagging losses, the small numbers of tags recovered, and
errors in age determination (Antsalo, 2006). The absence of time-
trends in Z is not surprising, because the ICES assessment (ICES,
2008a) shows only a relatively small range of mean Fy. It might
have been expected, however, that the estimated Z from tags
would be age-dependent if we interpret the relative increase in
abundance at ages 2 and 3 in the catches as increasing mortality
with age. However, this signal is not seen in the data
(Figure 2a). In the absence of any clear dependence of Z with
age or time, the average Z over all years and ages was calculated,
and the distribution of observations was fitted using maximum
likelihood. A normal distribution described the variability of the
observations around the mean (Figure 2b) and was used for the
initial choice for the Bayesian prior, although the standard devi-
ation (sT) is estimated in the model to allow for improved fit to
the data by year or age. This choice is discussed further below.

Model selection
Uninformative priors were used for all input parameters in the
initial (baseline) model (Appendix 2). For the initial state vector,

by age in the last year Na,1, and by year N11,y truncated (.0),
normal distributions centred on the ICES stock assessment esti-
mates (ICA method), and wide standard deviations (s . 40 N)
were chosen. Generally, the influence of priors was tested by
increasing and decreasing the central value of a group of prior dis-
tributions by a factor of 10 (keeping the priors for all other par-
ameters fixed), and ensuring that the influences on posteriors
were negligible. Except M, the model was not sensitive to any of
these priors, and the posterior distributions had well-established
peaks and distributions much tighter than the priors, well away
from any truncation. For M, a gamma prior was used because
both truncated normal and uniform distributions lead to a small
spike near zero in the posterior. Although the spike had negligible
impact on mean or variance of the posterior, a gamma distribution,
though more informative, is also biologically more plausible
because it reduces the probability of an extremely low M. To test
the influence of starting values on the results and to confirm con-
vergence in parameter estimates, three MCMCs were initialized
with different starting values for the estimated parameters
(Appendix 2). Using Metropolis–Hastings selection criteria
(Spiegelhalter et al., 2003; Figure 3a), the model initially converged
in around 4000 iterations, so a burn-in period of 5000 iterations
was discarded. Three parallel chains of two example parameters

Figure 3. Example of fit criteria for the baseline model in WINBUGS. (a) Metropolis acceptance rate criteria showing convergence by �4000
iterations; data used are from 5001 to 35 000. Estimates of (b) Q and (c) M over iterations 1–35 000 for three chains thinned to 1/30. (d)
Gelman Rubin statistic (for Q), which examines the variance within and across chains; the red line should be above 1 and asymptotic to it, the
green and blue lines should be asymptotic to a final value; convergence occurs with 20 000 iterations.
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Q and M illustrate convergence (Figure 3b). Some 30 000 iterations
gave convergence for F, M, and Q, but substantially shorter runs
could give differing results for Q and M because the chains could
be non-overlapping for several thousand iterations in a sequence
(Figure 3b). The Gelman–Rubin criteria (Gelman and Rubin,
1992; Figure 3c) reveal convergence of the posterior distributions
by �20 000 iterations after the burn-in period. Therefore, after a
burn-in of 5000 iterations, the chains were run for an additional
30 000 iterations. For the calculation of the mean and distribution
of parameter values, all 90 000 values, 30 000 from each of the three
chains, were used without thinning (see King et al., 2009, p. 136, for
a discussion of thinning). For Figure 3 (and, later, for Figure 6) and
for the calculation of Bayesian p-values, only every 30th sample was
retained, removing autocorrelated samples and still providing suf-
ficient independent samples from the joint posterior distribution.

The model results reveal strong negative correlation between Q
and M. This implies moving removals from the population between
linear and exponential processes. There was concern that this non-
linear aspect might cause problems. This was checked first by exam-
ining the extent of the non-linearity; it amounts to a departure of
�2% from linearity over the range of F and M values in the model.
Nevertheless, to be sure that the effect was negligible, the baseline
model was rerun with a simple transformation so that M was
derived non-linearly from the prior such that both Q and M
depended linearly on their priors. The model results were indistin-
guishable from those without the transformation.

Several model variants were also examined to evaluate the sensi-
tivity of the results to model choices. The objective in exploring
alternatives was both to select the best level of parametrization
and to test the sensitivity of the conclusions to choices in parametri-
zation. The different models were compared through two criteria.
First was the deviance information criterion (DIC; Spiegelhalter
et al., 2002), which is analogous to Akaike’s information criterion
in a maximum likelihood framework and is calculated from the
samples of the three converged MCMCs. This method is provided
within WINBUGS. Part of the calculation involves the computation
of the effective number of parameters or model complexity, pD,
accounting for between-parameter correlation; occasionally, the
method used in WINBUGS can give negative values for this par-
ameter. An alternative formulation based on deviance (Gelman
et al., 2004, and used in Tremblay et al., 2006) has been proposed
to make comparisons of DIC using a slightly different measure.
However, negative values for pD suggest that some aspects of these
models are less than ideal, so the results have been discarded.
Second, Bayesian p-values (Gelman et al., 1995, 1996) were obtained
from 1000 parameter sets sampled from the posterior distribution
(taking every 90th sample in the three chains). These were loaded
into R using the input routines from CODA (Best et al., 1997).
Bayesian p-values are not analogous to the values of p in a standard
significance test, but rather express how well the model fits the obser-
vations. The procedure (Gelman et al., 1996) is to take a sample from
the joint posterior of parameter estimates (catch/Q and sc,a to
compare with reported catches, Z and sT to compare with the mor-
tality calculate from tag-return data, and SSB and sTMES to compare
with SSBMES). Then, for each parameter sample, the likelihood of the
real observations is calculated and compared with the likelihood of a
simulated set of observations drawn using the joint posterior distri-
bution of parameters, including values of s. Ideally, 50% of the
simulated sets will have a greater likelihood and 50% a lesser likeli-
hood than the observations used to fit the model; in this case, the
p-value would be �50%, indicating a good correspondence in

