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Map comparison is a relatively uncommon practice in acoustic seabed classification to date, contrary to the field of land remote
sensing, where it has been developed extensively over recent decades. The aim here is to illustrate the benefits of map comparison
in the underwater realm with a case study of three maps independently describing the seabed habitats of the Te Matuku Marine
Reserve (Hauraki Gulf, New Zealand). The maps are obtained from a QTC View classification of a single-beam echosounder (SBES)
dataset, manual segmentation of a sidescan sonar (SSS) mosaic, and automatic classification of a backscatter dataset from a multibeam
echosounder (MBES). The maps are compared using pixel-to-pixel similarity measures derived from the literature in land remote
sensing. All measures agree in presenting the MBES and SSS maps as the most similar, and the SBES and SSS maps as the least
similar. The results are discussed with reference to the potential of MBES backscatter as an alternative to SSS mosaic for imagery
segmentation and to the potential of joint SBES–SSS survey for improved habitat mapping. Other applications of map-similarity
measures in acoustic classification of the seabed are suggested.
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Introduction
In the past 10 years, the human-induced worldwide decline of marine
environments has raised awareness of the urgent need to improve the
management of marine living resources and triggered an increase in
research efforts to understand, classify, and protect ocean habitats
(Jackson et al., 2001; Pauly et al., 2002; Pikitch et al., 2004). The
mapping of benthic habitats is typically achieved on the basis of
direct biological or geological observations combined with data
from remote-sensing acoustic systems (Diaz et al., 2004), a practice
known as acoustic seabed classification (ASC; Anderson et al., 2008).

Direct observations are obtained from in situ techniques such as
photography, video, sampling, coring, or scuba diving (Brown and
Coggan, 2007). The remote-sensing acoustic systems typically used
are single-beam echosounder (SBES), sidescan sonar (SSS), and
multibeam echosounder (MBES; Kenny et al., 2003; Michaels,
2007). In situ technologies allow the efficient localized description
of the seabed but have limited coverage, whereas remote-sensing
technologies allow excellent coverage but their output is ambiguous
in terms of habitat description. A combination of both approaches
allows counter-balancing for the respective flaws of each type and
allows cost-effective surveying (Diaz et al., 2004). However, the
wide range of approaches to combine in situ data and acoustic
data into a map testifies to the lack of agreement on a single,
optimal habitat-mapping technique.

Many and varied acoustic features can be used for classification.
Examples of SBES features include the energy of the first and
second bottom echoes (Heald and Pace, 1996; Siwabessy et al.,
2000), or parameters describing the spectrum, envelope, or ampli-
tude of the first echo (Anderson et al., 2002; Ellingsen et al., 2002;
Preston et al., 2004a). Examples of features derived from MBES or
SSS backscatter imagery include statistical moments within a neigh-
bourhood of samples (Preston et al., 2004a; Brown and Collier,
2008), spectral features from Fourier or wavelet transform analysis
(Pace and Gao, 1988; Atallah et al., 2002), or indices from grey-level
co-occurrence matrices (Huvenne et al., 2002; Blondel and Gómez
Sichi, 2009). Examples of features derived from MBES bathymetry
include seabed roughness (Ierodiaconou et al., 2007), topographic
position index (Iampietro et al., 2005), or local Fourier histogram
texture features (Cutter et al., 2003). Examples of features derived
from MBES-backscatter angular response include empirical par-
ameters describing the response shape (Hughes Clarke, 1994; Beyer
et al., 2007), or solutions to an inverted geoacoustic model fitted to
the response curve (Fonseca et al., 2009).

Also, there is a wide range of classification algorithms available.
The traditional interpretative approach, in which experts are
responsible for manually segmenting an acoustic image, is still
often used because of its reliability (Kostylev et al., 2001; Roberts
et al., 2005; Ehrhold et al., 2006; Collier and Humber, 2007;
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Prada et al., 2008), but advances in computer processing capabili-
ties now allow the use of various automated approaches (Simard
and Stepnowski, 2007). Examples of automated algorithms used
in recent literature include k-means clustering (Legendre et al.,
2002; Blondel and Gómez Sichi, 2009), decision tree
(Ierodiaconou et al., 2007), discriminant analysis (Hutin et al.,
2005), Bayes’ decision rule (Simons and Snellen, 2009), and
neural networks (Marsh and Brown, 2009).

Finally, the design of a given classification methodology is sub-
jective. Different results can be obtained if acoustic data are classi-
fied with the help of in situ data (supervised approach) or without
(unsupervised approach; Simard and Stepnowski, 2007). Other
important considerations include the number of categories to
work with, whether to run the classification on individual features
or coherent localized groups of features (object-orientated analy-
sis; Lucieer, 2008), or whether to run a “hard” or fuzzy classifi-
cation (Lucieer and Lucieer, 2009).

The increasing number of acoustic systems, data-processing
techniques, classification schemes, and methodologies to link acous-
tic and in situ data, some of which are described above, implies a
growing need for comparison. Ultimately, comparative studies
could lead to the identification of the most appropriate systems
(or combinations of systems) and methodologies for given survey
objectives and conditions. With this purpose, a number of studies
offer a comparison of the theoretical performances of different
acoustic-mapping systems (Hamilton et al., 1999; Kenny et al.,
2003; Le Bas and Huvenne, 2009). However, such a system-
orientated approach ignores the variable results that can be obtained
from different processing or classification methodologies.

The conventional approach for comparing different processing
or classification methodologies is to produce a case-study map for
each, estimate their respective accuracy in reference to a ground-
truth dataset, and compare the two estimates. The techniques
for estimating the accuracy of a thematic map have their origin
in land remote sensing (Congalton, 1991; Foody, 2002, 2008),
and their use is gaining momentum in ASC (Foster-Smith and
Sotheran, 2003; Brown et al., 2005; Brown and Collier, 2008;
Lucieer, 2008; Walker et al., 2008). Obtaining an estimate of
map accuracy is now relatively straightforward, but comparing
two estimates is difficult because it requires calculation of their
respective variances, and this is highly dependent on the size
and design of the ground-truth dataset (Stehman and
Czaplewski, 1998; Foody, 2009). This is an important issue in
ASC, where seabed ground-truthing presents specific challenges
including access difficulty, poor visibility, acoustic/ground-truth
data-scale difference, position precision, and habitat subjective
description (Brown and Coggan, 2007).

