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The North Sea autumn-spawning herring (Clupea harengus) stock consists of a set of different spawning components. The dynamics of
the entire stock have been well characterized, but although time-series of larval abundance indices are available for the individual
components, study of the dynamics at the component level has historically been hampered by missing observations and high sampling
noise. A simple state-space statistical model is developed that is robust to these problems, gives a good fit to the data, and proves
capable of both handling and predicting missing observations well. Furthermore, the sum of the fitted abundance indices across
all components proves an excellent proxy for the biomass of the total stock, even though the model utilizes information at the indi-
vidual-component level. The Orkney–Shetland component appears to have recovered faster from historic depletion events than the
other components, whereas the Downs component has been the slowest. These differences give rise to changes in stock composition,
which are shown to vary widely within a relatively short time. The modelling framework provides a valuable tool for studying and
monitoring the dynamics of the individual components of the North Sea herring stock.
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Introduction
The North Sea autumn-spawning herring (Clupea harengus
Linnaeus 1758) stock is generally understood as representing a
complex of multiple spawning components (Cushing, 1955;
Harden Jones, 1968; Iles and Sinclair, 1982; Heath et al., 1997).
Most authors distinguish four major components (Figure 1),
each defined by distinct spawning times and sites (Iles and
Sinclair, 1982; Corten, 1986; Heath et al., 1997). The Orkney–
Shetland component spawns in August/September between the
islands that give it its name; the Buchan component to the east
of Scotland in September/October; the Banks component off the
English coast around the same time; and the Downs component
in the English Channel during December. Although the different
components mix outside the spawning season and are exploited
together, each component is thought to have a high degree of
population integrity (Iles and Sinclair, 1982) and, therefore,
could be expected to have relatively unique population dynamics.

At the overall stock level, the biomass has varied widely during
the past 50 years, collapsing from a late-1940s high of more than
5 million tonnes to a low of 50 000 t in 1976 (ICES 1998, 2009;
Dickey-Collas et al., 2010), before recovering to peaks of 1.2
million tonnes in 1989 and 1.8 million tonnes in 2004
(Simmonds, 2007). In terms of individual spawning components,
the stock collapsed progressively from the south to the north, with
the southern Downs component collapsing as early as the 1950s
and the northern Orkney–Shetland component becoming domi-
nant by the 1970s (Burd, 1985; Corten, 1986; Cushing, 1992;

Heath et al., 1997). The Downs component has only begun to
recover to a substantial degree in recent years (ICES, 2009).
Such knowledge, however, is qualitative in nature: a precise, quan-
titative understanding of the dynamics of the individual com-
ponents remains lacking.

The annual international herring larval survey (IHLS) is
designed to provide estimates of the larval abundance associated
with the individual components, which in turn can be interpreted
as a proxy for adult biomass (Postuma and Zijlstra, 1974; Heath,
1993). This survey is considered to have been consistent since
1972 and, therefore, potentially represents an excellent source of
information covering both the period of stock collapse and
recent recovery (Heath, 1993). The survey design is centred
upon the concept of “sampling units”, the surveying of the spawn-
ing grounds of a given component during a specific time of the
year (typically a half-month period). The full spawning period
of each component is covered by multiple sampling units (typi-
cally between two and four), thereby generating several indepen-
dent estimates of larval abundance. However, bad weather,
restrictions on research-vessel availability, and more recently,
cuts in funding for this survey have meant that the full survey
has been carried out rarely according to the design: since 1990,
an average of only 60% of the sampling units were covered each
year. The resulting time-series is therefore plagued by large gaps,
making comparisons between components difficult.

Several authors have tried to circumvent these problems and
to develop an index robust to missing values. The multiplicative
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larval abundance index, MLAI (Gröger et al., 2001 and refer-
ences therein), is based on the application of a multifactor
ANOVA, where the year effects are used as the index, and it is
currently used as an index of the total spawning-stock
biomass (SSB) in the assessment of the entire North Sea stock
(ICES, 2009; Simmonds, 2009). However, an implicit assump-
tion in this approach is that the relative proportions between
spawning components are fixed in time: by design, the MLAI
cannot give information about changes in stock composition.
Schmidt et al. (2009) examined the relative dynamics of the
different components by selecting the most consistently
sampled sampling unit for the Orkney–Shetland and Buchan
components and taking the arithmetic mean across all units
for the other components. However, such an approach omits
a substantial fraction of the available data, is vulnerable to sys-
tematic differences among sampling units, and is susceptible to
missing observations.