terms of both mean and distribution between model simulation
and observations. The p-values for each dataset were calculated sep-
arately to evaluate the fit to each source of information separately.
The log-likelihoods of the three observation components are
summed to obtain to estimate the p-value for all datasets.

This procedure checks whether a model really captures the
statistical properties (e.g. mean, variance, distribution) of the
observations adequately. Using these two criteria (DIC and
Bayesian p-values), we selected a single baseline model. The
other models were then used to illustrate the sensitivity of the
results to model assumptions. Conditioning was similar for all
models, except where the length of the separable period is
changed (options 5, 6, and 7 below), and the SBBMES values
were calculated differently (option 8 below). In all, 15 major
variants were tested, listed below.

Model variants in catch-at-age constraints

1. FS1, fixed selection with independence-at-age. Catch selection
is based on 11 independent parameters at age scaled to inde-
pendent annual values of F, with standard deviation (sc,a)
assumed to be independent of age, to match the ICES
Working Group settings (ICES, 2008a):

Fa;y ¼ SaFy: ð10Þ

2. FS2, fixed selection. Catch selection is based on a two-
parameter logistic function, and standard deviation (sc,a) is
assumed independent of age. It is scaled to independent
annual values of Fy at the oldest ages:

Fa;y ¼
Fy

1þ expð� lnð19Þða� S1=S2ÞÞ
: ð11Þ

3. FSs1, varying sc,a with age in Equation (9). F-selection is based
on a two-parameter logistic function, but with sc,a following a
parabolic function of age. A model with the three parameters
required to define the parabolic function for sc,a was tested,
but it would not converge so was discarded. A second version
of sc,a with two of the three parameters for the parabola
derived from studies of herring (Clupea harengus) market
sampling (Simmonds et al., 2001) was used. This yielded a
minimum sc,a at age 3.5, and curvature C ¼ 0.006. The
values of sc,a were scaled to fit by changing smin [Equation
(12)]. In the classic parabolic equation (A þ Bx þ Cx2), the
coefficients A and B affect both location and the magnitude
of the minimum. Here, we use a formulation for sc,a based
on two independent parameters, amin and smin, the age and
magnitude of sc,a at the minimum:

sc;a ¼ Aþ Baþ Ca2; ð12Þ

where A ¼ smin þ Ca2
min, and B ¼ 2 Camin. This formulation

of the parabola converges faster and has a lower DIC.

4. SSP as baseline model, but with a smoother selection pattern.
The variance parameter in the year-on-year change was con-
strained by setting ss to 0.5 � ss, the last parameter estimated
in the baseline model run. This is a compromise between fixed
and flexible selection by year.
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To test the effect of the length of the period during which the
fishing mortality is assumed separable, three more options were
tested.

5. SP15, extended separable period by 2 years, 1993–2007.

6. SP17, extended separable period by 4 years 1991–2007.

7. SP21, extended separable period by 8 years 1987–2007.

Always, the preceding years were evaluated using a VPA based
on starting ages for 1 January for the first year of the period used to
fit a statistical catch-at-age model.

Model variants involving SSBMES

The standard deviation sMES [Equation (5)] for SSBMES is derived
from the survey data and treated as model input. As the
value depends on the calculation method (Appendix 1) and
differs among years, the sensitivity of model results to the
assumed value was evaluated. This led to three additional input
options.

8. IEM, estimates of SSBy derived using year-independent egg
mortality.

9. varTE � 3, standard deviation sTMES increased by a factor of
p

3.

10. varTE/3, standard deviation sTMES decreased by a factor of
p

3.

Model variants with time- and age-dependence in M and Q
To test for the effect of potential time- and age-trends in catch and
M, several options were tried.

11. WGM, fixed M equal to the ICES Working Group value of
0.15.

12. MTA, a linear trend in M-at-age starting at M0 (M0 . 0) for
age 0, changing linearly to M from age ab (ab . 0) on:

Ma ¼
Mða� abÞð1�M0Þ=ab for a , ab

M for a � ab:

�
ð13Þ

13. TMY, a linear time-trend in natural mortality, My, with the
slope Qms with a lower limit of zero in all years. For conven-
ience, the equation is referred to the midpoint in time, ymid

(1991). For years before 1983 where no tagging data are avail-
able, My was made equal to M1983, the last estimated year, to
ensure the trend did not continue through years with no
data on Z:

My ¼
M maxðð1þ Qmsðy � ymidÞ; 0Þ y � 1987
M1983 y , 1987:

�
ð14Þ

14. TCY, a linear time-trend in catch multiplier, Q, with the slope
Qs having a lower limit of 1, meaning no underreporting:

Qy ¼ maxðQð1þ Qsðy � ymidÞÞ; 1Þ: ð15Þ

15. RWCY, a random walk in catch multiplier, Q, in time:

Qy ¼ maxðQy�1 þ 1y; 1Þ 1y � Nð0;srÞ: ð16Þ

Sensitivity to terminal year in the dataset
Since 2005, there have been changes in enforcement, potentially
changing Qy thereafter, so sensitivity to the last few years of data
was checked. As SSBMES values are available only once every 3
years, 3 years of data were removed, leading to option TD3, truncat-
ing the data, and the model by 3 years to the terminal year of 2004.