A second approach to comparing different processing or classi-
fication methodologies is the direct comparison of one map with
another, without referring to an in situ dataset as ground-truth.
Such map-to-map comparison benefits from decades of develop-
ment in diverse fields involving land mapping (Boots and Csillag,
2006). Techniques for the comparison of land maps include
measures derived from pixel-to-pixel comparison (Foody, 2006),
features identification and analysis (Dungan, 2006), pattern-based
techniques (White, 2006), or fuzzy-logic-based measures that take
into account possible vagueness in pixel location or legend cat-
egory (Hagen-Zanker, 2006). In contrast to land remote sensing,
map-to-map comparison is still relatively uncommon in ASC to
date, with the notable exception of the works by Foster-Smith
et al. (2004) and Brown et al. (2005).

The main advantage of direct map-to-map comparison is that
it allows one to circumvent the complications posed in the first
approach by its requirement for a properly designed ground-truth
survey (Stehman, 2006). However, the reciprocal drawback is that
in the absence of evaluation of map accuracy, the observation of
map similarity or dissimilarity is ambiguous. For example, the
observation that two given maps A and B differ importantly
could be the result of A being accurate and B not, or B being accu-
rate and A not, or both A and B being inaccurate, or both A and B
being equally accurate, but happening to depict different ground
characteristics. As a result, map-to-map comparison is generally
limited to specific study objectives where the accuracy ambiguity
is lifted or made irrelevant. Examples of objectives for
map-to-map comparison include the basic characterization of
the degree of similarity between different mapping algorithms,
the detection of changes over time, or the validation of a map pro-
duced under the assumption that it is compared with a map that
actually represents the ground-truth (Foody, 2007).

Here, we aim to illustrate the potential benefit of map-to-map
comparison in ASC for comparing seabed maps produced by
different acoustic systems or classification methodologies. As a
case study, three maps were created to represent the result of inde-
pendent, typical benthic habitat-mapping efforts at the same site.
They were obtained from SBES, SSS, and MBES datasets, which
were acquired at a different time with different resolution and cov-
erage, classified in unsupervised mode using the usual algorithms
for each acoustic system, and ground-truthed using different in
situ surveys. The small size of the ground-truth surveys precluded
reliable estimation of map accuracy, but not a direct map-to-map
comparison. A number of measures derived from the literature in
land remote sensing and selected for their suitability to this study
context was applied to estimate map similarity. The similarity
results were then examined, the benefits and limits of the selected
approach discussed, and other potential applications of map-
similarity measures in ASC suggested.

Material and methods
The study site was the Te Matuku Marine Reserve, located south of
Waiheke Island in the Hauraki Gulf in New Zealand (�36851′S
175808′E; Figure 1a). The 690 ha reserve was established in 2005
to cover the Te Matuku Bay estuary and its subtidal extension in
the sheltered Tamaki Strait. The study focuses on the subtidal
part of the reserve, which accounts for �550 ha, including flats
off the bay headlands and the entrance of the Waiheke Channel
to a depth of 25 m. Early surveys recognized the area as typical
of inner Hauraki Gulf sheltered shores: the dominant seabed sub-
stratum is fine, silty mud, with extensive bioturbation in places,
occasional patches of horse mussel (Atrina zelandica) shell
debris, and rocky outcrops around headlands and Passage Rock
Island (The Royal Forest and Bird Protection Society, 1998).

SBES classification
In 2002, New Zealand’s National Institute of Water and
Atmospheric Research (NIWA) conducted a habitat survey of
the proposed area for the Te Matuku Marine Reserve, as part of
a wider programme of habitat identification in the Hauraki
Gulf. The habitat mapping was performed with a Simrad
EA501P SBES, the signal of which was processed and classified
with Quester Tangent software QTC View Series 4 and QTC
IMPACT (Morrison et al., 2003).
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The SBES used in the survey had an operating frequency of
200 kHz, a ping rate of 5 Hz, and a fixed beam width of 78
(Morrison et al., 2001). The acoustic dataset covered the entire
subtidal part of the marine reserve (Figure 1b), with a total of
30 lines acquired in a north or south direction at a speed of
�3 m s21, separated by 120 m on average (Morrison et al.,
2003). The QTC software analysed the SBES signal in stacks of
consecutive pings to minimize signal variability (Preston et al.,
2004a). This process resulted in the generation of one ping-stack
every 6 m on average along the lines (Morrison et al., 2003).
Therefore, the original dataset for classification had an average
spatial resolution of 120 m × 6 m.

The QTC software first extracted 166 features from the ping
stacks, then applied a principal component analysis to identify
the three principal components, which are termed Q-values. The
Q-values were then clustered using a semi-automatic algorithm,
in which the user was responsible for the decision of whether
there should be further splitting of the clusters with the help of
statistical diagnostics. When the final set of clusters was decided,
the Q-values were compared with the centroid of each, resulting
in a category being assigned to each ping-stack along with a con-
fidence value between 0 and 100% (Preston et al., 2004a, b). This
process of classification resulted in an optimal number of four cat-
egories (Morrison et al., 2003). An interpolation algorithm was
then applied to the ping-stack classification to obtain a thematic
map covering the entire site (Morrison et al., 2003). However,
the resulting map displayed a general unrealistic “blocky” aspect
(Morrison et al., 2003; Schimel et al., 2010). This effect is found
frequently when using traditional interpolation algorithms for cat-
egorical data on point-based datasets with both an imbalance
between along- and across-track resolution and a high
point-to-point variability (Foster-Smith and Sotheran, 2003;
Reid, 2007).

In this case, the ping-stack classification was interpolated again
using an alternative algorithm designed for categorical data and
based on an inverse distance calculation, with the aim of obtaining
a map with a more realistic aspect. The inverse distance calculation
was expected to create a spatial averaging effect to filter out the
rapid variations in the original data, and the specific design for cat-
egorical data ensured that no artificial categories were created in
the process (Reid, 2007).

With any point x, the algorithm would associate the category
for which the sum of the inverse distances between x and the
points belonging to the set to be interpolated, classified in this cat-
egory and located within a given threshold distance from x, is
maximized over all categories. The resulting category is

c(x) = arg max
k[[1,n]

∑
y[Yk,D,x

1

d(x, y) , (1)

where Y is the entire dataset of points to be interpolated, n the total
number of categories in which Y is partitioned, Yk,D,x the subset of
Y consisting of the elements classified in category k and located
within the threshold distance D from x, and d a distance function.
In practice, the QTC ping-stack classification dataset Y was limited
to the elements y that scored more than 80% confidence during
the classification process, the interpolation was run on a grid of
points x set up at a resolution of 1 m, the Euclidian distance was
used for d, the threshold distance D was set to 100 m, and the
final results were limited to the convex hull of the QTC ping-stack
classification dataset Y to remove unnecessary extrapolation.