Results
Baseline model
Estimated values of F were similar to those estimated by ICES
(2008a; Figure 4a), matching the early part of the time-series,
but giving lower estimates in recent years. There was little differ-
ence between the mean and 2.5th and 97.5th percentiles of the
posterior distributions using the full time-series 1975–2007 and
the truncated series 1975–2004, indicating a lack of sensitivity
to the recent data. However, as expected, Bayesian estimates of
SSB differed substantially from the ICES estimates, with a
general increase in line with the estimated additional unaccounted
catch (Figure 4b). The modelled catch showed a clear increase in
selectivity with age, with less variability between years than
between ages (Figure 5). Always, except for option 11, WGM, F
and M were estimated separately to ensure that uncertainty in M
is included explicitly in the model. Unsurprisingly, the catch mul-
tiplier Q and the mortalities Z, F, and M were correlated, although
the highest correlation was between Q and M (correlation coeffi-
cient 20.75). Correlation between Q and Z was less (correlation
coefficient 20.46). The three MCMCs cover the same distribution
of Q and M, and the joint posterior pdfs (probability density func-
tions) are reasonably well-established (Figure 6), demonstrating
that the model results are repeatable. The 95% intervals show
that Q lies between 1.7 and 3.6 (Figure 6). The estimates of M
lie between 0.017 and 0.20 (Figure 6), with the value M ¼ 0.15
used by ICES situated in the upper part of the posterior distri-
bution [p(M , 0.15jdata) ¼ 0.84]. The Bayesian p-values for
SSBMES (Table 2) were poor compared with those for catch and
tag mortality data, partly because of the difficulty in describing a
pdf with such a small number of observations (six). For
example, separating catch observations into groups of six can
give similarly large deviations on Bayesian p-values for the
subsets. This suggests that small numbers of observations may
not be well modelled, although the Bayesian p-value for the base-
line model at 60% was close enough to 50% to indicate that overall
the model fits the data reasonably well.

Model variants
The performance of some of the different model variants can be
compared through differences in DIC and Bayesian p-values
(Table 2). Not all the models are directly comparable, because
some use data subsets. Although the model results indicate that
the baseline model performs best overall, the choice is not entirely
straightforward, because DIC and Bayesian p-values occasionally
conflict. The results for the different variants were examined in
terms of the pdf of Q (Figure 7). There is considerable similarity
in the pdf from different variants (options), with none including
Q ¼ 1 in the 95% intervals (Figure 7).

Catch-at-age model variants
The models with catch-at-age selection constant over time (FS1
and FS2) had higher values of DIC than the baseline model with
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the more flexible separable period, but a slightly better p-value
(closer to 50%) for SSBMES data and similar p-values for the
other two data sources (Table 2). FS1, the function with

independent selection at age, followed the same general form as
FS2, the two-parameter logistic function (Figure 8). For FS1, the
variability at older ages suggested no differences in selectivity at
age 7 and older. FS2 gave the lower value of DIC, supporting the
use of the logistic function. A parabolic function of sc,a age was
used in model variant 3, i.e. FSs1. Only one of the three par-
ameters of the parabolic function for sc,a was estimable. When
all three parameters of the parabola were fitted, the posterior of
the catch multiplier Q was equal to its prior (uniform from 0.1
to 30), indicating overparameterization. FSs1 gave a slightly
higher value of DIC and a very poor p-value for catch (Table 2),
suggesting that the fit was good for some ages but not for all,
posing a question as to the suitability of the parabolic function.
For this reason, the parabolic variance models were not evaluated
further.

Sensitivity to changes in the period used for the separable
model was tested by changing the number of years from 13 to
21 (Models SP15, 17, and 21). The data inside the separable
period were treated differently from the data in the VPA period,
leading to a different dataset being used in the objective function,
so comparison of the DIC among these variants is not appropriate.
However, the changes did not influence estimates of Q except

Figure 4. Median and 2.5 and 97.5 percentiles of population and exploitation estimates 1975–2007 (black) and 1975–2004 (red), compared
with ICES assessment values (ICES, 2008a; blue) for (a) fishing mortality (F ), and (b) SSB.

Figure 5. Estimated selection pattern in the baseline model,
expressed as a fraction of F-at-age (in age groups) for the years
1995–2007 (from left to right in each age group).
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when the 13-year period (baseline model) was extended to 21 years
(Model SP21), but even there, the changes in Q were relatively
small (Figure 7). Shortening the separable period, i.e. extending
the VPA section, was tested, but it resulted in a negative pD, so
this option was discarded.