The interpolated map was ground-truthed with a video and
sediment-sampling survey of 12 stations arranged in a stratified
design: three stations were selected within patches of “pure” cat-
egory for each of the four categories (Morrison et al., 2003). At
each station, underwater video footage was acquired and a sedi-
ment sample obtained with a Smith–McIntyre grab sampler.
Primary substratum type, secondary cover, and conspicuous epi-
fauna were described from video footage and sediment sample
observation, and grain-size distribution was derived from the
analysis of samples using a GALAI (CIS-100) laser particle sizer
(Morrison et al., 2003). To complete this original ground-truthing
effort, the sediment grain-size analysis was carried on further in
this study with the computation of the volume percentage of
clay, silt, sand, and gravel-size particles (.2 mm), as well as the
mean grain size and sorting of the ,2 mm fraction. All 12 stations
were used for category identification; none were conserved for
map-accuracy estimation.

SSS classification
In 2002, the University of Waikato’s Department of Earth and
Ocean Sciences conducted an SSS survey of the proposed site for

Figure 1. (a) Location of the study site in the Tamaki Strait, Hauraki Gulf, New Zealand (36851′S 175808′E). (b) Coverage of the SBES
survey (north –south continuous lines), after Morrison et al. (2003). (c) Coverage of the SSS survey (dark area). (d) Coverage of the MBES
survey (dark area). All panels except the left one also display the extent of the Te Matuku Marine Reserve (dashed contour) and the 5, 10, 15,
and 20 m isobaths.
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the Te Matuku Marine Reserve using a Klein 595 SSS for data
acquisition and Triton Imaging Inc. ISIS software suite for data
processing (Figure 1c). SSS imagery was obtained from mosaick-
ing the 100-kHz data at a resolution of 0.2 m using the assumption
of a flat seabed. As the poor quality of the data precluded efficient
data conditioning for modern image-analysis techniques to be
applied, the mosaic was segmented manually. Segmentation was
performed with the digitizing tools of GIS software on the basis
of a visual assessment of areas of homogeneous tone and
texture. Five categories were identified. The map was then raster-
ized at a resolution of 1 m.

In 2005, New Zealand’s Department of Conservation per-
formed a sediment-sampling survey of the marine reserve. The
survey consisted of 146 stations arranged in a simple random
design over the entire reserve, including its intertidal part.
Sediment samples were collected at each station using a small rec-
tangular dredge described in Grace and Whitten (1974), then ana-
lysed for grain-size distribution using a Malvern laser particle sizer
(K. Sivaguru, pers. comm.). For each sample, the volume percen-
tage of clay, silt, sand, and gravel (.2 mm), and the mean grain
size and sorting of the ,2 mm fraction, were calculated. Only
69 of the 146 stations were located within the area covered by
the SSS imagery and were used for ground-truthing the SSS
map. All 69 stations were used for category identification; none
were conserved for map-accuracy estimation.

MBES classification
In 2007, an MBES survey was conducted over a rectangular area of
�100 ha in the Waiheke Channel part of the Te Matuku Marine
Reserve (Figure 1d). The specific purpose of the survey was to
acquire an MBES dataset for development of a processing method-
ology and for the preliminary comparison of its results with the
SBES and SSS classifications (Schimel et al., 2010). Therefore,
the survey was not performed on the entire subtidal part of
the marine reserve, as were the previous surveys, but only on an
area large enough to cover occurrences of each category from
the previous classifications, as well as the full depth range of the
area.

The survey was conducted with a Kongsberg EM3000 MBES
(300 kHz), planned so that outer beams from two consecutive
runlines were slightly overlapping to ensure 100% coverage. The
backscatter data were processed to remove the along-track
banding effect and gridded at a resolution of 1 m (Schimel et al.,
2010). A 10 m × 10 m two-dimensional median filter was then
applied to the imagery to remove the high-frequency noise typi-
cally present in MBES-backscatter data recorded near the nadir.
Observation of the filtered image histogram revealed three main
concentrations of pixels at, respectively, high, medium, and low
backscatter levels. The filtered image was classified using a
k-means clustering algorithm, with the number of categories k
accordingly set to three.

The map produced by this semi-automatic classification was
ground-truthed using footage from a drop-video-camera survey
carried out in 2008 and comprising 24 stations arranged in a sys-
tematic design over the area covered by the MBES. The video
camera was fitted on a frame lowered to the seabed, and the
vessel was allowed to drift during the length of footage recording
on each site. Such drifting minimized the error in the frame pos-
ition, assumed to be identical to the vessel position, measured with
DGPS, and ensured that the habitat observed was representative of
its surroundings. Map categories were described on the basis of

visual assessment of the video footage. In addition, four of the
stations were sampled and observed by a scuba diver. The
samples were analysed for sediment grain-size distribution with
a Malvern laser particle sizer. All 24 stations were used for category
identification; none were conserved for map-accuracy estimation.

Map-comparison measures
As outlined above, a wide range of approaches developed for the
comparison of land maps can be used directly in ASC, depending
on study context and objectives. The objective of the current study
is to estimate the overall similarity of three overlapping maps with
identical resolution of 1 m but different legends and different cov-
erage, and for which no samples are available for map-accuracy
assessment. In this context, a map-to-map comparison approach
can be implemented using similarity measures obtained from
the count of pixels shared by the maps, which is usually presented
in the form of a contingency matrix (Table 1).

Diverse measures expressing different aspects of map similarity
can be computed from the contingency matrix. Here, several
measures were selected and applied with the objective of providing
an overview of the range of existing measures and of the diverse
aspects of map similarity that can be estimated. Following a
review by Rees (2008), the measures of categorical agreement A
(overall accuracy), Cohen’s k, and Foody’s k* and the measures
of categorical association Theil’s U, Cramér’s V, and Goodman–
Kruskal’s l were selected.

Historically, the first map-similarity measures used in land
remote sensing were metrics originally designed for estimating the
accuracy of a map produced against a reference ground-truth
dataset. Therefore, they require the two maps to be described with
the same legend. In reference to the terminology in Table 1, this
implies that m and n must be equal, that Ai and Bi must be the
same for each row/column i, that the elements on the diagonal rep-
resent the count of pixels where the classifications agree, and that
the off-diagonal elements represent classification disagreements.