Model variants involving SSBMES

Although annual estimates of egg mortality were significantly differ-
ent (Portilla et al., 2007), stage I mortality was not investigated expli-
citly. To test whether the assumption of independence by year was
influencing the results, Model 8 with fixed egg mortality across
years (FM) was tested, and it showed no important differences
from the baseline model for any model output parameters.

As the precision of the SSBMES is input to the model, its influ-
ence is explored in Models 9 and 10, varTE � 3 and varTE/3. The
variance of SSBMES is the result of the variance of several factors
(Appendix 1). The precision in each factor was obtained from
analyses of the western egg survey (which constitutes �85% of
the total egg abundance), and scaled to the full survey (assuming
a constant CV). The variance of the different factors was
assumed to be independent. Although this is likely to be true for

measurements of atresia, fecundity, and egg abundance, errors in
egg mortality may be correlated with egg abundance. The effect
of ignoring such a correlation would be to overestimate the var-
iance in SSBMES.

Increasing or decreasing the assumed variance for SSBMES

(Models 9 and 10) substantially reduced the utility of the fit as
judged through a Bayesian p-value for SSBMES, from 91 to 98 or
97%, respectively. It was possible to obtain a slightly improved
Bayesian p-value relative to the baseline model value by manipu-
lating the standard deviation to 0.95 � the value used in the analy-
sis, suggesting that a slightly lower standard deviation may be
appropriate. An overall factor of three changes in variance is well
outside the range that could be expected, but it resulted only in
small changes to estimates of the catch multiplier Q (Figure 7).
Greater changes in varTE were tested, but a model with varTE �

4 gave negative values of pD, so models with higher factors were
discarded.

Model variants with time- and age-dependence in M and Q
The model formulations discussed above assume that natural mor-
tality M and catch factors Q are constant with year. Further

Figure 6. Joint posterior distribution from 1000 values (by thinning 1/30) from the three MCMCs showing estimates of natural mortality (M )
vs. the catch multiplier (Q). Contours are at 0.10, 0.25, 0.50, 0.75, and 0.90. Intervals on posterior distributions of Q and M are 0.025, 0.50, and
0.975. The plot shows that the three chains fully overlap and that there is negative correlation (correlation coefficient ¼ 20.75), apportioning
removals between catch and natural mortality. Although Q and M are compounded, the distribution of Q does not include unity. See text for
a discussion of the scaling of Q and M.
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options tested were: Model 11, WGM, M fixed equal to the ICES
Working Group value of 0.15; Model 12, MTA, a linear trend of
Ma at young age; Models 13, MTY, and 14, TCY, a linear trend
of My or Qy in time, and Model 15, RWCY, a random walk for
Qy in time. Fixing M (at the Working Group value) is artificial
because the value is not established precisely and, as expected,
results in tighter intervals in the posterior of Q (Figure 7). The pos-
terior distribution for Q lay entirely within the posterior distri-
bution estimated using the baseline model. For neither My nor
Qy could significant trends in time be estimated (Figure 9b and
c), but in the posterior, the probability of Ma . 0.15 increased
at young ages (,5) and decreased at older ages (Figure 9a). The
posterior probability of Qy increasing with time (slope ¼ 0.06
per year; Figure 9b) is �0.8. In contrast, there is effectively no
real evidence of an increasing My with time because the posterior
for My is without any meaningful trend with time (slope ¼ 0.003
per year; Figure 9c).

In the cases where there were some signs of trend in the predic-
tions (linear Qy and Ma), the DIC increased, suggesting that the
model had less explanatory power. For the case of a linear My,
the DIC decreased, but there is potential for some formulations
with a trend in My to give negative values of pD, indicating that
the models are questionable (see above). Always where this hap-
pened, the model formulations were discarded, so the specific
example given here (Figure 7) should be regarded with some
caution.

Our main conclusion is that always, the changes in the pos-
terior distribution of Q with model choices were small, the greatest
effect being for the trend in Q over time, reducing the value for the
early part of the time-series. This option suggests a lower mean
value overall, but this comes from a reduction in Qy before
1990; the mean for Qy from 1992 to 2007 (the period over
which the egg survey data are available) is similar. In this case,

Table 2. Model performance shown as Bayesian p-values by data type (values close to 50% are optimal, values above 95% or below 5%
should be avoided), and DIC values giving the effective number of parameters compensating for correlation between parameters (pD).

Variant Name Description

Bayesian p-values DIC

SSBMES Catch Tags Total pD DIC

0 BL Baseline model 90.9 50.0 49.6 59.0 19.4 235.3*

Model variants in catch-at-age constraints

1 FSI Fixed independent selection at age 80.3 49.9 50.1 55.0 45.9 22.3*
2 FS2 Fixed two-parameter logistic selection function 80.6 49.2 50.4 54.9 39.9 19.4*
3 FSs1 One-parameter parabolic variance function for catch-at-age 89.9 99.9 51.0 99.8 41.6 229.8*
4 SSP Baseline with smoothed selection pattern by year 88.9 49.9 50.4 58.1 30.0 221.0
5 SP15 Sep Period þ2 years ¼ 15 years 89.7 49.9 49.8 58.2 30.4 217.6
6 SP17 Sep Period þ4 years ¼ 17 years 92.7 50.4 50.4 59.6 48.1 44.4
7 SP21 Sep Period þ8 years ¼ 21 years 94.4 50.0 50.1 60.0 59.4 209.2

Model variants involving SSBMES

8 IEM Constant (all years) mortality 93.0 50.0 49.7 60.4 15.1 241.7
9 varTE � 3 SSBMES variance � 3 98.0 45.0 50.1 98.0 4.9 243.6
10 varTE/3 SSBMES variance/3 97.3 49.8 49.8 60.9 23.3 234.0

Model variants with time and age dependence in M and Q

12 TMY Trend in M with year 88.2 50.0 50.1 58.3 16.0 241.8*
13 TMY Change in M at young age 87.9 50.2 49.2 57.3 37.7 219.6*
14 TCY Trend in Qc with year 88.6 50.2 49.8 58.6 21.2 233.0*
15 RWCY Random walk in Qc with year 86.9 49.5 49.7 56.5 3.9 270.0

Only models marked with an asterisk are comparable.

Figure 7. Posterior distributions, median, and 2.5 and 97.5
percentiles of the catch multiplier Q for different model variants by
model number and acronym (see text).
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the positive slope in time yielded higher values of Qy in the recent
past (Figure 9b). The addition of a random walk with time to
Qy fitted much better to the tag-mortality data. Again, however,
it was not possible to detect a significant year-on-year change
(Figure 9d). Nevertheless, it seems unlikely that there is no varia-
bility over time, but rather that the data we have were too noisy to
estimate variability or that such a model was overparameterized.
The resulting annual factors (Figure 9d) show consistency from

1975 to around 1988, because there is no egg survey or tag-
mortality data to which to fit. From 1989 the variability increased,
explaining some of the variable mortality in tag data and annual
variability in catch-at-age as unaccounted mortality. The low
DIC (Table 2) indicates that this model might have increased
explanatory power, but the value of pD is unusually low and
some formulations give a negative pD, opening to question the val-
idity of this option of the model.

Figure 8. Model variants FS1 and FS2, median, and 2.5 and 97.5 percentiles of fitted selectivity functions, constant over year from 1992 to
2004: (a) FS1 independently at age, with nine parameters referred to age 5; (b) FS2 as a two-parameter logistic function.

Figure 9. Median and 2.5 and 97.5 percentiles of posterior distributions for (a) natural mortality (Ma) changing linearly with age at young
ages, model MTA; (b) catch multiplier (Qy) changing linearly with time, model TCY; (c) natural mortality (My) changing linearly with time,
model MTY; (d) random walk in Qy with time, model RWCY.
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Z derived from tagging data
The only aspect of the model that was not varied directly in model
exploration was the use of the estimates of Z derived from tagging
data, but as discussed above, the fit to these data does depend on
some of the other options explored. With the assumptions of con-
stant or linearly changing coefficients on catch, the relationship
between observed and modelled estimates of total mortality was
poor. The modelling results suggest that there was very little
signal in the total mortality for ages 2–10 from 1983 to 2005.
One reason for this is that Fbar for that period has a mean of
0.29 (s.d. ¼ 0.06). Most of the signal in Za,y is attributable to
age, although this depends to some extent on assumptions about
Ma in the model. As discussed above, the tag data are very noisy
and even include negative estimates; for the baseline model, the
variance in the tag-based estimates of total mortality exceeds the
variance of the modelled values by .6 times, which perhaps
explains why a poor fit resulted. The distribution of errors and
the Bayesian p-value of 50% strongly support the use of a
Gaussian distribution to describe the error (Figure 2). Given the
poor fit and the relatively well-supported choice of a Gaussian dis-
tribution, there was little scope for further exploration. However,
as discussed above, if Qy is allowed to vary from year to year,
through the addition of a random walk component, and M is
allowed to increase at young ages, the fit to the tagging data
improves, but only slightly.

Discussion
The Bayesian approach with multiple models adds to the confi-
dence in the analysis and provides well-supported conclusions.
The NEA mackerel stock may be much larger than previously
thought. For the NEA mackerel evaluation overall, the model
results were driven by estimates of SSB, from egg surveys for the
period 1992–2007, and mean estimates of Z from tag data for
the years 1988–2003. This analysis leads to estimates of SSB that
are significantly greater than the ICES estimates (Figure 4), and
this possibility is recognized in the ICES Advice (ICES, 2008b).
The increased SSB estimate is provided by increasing catch using
a catch multiplier while maintaining estimates of F similar to
the ICES estimates, because both catches and numbers are simi-
larly scaled.

The posterior probability mass functions of Q were always high
for values .1, compatible with reported catches being significant
underestimates of removals by fishing. The lack of sensitivity of the
posterior estimates of Q to model choices (Figure 7) suggests con-
siderable robustness for this conclusion. In October 2005, Scottish
fisheries regulation enforcement officers obtained information
from fisheries processors and found discrepancies between the
official declared landings and the tonnages reported as processed
by the factories. These figures were subsequently reported to
ICES and corresponded to around 1.6 � the quota for the
Scottish pelagic fleet (ICES, 2006), although this factor assumed
that landings by those fleets were accurately reported when
landed elsewhere. The same information indicated some underde-
claration of landings by Irish vessels into Scotland, although those
constitute only a small part of the total landings for that fleet
(ICES, 2006). In 2003, Remøy et al. (2003) analysed Irish export
figures and estimated an overquota summed over the period
1988–2002 of 677 000 t, which would have constituted
about 1.7 � the quota concerned. However, these were quite

controversial claims, and there was some dispute over the validity
of the study (Marine Times, 2003).