In this specific case, the overall accuracy A is the straightfor-
ward proportion of pixels where the two classifications agree.
Accordingly, it takes values between 0, indicating no agreement,
and 1, indicating complete agreement:

A = 1

N

∑n

i=1

cii. (2)

Cohen’s k is a popular measure of agreement that uses the off-
diagonal elements to estimate chance agreement and to

Table 1. Contingency matrix for two maps A and B comprising,
respectively, m and n categories.

Map A categories

Map B categories

Total rowsB1 . . . Bj . . . Bn

A1 c11 . . . c1j . . . c1n c1+
. . . . . . . . . . . . . . . . . . . . .

Ai ci1 . . . cij . . . cin ci+
. . . . . . . . . . . . . . . . . . . . .

Am cm1 . . . cmj . . . cmn cm+
Total columns c+1 . . . c+j . . . c+n N

The number cij designates the number of pixels that fall conjointly in
category Ai in map A and Bj in map B. The numbers c+j and ci+,
respectively, designate the sum of the elements in column j and the sum of
elements in row i. N is the total number of pixels shared by the two maps.
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compensate A accordingly (Cohen, 1960; Congalton, 1991;
Monserud and Leemans, 1992; Couto, 2003):

k = A − 1/N2
∑n

i=1 ci+c+i

1 − 1/N2
∑n

i=1 ci+c+i
. (3)

The estimation of chance agreement in k has often been criti-
cized, and various alternatives have been suggested (Brennan
and Prediger, 1981; Ma and Redmond, 1995). In particular, the
estimation of chance agreement assuming that the marginal distri-
butions are not specified a priori is considered more suitable in the
context of geographical mapping (Foody, 1992; Stehman, 1999).
Modifying k accordingly, this measure becomes

k∗ = A − 1/n

1 − 1/n
. (4)

As k and k* are re-scaled versions of A that take into account
chance agreement, they systematically take lower values than A.
They take a value of 0 if map agreement is equivalent to that
expected by chance, a negative value if map agreement is less
than would be expected by chance, and a maximum value of 1
for complete agreement.

The requirement that the two maps to be compared must have
the same legend to allow using A, k, or k* is an obstacle in many
studies where the legends differ in the number of categories and/
or category labels. Using A, k, or k* in this context implies aggre-
gating and re-labelling some categories until a common legend is
obtained, which is often done subjectively (Foster-Smith et al.,
2001; Giri et al., 2005; McCallum et al., 2006). A better approach
is to use alternative measures that can be computed regardless of a
possible legend mismatch, i.e. from a “not necessarily square” con-
tingency matrix (Boots and Csillag, 2006; Foody, 2006).

Finn (1993), drawing from information theory, suggested a
map-similarity measure with this characteristic. If map uncer-
tainty is considered to be the information content of a map,
then an estimation of map similarity can be obtained through
computing the average mutual information (AMI), which
measures the reduction in one map’s uncertainty when the other
map is known (Theil, 1972; Finn, 1993; Couto, 2003; Foody,
2006; Rees, 2008):

AMI = H(A) + H(B) − H(A,B), (5)

where H(A) and H(B) describe the respective entropy (uncer-
tainty) of the two maps, and H(A, B) describes their joint
entropy. With a constant term of 1 and in Hartley units, they
are, respectively,

H(A) = −
∑m

i=1

ci+
N

log
ci+
N

( )
, (6)

H(B) = −
∑n

j=1

c+j

N
log

c+j

N

( )
, and (7)

H(A,B) = −
∑m

i=1

∑n

j=1

cij

N
log

cij

N

( )
. (8)

Theil’s uncertainty coefficient U is a normalized and symmetric
estimate of mutual information based on AMI that originated in
categorical statistics, where the above concepts apply equally

(Theil, 1972). It is written (Press et al., 1992) as

U = 2 × AMI

H(A) + H(B) . (9)

More recently, Rees (2008) suggested two other pixel-to-pixel
comparison measures drawn from the field of categorical statistics,
which can also be computed from the contingency matrix without
the requirement of identical legends: Cramér’s V and Goodman–
Kruskal’s l.

Cramér’s V is a normalized version of Pearson’s x2 statistic
(Cramér, 1946; Rees, 2008):

V =

��������������������
x2

N(min(m, n) − 1)

√
, (10)

and Pearson’s x2 is

x2 =
∑m

i=1

∑n

j=1

(cij − ci+c+j/N)2

ci+c+j/N
. (11)

Goodman–Kruskal’s l is a measure of the proportional reduction
in error in one map obtained from knowledge of the other map
(Goodman and Kruskal, 1954; Rees, 2008). In its symmetrical
version, it is

l =
∑m

i=1 maxj(cij) +
∑n

j=1 maxi(cij) − maxj(c+j) − maxi(ci+)
2N − maxj(c+j) − maxi(ci+)

.

(12)

U, V, and l are normalized; they take values between 0, indicating
no association, and 1, indicating complete association.

Map-comparison methodology
In this study, the three maps to be compared had different legends
because they were ground-truthed independently. The measures of
association U, V, and l were therefore adapted while the measures
of agreement, A, k, and k*, were not, unless the map legends were
modified. A methodology was developed to automate the decision
process for legend modification and allow the use of the three
measures of agreement in this study.

Consider two maps A and B having the same number of cat-
egories m but different or unknown category labels. One could
assess the similarity between A and B by computing a measure
of agreement for all possible category bijections between A and
B and keeping only one of the resulting values, intuitively the
largest one. This process is equivalent to forming all the m! possi-
bilities of category permutations in one map.

If A and B have different numbers of categories m and n such
that n . m, one could still apply the permutation process
described above after having formed all the possibilities of aggre-
gating categories from B so that only m categories remained.
This category-aggregation process is equivalent to identifying all
the possibilities to partition a set of n elements into m non-empty
subsets, as given by the Stirling numbers of the second type
(Abramowitz and Stegun, 1964):

S(n,m) = 1

m!

∑m

k=0

(−1)m−k m!

k!(m − k)! kn. (13)
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Accordingly, the total number of values that can be taken by a
measure of agreement between two maps A and B having a differ-
ent number of categories m and n after the aggregation/permu-
tation process is m!S(n, m). The main advantage of this process
is that it allows the popular measures of categorical agreement
to be used for maps with different legends in an automated
manner. A second advantage is that it provides an optimal solution
for the comparison of the legends, which is the aggregation/
permutation possibility that maximizes the map-similarity
measure. This information allows verification that the computed
measure is actually an estimate of map agreement rather than the
product of a chance association of completely different categories.

In the present study, the SBES, SSS, and MBES maps were com-
pared using the measures of categorical agreement and the
measures of categorical association described above. As the three
maps were created at a common resolution of 1 m, each pair of
maps led to a straightforward contingency matrix. The measures
of association U, V, and l were computed directly from the con-
tingency matrices, and the measures of agreement A, k, and k*
were computed after the application of the automatic aggrega-
tion/permutation process. At the end of the process, only the
maximum value of each measure and the corresponding solution
in legend agreement were reported.

This comparison methodology had its limitations. First, the
difference in map size (Figure 1) could have an influence on
the results. As the MBES map was smaller than the other two,
the MBES–SBES and the MBES–SSS comparisons were limited
to the size of the MBES map, whereas the SBES–SSS comparison
was limited to the area shared by the two maps, i.e. almost
the entire study site. This difference may artificially lessen the
level of agreement or association of the latter comparison.
Second, the level of agreement generally increases as categories
are aggregated (Giri et al., 2005; Foody, 2007), implying
that comparisons between maps described with fewer categories
may artificially show better agreement or association than other
comparisons.

To assess the influence of map size and the number of cat-
egories in this study, the three maps were compared a second
time after being limited to the pixels shared by the three maps,
i.e. approximately the MBES area, and after the maps were all
reduced to a same number of categories by subjective aggregation.
This process was termed map reduction.

Results and discussion
Map results and analysis
Figure 2a shows the SBES ping-stack dataset classified by the QTC
software into four categories, labelled A, B, C, and D, and
Figure 2b the result of interpolation of the dataset using the categ-
orical inverse distance algorithm. Both figures also show the
locations of the ground-truth stations. Table 2 lists the results of
the ground-truthing survey.

The video footage and visual assessment of the sediment
samples confirmed the dominance of mud as a primary substra-
tum on the entire study site. In contrast, grain-size analysis
revealed that sediment samples contained mainly sand-size par-
ticles. Despite this discrepancy, both video footage and grain-size
analysis agreed that categories A and B proved similar in demon-
strating the softer sediment at the site, that category C had a
slightly coarser sediment, and that category D was defined
mainly by its notable cover of shells and shell fragments.

The origin of this discrepancy was not determined, but the
upper layer of the seabed at the site might be stratified so that
the samples, which were mostly of subsurface sediment, would
naturally yield a different result from the video footage, which
only allowed an assessment of the composition of the surface sedi-
ment (M. Morrison, pers. comm.). Another hypothesis is that the
organic content in the samples, which is high at the site, was not
entirely degraded during the analysis, and might have bound silt-
size grains into coarser particles.

Earlier studies using the QTC software reported cases of corre-
lation between QTC classification and water depth (Anderson et al.,
2002; Hewitt et al., 2004). A similar correlation was found on this
site by Schimel et al. (2010), who observed that the distribution of
category A corresponded to shallow water and those of categories C
and D to deeper water. Categories C and D were identified as dis-
tinctive habitats from the ground-truthing survey, but categories
A and B were identified as similar. This suggests that depth, or
another environment factor correlated with it but not measured
in the ground-truth survey, might have contributed to separating
A and B during the classification process.

Figure 2c shows the SSS imagery and Figure 2d the thematic
map resulting from manual classification, and the locations of
the 2005 sediment samples used for ground-truthing. From the
SSS imagery, the operator identified five categories labelled E, F,
G, H, and I, for which tone and texture appeared clearly different
from each other. Figure 3 depicts the results of the grain-size analy-
sis for each category. There was a notable variation in the ground
surface occupied by each SSS category. A smooth-textured low-
reflectivity background covered most of the mosaic (category I),
but it was replaced in places by a rougher texture type with
greater reflectivity, mainly in a large patch in the centre east of
the mosaic and in intermittent, smaller patches in the centre and
the south (category E). The extension of rocky headlands and
islands on the seabed showed great reflectivity and could be
separated into two different texture types (categories F and H),
both of which, but particularly category F, were rare. A last
texture type presenting a pattern alternating high- and low-
reflectivity marks was identified mainly in the eastern part of the
site (category G).

As the SSS ground-truthing sampling scheme was devised ran-
domly, the high variability in SSS category surface resulted in a
great variability in the number of samples available for each cat-
egory. In all, 43 were located within the largest category (I),
whereas no samples were located within the smallest category
(F). Respectively nine, nine, and eight samples were located
within categories E, G, and H. The acoustic classification and
the grain-size analysis matched poorly, with a substantial variation
in grain-size results in categories G, H, and I, and similar grain-size
results between all categories (Figure 3). Categories E and I, which
showed radically different tone and texture and were therefore par-
ticularly distinguishable from each other on the acoustic imagery,
proved to be particularly similar in sediment content, i.e. a
medium to fine silt poorly to very poorly sorted. They both had
a negligible fraction of gravel-size (.2 mm) and clay-size par-
ticles. The main difference was that I had a higher sand content
than E. Category G was quite similar but with a less sorted, less
silty, and sandier content, and its gravel-size fraction was more
in evidence. Finally, category H was also similar, but increasing
the trend from G into less sorted and larger grain sizes. It is the
only category for which the mean volume content was greater
for sand than for silt. Accordingly, the categories were further
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labelled as E (mainly fine silt, poorly sorted), F (no stations), G
(sandy silt, very poorly sorted), H (silty sand, very poorly
sorted), and I (mainly medium silt, with sand occurrence).

Similar difficulties in relating grain-size results and sidescan
classification have been observed in other studies on soft-sediment
areas with even less homogeneous surficial sediment distribution
than in the present case (Zajac et al. 2000; Brown et al., 2002).
An important variation in tone and texture in the sidescan
imagery that cannot be linked clearly to sediment grain size
suggests a contribution of other environmental factors, possibly
related to seabed roughness. This hypothesis implies that the

in situ technique selected for ground-truthing the SSS map may
not be suitable for all categories.