In addition to landed catches, other potential sources of
removals which were not included in the assessment were the dis-
cards from most of the mackerel fishing fleets. Up to 2005 when
the inspections improved in both the UK and Ireland, discarding
from these refrigerated seawater (RSW) fleets had been observed to
be a very small proportion of the recorded landings (ICES, 2006).
In contrast, the freezer trawler (FT) fleet, which has a small pro-
portion of the quota, was observed to discard at higher rates;
Borges et al. (2008) reported annual levels of discarding of mack-
erel of �12 000 t by the Dutch FT fleet over recent years (2002–
2005). This represented an additional 42% over their landed
catches (ICES, 2008a), but these discard tonnages are not included
in the catch estimates of ICES, because their age composition has
not been estimated. However, in total, these known unaccounted
FT fleet discards corresponded to a small (,5%) proportion of
the total ICES catches. In some fisheries, slipping (discarding
without bringing on board) does take place; there are two major
reasons for this. First, mixed catches particularly of mackerel
and herring can be slipped because the market prices for mixtures
of species are lower; second, excess catch in the purse-seine or
trawl fleets can be slipped once RSW tanks are full. Obtaining
better data on discards, at the youngest ages, and including such
information in the model, might potentially give a shallower selec-
tion ogive if, as is likely, larger proportions of younger fish are dis-
carded. This might fit better to the tagging data, but would
probably make little difference to the estimated abundance of
the older mackerel that contribute most to the fishery and the SSB.

Huse et al. (2008) studied survival from purse-seines and
showed that up to 80% of mackerel concentrated in the purse
can die on release. The extent of such practice is difficult to esti-
mate, because the tonnages are not properly recorded, and in
some cases may be hidden because they are illegal. Overall, the
posterior median Q of 2.6 may appear to be a bit high.
However, combining the Scottish factor of 1.7 with discard rates
of 1.4 in the Dutch FT fleet (Borges et al., 2008), along with
additional unknown mortality caused by slipping surplus or
mixed catches in almost all fleets, and allowing for some mortality
of escaping mackerel, it is quite easy to get close to a value of Q of
2.6. Certainly, values above the 2.5% level of 1.7 are plausible.

Natural mortality, M, was not significantly different from the
constant value assumed by the ICES Working Group (ICES,
2008a). There was also weak evidence coming from the tagging
data for a higher M at young ages. However, there was no indi-
cation of a time-trend in M. In this context, it is important to
remember that the distinction between F and M is that fishing is
associated with a rising mortality rate at age and natural mortality
is associated with a flat or falling mortality rate at age. If elements
of M were to rise with age, the model will have assigned these as
increased catches.

The lack of sensitivity of the estimated Q to the variance of
SSBMES suggests that its value is not critical, and even if not
entirely accurate, the exact magnitude of the errors may not be
important in this context. The value explicitly includes all the
uncertainty in egg abundance of which we know (including uncer-
tainty in egg mortality). The baseline model used year-dependent
egg mortality, which is supported by analysis of the data, but using
a year-independent estimate (McGarvey and Kinloch, 2001) did
not alter the conclusions. Only bias in the estimates caused, for
example, by the assumption of constant mortality across egg
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stages could influence the results further. It is important to note
that, in the baseline model, the mean of the estimated median
biomass from all egg-survey years is slightly higher than the
mean from SSBMES observations, suggesting that there are other
signals in the data giving even larger biomasses. This certainly
does not suggest that the corrections for fecundity, atresia, and
egg mortality are too great, nor that substantial numbers of non-
mackerel eggs are misidentified as mackerel.

Given the poor fit of the model to the tag-mortality data, its
overall utility may be questioned. As stated above, the variance
is high; for instance, the observation variance is six times the var-
iance in the signal, leading in some cases to negative estimates
of mortality estimates. These negative values are just an expression
of the noise in the data resulting from highly variable numbers of
tag returns. Nevertheless, the Bayesian p-values for tag mortality of
49.6% suggest that the information in the mortality data is
explained appropriately within the model. As the method used
for estimating tag mortality uses the ratio of two sets of returned
tags by cohort [Equation (7)], a systematic error in tag-estimated
Z over all years seems unlikely. The high level of noise in the
tagging data is unsurprising in such a large fish population, for
which it is difficult to tag sufficient individuals. Therefore, the
model results rely almost exclusively on the mean of all tag mor-
talities, treating the detail in the data by age and year as noise.

There may be other sources of error in biomass, such as a mis-
match between the fished and the surveyed stock, although this is
likely to be small given that the East Atlantic is treated as contain-
ing one large stock of mackerel, so the potential for stock identity
issues is small.