Figure 2e depicts the MBES reflectivity map after partial correc-
tion of the along-track banding effect (Schimel et al., 2010), and
Figure 2f the thematic map resulting from the semi-automatic
classification of this reflectivity map, and the location of the
ground-truth stations. The clustering algorithm was set to split
the dataset into three categories labelled J, K, and L. The algorithm
attributed category J to the low-reflective, smooth-textured back-
ground of the reflectivity map, category K to the medium-reflective,
rough-textured features, which were mainly in a band crossing the

Figure 2. (a) SBES ping-stack classification by QTC View/Impact (after Morrison et al., 2003). (b) Map resulting from the application of
the interpolation algorithm to the SBES classification. Both panels also display the location of the ground-truth stations for the SBES map.
(c) SSS mosaic. (d) Map resulting from the manual classification of the SSS mosaic and the location of the sampling stations from the
2005 survey. (e) MBES imagery. (f) Map resulting from the automatic classification of the MBES imagery and the location of the ground-truth
stations from the 2008 survey. The location of the data displayed in the final two panels is indicated in Figure 1.
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area from its central west to northeast, and category L to the high-
reflective features dominating the northeast corner of the map.

The 2008 video survey confirmed the quasi-homogeneous sedi-
ment distribution of the zone, as observed in the previous ground-
truth surveys. All videos showed areas completely covered in soft
mud, with a variable cover of burrows and shells or shell fragments.
This general observation was confirmed by analysis of the four sedi-
ment samples, which yielded a similar content primarily dominated
by clay-size particles bound into medium-silt-size particles by
organic matter. The only notable variation between samples was
the size of the .2 mm fraction, which was entirely made up of
shell fragments, always. Compilation of video observations for
each MBES map category suggested that the cover of either shells
or shell fragments was the principal difference between categories.
Shell fragments were almost absent in category J, but quite frequent
though dispersed in category K. Shell cover was, in contrast, very
important in category L. Accordingly, the categories were further
labelled as J (medium silt), K (medium silt and sparse shell frag-
ments), and L (medium silt, shells, and shell fragments).

This video-survey analysis supported the previous analysis
of the SSS map. In the context of a seabed with a highly

homogeneous, very soft sediment type, it is likely that some vari-
ations in the SSS or MBS imageries were controlled by environ-
mental factors other than grain size. The density and
distribution of burrows and shell fragments, which were reported
in earlier studies and confirmed in the 2008 video survey, were
possible contributors through their influence on sediment-surface
hardness and roughness (Stanton, 2000; Pouliquen and Lyons,
2002). However, traditional ground-truthing techniques such as
grab samples or qualitative observation of video footage do not
allow their density to be measured precisely, and so confirming
their influence.

Here, every sample from each ground-truthing survey was used
for category identification. No additional samples were available
for measuring map accuracy. The uncertainty on the suitability
of the selected ground-truthing techniques for some categories
implies that even if more samples had been available, accuracy esti-
mation may have been flawed. In the current state of the ground-
truth surveys, it is therefore impossible to quantify the quality of
the three maps. Moreover, each dataset could have been classified
using different approaches to achieve better map quality, e.g. using
supervised approaches or producing a different number of

Figure 3. Boxplots describing the content of the 2005 samples within each SSS acoustic class. Measures displayed are the mean grain
size and sorting of the ,2 mm content (both in phi scale), and the percentage content in volume of clay, silt, sand, and gravel-size (.2 mm)
particles.

Table 2. Results of the ground-truth survey of the SBES classification.

Category Video observation Sample observation

A Mud and sloped burrows. Cushion stars Very soft mud. Shell fragments underneath the surface
B Mud and sloped burrows Soft to very soft mud. Few shell fragments on surface
C Sandy mud. Dead shells Soft grey clay. Shell fragments
D Poor visibility. Heavy sand and shell in places. Hard

mud in others
Soft mud. Many shell fragments on surface and beneath

Statistics of the <2 mm content % content in volume

Mean (phi) Sorting (phi) Clay Silt Sand >2 mm

A 3.13 (very fine sand) 1.45 (poorly sorted) 0.1 22.9 75.4 1.6
B 3.30 (very fine sand) 1.61 (poorly sorted) 0.3 32.8 64.7 2.2
C 1.41 (medium sand) 1.81 (poorly sorted) 0.2 12.1 83.0 4.7
D 0.24 (coarse sand) 1.07 (poorly sorted) 0.1 2.7 72.1 25.1

The four QTC categories are described on the basis of the observation of the video footage and of the content of the grab samples (Morrison et al., 2003).
The grain-size analysis results are averaged for the three ground-truthing sites falling in each category. The analysis results include the mean grain size and
sorting of the ,2 mm content (both in phi scale), and the percentage content in volume of clay, silt, sand, and gravel-size (.2 mm) particles.
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categories, but quantifying this quality through the computation
of map accuracy would have remained impossible.

Map-comparison results and analysis
Figure 4a shows an overlap of the SBES and SSS maps, and Table 3
is the associated contingency matrix. The comparison of the SBES
and SSS maps using the measures of agreement required a single
step of aggregation of two categories of the SSS map. Figure 4b
shows an overlap of the SBES and MBES maps, and Table 4 is
the associated contingency matrix. Comparison of the SBES and

MBES maps required a single step of aggregation of two categories
of the SBES map. Figure 4c is an overlap of the SSS and MBES
maps, and Table 5 is the associated contingency matrix.
Comparison of the SSS and MBES maps also required a single
aggregation step of two categories of the SSS map, because SSS cat-
egory F did not overlap with the MBES map and had, therefore, to
be removed from the computations. Table 6 lists the scores
obtained for each measure of agreement and association from
the contingency matrices.

Each measure in this study provided an assessment of global map
similarity in a different manner, so yielded a different range of scores

Figure 4. SBES map overlaid on (a) the SSS map and (b) the MBES
map, and (c) the SSS map overlaid on the MBES map. In (a) and (b),
the SBES segments of importance are labelled with their category,
and in (c), the SSS segments of importance are so labelled. In (a), the
SSS map categories are given in the legend, and in (b) and (c), the
MBES map categories are so given.

Table 3. Contingency matrix of the SBES and SSS maps.

SBES
map
category

SSS map category

E F G H I Total

A 0 2 401 0 37 081 690 920 730 402
B 423 370 136 189 776 11 823 2 230 261 2 855 366
C 255 631 353 291 193 85 643 109 186 742 006
D 53 079 0 44 445 86 069 2 355 185 948
Total 732 080 2 890 525 414 220 616 3 032 722 4 513 722

Table 4. Contingency matrix of the SBES and MBES maps.

MBES map
category

SBES map category

A B C D Total

J 51 216 482 693 100 527 0 634 436
K 2 920 52 185 263 330 59 000 377 435
L 1 248 1 724 49 126 41 389 93 487
Total 55 384 536 602 412 983 100 389 1 105 358

Table 5. Contingency matrix of the MBES and SSS maps.

MBES map
category

SSS map category

E F G H I Total

J 71 420 0 44 249 2 397 514 254 632 320
K 315 018 0 32 826 10 937 8 763 367 544
L 11 171 0 8 359 56 981 1 288 77 799
Total 397 609 0 85 434 70 315 524 305 1 077 663

Note that the F category column is empty because this SSS category does
not overlap the MBES map.

Table 6. Measures of association and measures of agreement
obtained from the contingency matrices (Tables 3–5).

Compared maps
and contingency
matrices

Measures of
association Measures of agreement

V l U
Max

A
Max
k

Max
k*

SBES/SSS (Table 3) 0.417 0.141 0.247 0.672a 0.307b 0.563a

SBES/MBES
(Table 4)

0.545 0.462 0.325 0.759c 0.567c 0.638c

MBES/SSS (Table 5) 0.768 0.661 0.497 0.863d 0.746d 0.795d

For the measures of agreement, the automatic permutation/aggregation
procedure was applied and only the maximum values were reported.
aA � F, B � E + I, C � G, D � H.
bA � F, B � I, C � E + G, D � H.
cJ � A + B, K � C, L � D.
dJ � G + I, K � E, L � H.
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(Table 6). Some measures independently estimated different aspects
of map similarity. U, for example, measured the amount of infor-
mation shared by two maps, often showing the lowest scores,
whereas A, which measured the overall accuracy of one map in refer-
ence to the other, had the highest scores. Other measures were
related. For example, k and k* systematically scored lower than A
because they are only re-scaled versions of A to take into account
chance agreement. In addition, k scored systematically lower than
k* because its estimate of chance agreement was less conservative.
Despite these differences in score range, all measures were consistent
in indicating the SSS and MBES maps as the most similar, and the
SBES and SSS maps as the least similar (Table 6).

The next step was that of testing the influence of map size and
the number of categories on the measures. As the MBES map had
the fewest categories in the study, the other two maps were reduced
to match that number. Using the ground-truth survey results to
identify similar categories, categories A and B were aggregated in
the SBES map, and categories G and H in the SSS map. After

limiting all three maps to their common area, the resulting
reduced MBES, SBES, and SSS maps were described by three cat-
egories each: J, K, and L for the MBES map, A + B, C, and D for
the SBES map, and E, G + H, and I for the SSS map. Tables 7–9
list the contingency matrices for comparing these reduced maps,
and Table 10 lists the scores obtained by the measures of categori-
cal association and agreement on these matrices. As all the reduced
maps had the same number of categories, computation of the
measures of agreement did not require further category aggrega-
tion, but still required all possibilities of category permutation.

As the MBES/SBES and MBES/SSS map comparisons were
already limited to the small MBES area and included automatic
category aggregation to match the lowest number of categories,
the map reduction was expected to have an influence only on
the SBES/SSS map comparison. This was not observed
(Table 10). Only l and k indicated that the SBES/SSS map simi-
larity increased notably following the map reduction. The other
measures only indicated a very small increase or even a decrease.
The reduction actually had a clearer effect on the MBES/SSS
map comparison, because all measures indicated that the map
similarity decreased as a result. For the MBES/SBES map compari-
son, the reduction showed no influence on the measures of agree-
ment, but mixed influence on the measures of association, where l
and U both increased and V decreased. Despite these modifi-
cations in the scores, the initial observation that the MBES and
SSS maps were the most similar and that the SBES and SSS
maps were the least similar remained valid after the reduction.

The very good agreement in location and extent between the
SSS categories E and I and the MBES categories K and J
(Figure 4c, Table 5) probably contributed to the high similarity
scores attained in comparing these two maps. The decrease in
similarity observed after map reduction can probably be linked
to the forced aggregation of SSS categories G and H, whereas
they were previously better associated with separate MBES cat-
egories, respectively, J and L (see Table 5 and legend agreement sol-
ution in Table 6).

The general confusion between SBES categories B and C and
SSS categories E and G probably contributed to the low similarity
scores found in comparing these two maps. The scattered SSS E
segments in the south of the study site were associated with
SBES category B, whereas the main SSS E segment in the centre
was associated with SBES category C, which in turn was found
too in the southeast in a zone dominated by SSS category G
(Figure 4a). This confusion is also apparent in the detail of the
optimal solutions resulting from the aggregation/permutation
procedure (Table 6): SSS category E appeared better associated
with SBES category B for computing the overall accuracy A and
k*, but better associated with SBES category C for computing k.

Table 7. Contingency matrix of the reduced SBES and SSS maps.

Reduced SBES map
category

Reduced SSS map category

E G 1 H I Total

A 1 B 103 546 43 727 444 701 591 974
C 240 984 82 492 79 134 402 610
D 53 079 28 622 0 81 701
Total 397 609 154 841 523 835 1 076 285

Table 8. Contingency matrix of the reduced SBES and MBES maps.

Reduced MBES map
category

Reduced SBES map category

A 1 B C D Total

J 533 909 98 294 0 632 203
K 55 098 257 312 54 484 366 894
L 2 967 47 004 27 217 77 188
Total 591 974 402 610 81 701 1 076 285

Table 10. Measures of association and measures of agreement obtained from the contingency matrices (Tables 7–9).

Compared maps and
contingency matrices

Measures of association Measures of agreement

V l U Max A Max k Max k*

SBES/SSS (Table 7) 0.423 (+1%) 0.378 (+168%) 0.212 (214%) 0.664a (21%) 0.423a (+38%) 0.496a (212%)
SBES/MBES (Table 8) 0.524 (24%) 0.495 (+7%) 0.344 (+6%) 0.760b (�0%) 0.560b (21%) 0.641b (�0%)
MBES/SSS (Table 9) 0.675 (212%) 0.634 (24%) 0.478 (24%) 0.831c (24%) 0.707c (25%) 0.746c (26%)

The percentage increase or decrease in the measures compared with their original value in Table 6 is indicated in parenthesis. For the measures of
agreement, the automatic permutation procedure was applied, and only the maximum values are reported.
aA + B � I, C � E, D � G + H.
bJ � A + B, K � C, L � D.
cJ � I, K � E, L � G + H.