Conclusions
The Bayesian approach with multiple models adds confidence to
the results. The baseline model estimates that the NEA mackerel
stock is larger than previously thought. Higher biomass from the
mackerel egg survey was explained by inflating the removals of
mature mackerel by the fishery. None of the models estimate a
95% range of catch multiplier from 1992 to 2007 that includes
unity (no additional catch). All the alternative model options led
to similar, or usually slightly higher, levels of fishery removals.
Therefore, in our opinion, the conclusions are robust to changes
in model structure, estimated variance in the egg survey, trends
in natural mortality, M, at age or over time, and trends in unac-
counted mortality over time.
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Appendix 1
Calculation of mackerel SSB from the ICES
triennial mackerel and horse mackerel egg
surveys (TMHMES)
ICES coordinates the triennial mackerel and horse mackerel egg
survey, TMHMES (ICES, 2005), reports estimates of total annual
egg production (TAEP) of the stock (ICES, 2005), and derives an
estimate of SSB. The method and results for precision calcu-
lations to 2003 are given in Simmonds et al. (2003). The same
method was applied to the 2004 and 2007 surveys. Historically,
the ICES results have been presented without the inclusion of
annually estimated egg mortality, i.e. assumed zero (McGarvey
and Kinloch, 2001), so in recent years the survey has been
fitted as an index of abundance, not as an absolute estimate.
Here, the mortality was included because the information on
absolute abundance is critical to the analysis, leading to a
correction factor: SSBMES,y ¼ Fy SSBICES – TAEP,y, where the
values of the correction factor Fy are calculated accounting for
the estimated instantaneous mortality My and duration Dy1,
over egg stage I:

Fy ¼
1

meanðexpð�My � runif ð0; rlnðDy1;sd1ÞÞÞÞ
;

where rln(Dy1) indicates draws from lognormal distributions
describing the abundance weighted distribution of durations,
and runif() a draw from a uniform random distribution describ-
ing the time points samples could be taken assuming sampling
occurs at any time during stage I. This approach accounts for
the sampling bias described in Dickey-Collas et al. (2003). All
mortality estimates and their precisions are derived from
samples collected in the western part of survey area, which
holds typically 85% of the total NEA mackerel population. The
factors for the whole area are expected to be similar. The values
for the parameter My and the distribution of durations (Dy1,
sy1) are obtained as described below.
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Egg mortality My

The information on egg mortality was drawn from Portilla et al.
(2007), which provides annual estimates of mean daily instan-
taneous mortality (My) across all egg development stages, using
data from the surveys in western waters from Biscay to the west
of Scotland, along with standard errors (Table A1). Although
differences in mortality were observed among the development
stages, these were not significant, so a mean mortality over all
stages was used to apply to stage I. Annual daily rates of mortality

were significantly different by year (Table A1), suggesting that
annual values are preferable to a mean value across years. The
values of My in Table A1 were used in the analysis, and their var-
iance was added to the variance from Simmonds et al. (2003).

Duration of stage I (Dy1)
The duration Dy1 and its distribution are estimated from exper-
imental studies reported in Lockwood et al. (1981); these values
are used to derive a distribution of median duration at stage I
weighted by egg abundance from 1998 to 2007 (Figure A1).
A maximum-likelihood-fitted lognormal distribution, with
s ¼ 0.189, which best explains the time for transition, is also
shown. The mean value of Dy1 by year is given in Table A1. An
additional stochastic element was estimated from the spread of
hatch times also reported in Lockwood et al. (1981). A Gaussian dis-
tribution with variability proportional to duration has been fitted to
the spread of hatch dates reported, yielding a CV of 0.049. Using a
constant CV, implying variability proportional to duration, gives
estimates of the stochastic variability of stage I duration.
Combining the stochastic part with the temperature-based
deterministic distribution of durations results in a slightly wider
lognormal distribution, with s increasing from 0.189 to 0.202
(Figure A1).

For 2004 and 2007, where no separate annual estimate of egg
mortality was available, the mean correction factor Fe of 1.44
was used. The resulting precision of the egg surveys of close to
30% includes estimates of errors in estimating egg abundance,
egg mortality, atresia, and fecundity. The distributions derived
from bootstrapping, and the fitted lognormal distributions used
in the main model, are given in Figure 1.

Appendix 2
Table of prior distributions and their parameters, and the three sets of starting values for the MCMC used for the baseline model.

Priors Initial conditions for the main model

Distribution Parameters Chain 1 Chain 2 Chain 3

N oldest true age (11)

T Y-1 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 6.74E þ 04 1.0E þ 04 1.0E þ 05
T Y-2 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 6.11E þ 04 1.0E þ 04 1.0E þ 05
T Y-3 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 5.69E þ 04 1.0E þ 04 1.0E þ 05
T Y-4 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 7.27E þ 04 1.0E þ 04 1.0E þ 05
T Y-5 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 6.08E þ 04 1.0E þ 04 1.0E þ 05
T Y-6 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 8.07E þ 04 1.0E þ 04 1.0E þ 05

Continued

Figure A1. Fitted lognormal distribution of the duration at stage I
derived from observed egg abundance and temperature by station
from 1998 to 2007. The modified distribution incorporates a
stage-transition variability used to estimate the distribution of
durations and subsequently mortality at egg stage I.

Table A1. Annual mean daily stage I and II egg mortality and stage duration (h; Portilla et al., 2007) and resulting correction factors and
mackerel egg survey estimates of SSB (SSBMES,y) including atresia, fecundity, and egg mortality.

Year
Daily

mortality My s.d.
Mean stage I
duration Dy1

Correction
factor Fy s.d.