Table 9. Contingency matrix of the reduced MBES and SSS maps.

Reduced MBES map
category

Reduced SSS map category

E G 1 H I Total

J 71 420 46 646 514 137 632 203
K 315 018 43 247 8 629 366 894
L 11 171 64 948 1 069 77 188
Total 397 609 154 841 523 835 1 076 285
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In this study, the three maps were obtained independently and
showed various differences or similarities in technology (fre-
quency, bandwidth, beam patterns, sonar depth, operating
angular sector, etc.), signal processing (calibration, acquisition
gains, post-survey processing, etc.), survey design (spatial coverage
and resolution), and classification methodology (features to clas-
sify, classification algorithm, and analysis design). Therefore, the
observed MBES/SSS similarity and SBES/SSS dissimilarity
cannot be linked to a single varying parameter, but is rather the
result of the combined effects of several parameters with
unknown contributions.

The main potential origins for the MBES/SSS map similarity
and SBES/SSS map dissimilarity are the map resolution and cover-
age. The MBES and SSS maps relied on high-resolution, full-
coverage acoustic imageries, whereas the SBES map relied on a
dataset with such a lower resolution that it required interpolation
to be compared with the other maps. The interpolation means that
most of the content of the SBES map is predicted rather than
measured and that one should remain critical of its results
(Foster-Smith and Sotheran, 2003). A second potential expla-
nation is the systems’ respective operating angular sectors
(Michaels, 2007). The SSS operated from very low to mid-range
grazing angles, in the 1–408 range under the assumption of a
flat seabed. The MBES operated from low to very-high grazing
angles, in the 25–908 range. The SBES operated at very-high
grazing angles only, in the 86–908 range. As the contributions of
both surface roughness and volume heterogeneity backscattering
processes vary considerably with grazing angle (Lurton, 2002),
particularly the former in the 70–908 range, perhaps some
spatial changes in seabed characteristics are detectable in a signal
recorded at certain angles, but invisible at other angles.
Therefore, the separation of the SBES and SSS operating angle
sectors could lead to different aspects of the seabed being
measured, and the partial overlap of MBES and SSS angle
sectors may increase the chance that these two systems measure
the same seabed variations. A third possible explanation is the
choice of the features used for classification. Both MBES and
SSS maps were obtained from the classification of the amplitude
of their respective signals, which translated into image tone and
texture. In comparison, the SBES map was obtained from the
classification of three unknown Q-values, which can be any of
the 166 features the QTC software extracted from the SBES
signal cumulative amplitude, amplitude quantiles and histogram,
power spectrum, and wavelet packet transform (Preston et al.,
2004a). This difference in number and nature of features implies
that the resulting SBES map could be based on different seabed
characteristics from those of the MBES and SSS maps (Simard
and Stepnowski, 2007).

Similar hypotheses can be formulated to explain the greater
similarity of SBES with MBES than with SSS. For instance, it is
less likely that SBES and MBES measured different seabed
characteristics because their operating angular sectors overlap.
In addition, the SBES and MBES maps were obtained from a
similar automatic clustering-classification algorithm, whereas
the SSS map was obtained from subjective interpretation.
The first approach the first approach is insensitive to the
spatial distribution of the features, but the second implies
some degree of spatial analysis as a result of the capabilities
of the human brain for object and texture recognition (Russ,
2007).

Conclusions
Three benthic habitat maps covering the same site were created
from different acoustic datasets, but the size and the design of
the ground-truth surveys rendered estimation of their accuracy
impossible. However, a direct map-to-map comparison was
possible and performed. Several techniques for map-to-map
comparison exist, but in this case, a set of measures for a map
pixel-to-pixel comparison originating from the fields of statistics
and land remote sensing was used. This approach did not allow
any conclusions to be drawn on the accuracy of individual
maps, but it did permit estimates to be made of how much the
different systems/processing methodologies led to similar
results which were, in summary, that the MBES and SSS maps
were essentially similar, whereas the SSS and SBES maps were
not similar.

The basis for classification of SSS and MBES was their imagery,
which appeared to be similar (Schimel et al., 2010). The similarity
measured between their respective segmentations confirms this
and supports the argument that MBES imagery, even at a lesser
resolution, is a viable alternative to SSS imagery to segmentation.

The hypothesis that a SBES map could be representative of
different seabed characteristics from those appearing on SSS
maps has been suggested in previous comparative studies, which
advised that the two systems should be run in tandem so that
the output map can benefit from such a multisystem approach
(Foster-Smith et al., 2004; Brown et al., 2005; Anderson et al.,
2008). The low similarity measured here between the SBES and
SSS maps supports this argument. However, it remains unclear
whether most of the dissimilarity observed is created by potential
SBES map artefacts resulting from its lower resolution or by gen-
uinely different mapped seabed characteristics.

Estimating the respective accuracy of the SBES and SSS maps
could have helped clarify this ambiguity. All this shows that,
despite the benefits, a map-to-map comparison approach cannot
replace the value of a well-designed ground-truth survey accompa-
nying all acoustic-mapping effort and hence allowing estimation of
map accuracy and its variance (Foody, 2002, 2009; Anderson et al.,
2008). As far as possible, the map-accuracy comparison and
map-to-map comparison approaches should be performed
together in analyses of overlapping maps.

It is important to note that this study was limited to a specific
quasi-homogeneous soft-sediment coastal environment, a specific
resolution, and specific segmentation methodologies, so its con-
clusions must be viewed in this context. Only the repetition of
such multisystem experimental comparative studies in different
environments would help extend the range of the conclusions.

A wide range of comparative studies in seabed mapping would
benefit from the measures presented here, or from other map-
comparison tools used in land remote sensing. In contrast to
this study, particular focus could be on reducing the variability
in the origin of the maps to target the similarity study. For
example, comparing maps obtained from

(i) a unique system’s output classified with various segmenta-
tion methodologies would specifically address the similarity
between methodologies;

(ii) different datasets, but classified using a unique segmentation
methodology, would specifically estimate the complementar-
ity of different datasets;
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(iii) a unique system and methodology, but acquired at different
times, would facilitate monitoring the changes at a given site
over time;

(iv) a unique system, segmentation methodology, and survey, but
classified with different legends in supervised mode, would
specifically address the issue of similarity between different
classification schemes.
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