ICES TMHMES
mackerel estimates

SSBMES,y including
egg mortality

1992 0.665 0.021 43.3 1.71 0.015 3 370 000 5 760 000
1995 0.518 0.018 43.6 1.54 0.013 2 840 000 4 370 000
1998 0.623 0.025 42.6 1.64 0.018 3 750 000 6 150 000
2001 0.434 0.021 42.5 1.43 0.015 2 900 000 4 150 000
Mean 0.56 43.0 1.53
2004 0.56 43.0 1.53 0.015 2 750 000 4 210 000
2007 0.56 43.0 1.53 0.015 3 260 000 4 990 000
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Appendix 2. Continued

Priors Initial conditions for the main model

Distribution Parameters Chain 1 Chain 2 Chain 3

T Y-7 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 6.61E þ 04 1.0E þ 04 1.0E þ 05
T Y-8 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 7.11E þ 04 1.0E þ 04 1.0E þ 05
T Y-9 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 1.19E þ 05 1.0E þ 04 1.0E þ 05
T Y-10 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 7.09E þ 04 1.0E þ 04 1.0E þ 05
T Y-11 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 9.59E þ 04 1.0E þ 04 1.0E þ 05
T Y-12 Normal(m, s) . 10.0 8.0E þ 4, 4.0E þ 6 1.72E þ 05 1.0E þ 04 1.0E þ 05

N terminal year
Age 11 Normal(m, s) . 10.0 71 320, 5.6E þ 6 7.38E þ 04 1.0E þ 04 1.0E þ 05
Age 10 Normal(m, s) . 10.0 113 035, 8.9E þ 6 1.02E þ 05 2.0E þ 04 2.0E þ 05
Age 9 Normal(m, s) . 10.0 179 148, 1.4E þ 7 1.60E þ 05 4.0E þ 04 4.0E þ 05
Age 8 Normal(m, s) . 10.0 283 931, 2.2E þ 7 2.72E þ 05 8.0E þ 04 8.0E þ 05
Age 7 Normal(m, s) . 10.0 450 000, 3.6E þ 7 3.47E þ 05 2.0E þ 05 2.0E þ 06
Age 6 Normal(m, s) . 10.0 713 202, 5.6E þ 7 5.12E þ 05 4.0E þ 05 4.0E þ 06
Age 5 Normal(m, s) . 10.0 1 130 349, 8.9E þ 7 9.27E þ 05 8.0E þ 05 8.0E þ 06
Age 4 Normal(m, s) . 10.0 1 791 482, 1.4E þ 8 5.18E þ 05 1.0E þ 06 1.0E þ 07
Age 3 Normal(m, s) . 10.0 2 839 308, 2.2E þ 8 3.25E þ 06 2.0E þ 06 2.0E þ 07
Age 2 Normal(m, s) . 10.0 4 500 000, 3.6E þ 8 4.99E þ 06 4.0E þ 06 4.0E þ 07
Age 1 Normal(m, s) . 10.0 7 132 019, 5.6E þ 8 7.60E þ 05 4.0E þ 06 4.0E þ 07
Age 0 Normal(m, s) . 10.0 11 303 489, 8.9E þ 8 5.47E þ 05 4.0E þ 06 4.0E þ 07

Fbar

Fbar terminal year Uniform(a, b) 0.001, 2 0.269189101 0.1 1.0
T Y-1 Uniform(a, b) 0.001, 2 0.30602243 0.1 1.0
T Y-2 Uniform(a, b) 0.001, 2 0.350189295 0.1 1.0
T Y-3 Uniform(a, b) 0.001, 2 0.310492461 0.1 1.0
T Y-4 Uniform(a, b) 0.001, 2 0.275209562 0.1 1.0
T Y-5 Uniform(a, b) 0.001, 2 0.249905656 0.1 1.0
T Y-6 Uniform(a, b) 0.001, 2 0.260652782 0.1 1.0
T Y-7 Uniform(a, b) 0.001, 2 0.232327736 0.1 1.0
T Y-8 Uniform(a, b) 0.001, 2 0.239031653 0.1 1.0
T Y-9 Uniform(a, b) 0.001, 2 0.308624558 0.1 1.0
T Y-10 Uniform(a, b) 0.001, 2 0.311775171 0.1 1.0
T Y-11 Uniform(a, b) 0.001, 2 0.304181787 0.1 1.0
T Y-12 Uniform(a, b) 0.001, 2 0.243885393 0.1 1.0

Age at 50% selection Uniform(a, b) 0.1, 6.0 2.0 0.3 5.00
Age at 95% selection –Age at 50%

selection
Uniform(a, b) 0.2, 6.0 2.0 0.3 5.00

Natural mortality M Gamma(r, m) � 0.15 1.5, 0.05 0.15 0.1 0.25
Catch factor Q Uniform(a, b) 0.1, 30.0 1.5 30.0 0.15
Tau M (s ¼ 1/Tau0.5) Gamma(r, m) 0.001, 0.001 1.0 10.0 0.1
Tau s (s ¼ 1/Tau0.5), Age at 50% selection Gamma(r, m) 0.001, 0.001 1.0 0.1 0.05
Tau s (s ¼ 1/Tau0.5), Age at 95%

selection–Age at 50% selection
Gamma(r, m) . 0.05 0.001, 0.001 1.0 0.1 0.05

Tau c (s ¼ 1/Tau0.5), Random walk on age
at 50% selection

Gamma(r, m) 0.001, 0.001 1.0 10.0 0.1

doi:10.1093/icesjms/fsq013
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