I present a simple statistical model to estimate the abundances
of each spawning component in a manner robust to missing obser-
vations, to systematic differences among sampling units, and to
statistical sampling noise. The model is based around the esti-
mation of an index for the larval abundance (and hence adult
biomass) for each particular spawning component and year. The
key aspect of this “spawning-component abundance index”
(SCAI) is that, by accounting for the issues mentioned earlier, it
is readily comparable between both spawning components and
years. The SCAI can therefore be used to examine the dynamics
of the individual spawning components in relation to the total
spawning stock.

Methods
Data sources
The IHLS (ICES, 2006) is centred upon the estimate of a larval
abundance index (LAI), based on multiple, back-to-back surveys
(sampling units) that cover a fixed array of stations within a
fixed period of the year during the main spawning season of
each component (Table 1). The gear used is either a Gulf III or
a Gulf VII sampler (Nash et al., 1998). Samples are preserved at

Figure 1. Map of the North Sea with recognized spawning grounds (Iles and Sinclair, 1982; Corten, 1986; Heath et al., 1997; Nash et al., 2009).
Approximate boundaries of the areas covered by the IHLS are marked with bold lines. Depth contours are illustrated for 50, 100, and 200 m.

Table 1. Characteristics of the individual sampling units used in the
IHLS (ICES, 2006).

Spawning component
Sampling-unit
code Sampling period

Coverage
(%)

Orkney–Shetland OS1 1–15 September 62
OS2 16 –30 September 100

Buchan B1 1–15 September 49
B2 16 –30 September 89

Banks (Central NS) CNS1 1–15 September 57
CNS2 16 –30 September 89
CNS3 1–15 October 70
CNS4a 16 –31 October 41

Downs (Southern NS) SNS1 15 –31 December 89
SNS2 1–15 January 92
SNS3 16 –31 January 70

Coverage is calculated as the percentage of years (1972–2008) for which a
LAI is available.
aThe CNS4 sampling unit was last surveyed in 1989: coverage up to that
point was 83%.
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sea, and all clupeoid larvae are sorted by species, measured, and
recorded later on land (Heath, 1993). The LAI is based on larvae
,10 mm in the Orkney–Shetland, Buchan, and Banks regions
and ,11 mm in the Downs region. For each haul, the surface
density, dh (abundance below a unit of sea-surface area;
number m22), of such larvae is calculated by multiplying the
larval concentration observed (i.e. number of larvae per swept
volume) by the depth of the water column. The LAI per ICES stat-
istical rectangle sampled (LAIr) is then calculated as the product of
the mean surface density and the area of the rectangle (0.58
latitude × 18 longitude), Ar:

LAIr = Ar

∑nr

h=1 dh

nr
, (1)

where nr is the number of hauls in a rectangle. The total LAI for a
sampling unit is then calculated by summing over the correspond-
ing rectangles in that unit:

LAIu =
∑

u

LAIr. (2)

This analysis is based on the LAI estimated for each sampling
unit and reported annually in the reports of the ICES Working
Group for the Assessment of Herring South of 628N (e.g. ICES,
2009).

Model assumptions and structure
The model is structured around the following assumptions:

Assumption I: The individual spawning components display a
high degree of population integrity, i.e. their population
dynamics are predominantly controlled by the recruitment
and mortality rates they experience and not by exchanges
(immigration or emigration) with other components (Iles
and Sinclair, 1982; Kell et al., 2009). It is therefore possible—
and indeed necessary—to consider the dynamics of each com-
ponent independently. The subsequent model is therefore
described for a single component, but applied sequentially to
estimate the SCAI for each component in turn.

Assumption II: The size of a component in a given year is influ-
enced by the size of the component in the previous year. For
herring stocks, the SSB usually consists of multiple year
classes and, therefore, a proportion of the adult population is
carried over from year to year (ICES, 2009). Noting assumption
I, assumption II is therefore applied at the component level as
well, by writing the following relationship between the spawn-
ing component biomasses (SCB) in years y and y + 1:

SCBy+1 = SCBy exp(g), g [ N(mSCB,s
2
SCB), (3)

where the relative changes in SCB from year to year are
assumed to be lognormally distributed with location parameter
mSCB and scale parameter sSCB. Under the assumption that the
larval abundance is proportional to the local spawning biomass
of herring (Postuma and Zijlstra, 1974; Heath, 1993), Equation
(3) can be recast for SCAI:

SCAIy+1 = SCAIy exp(1), 1 [ N(mSCAI,s
2
SCAI). (4)

This result is equivalent to representing log(SCAI) as a
normally distributed random walk with a mean step of mSCAI

and variance s2
SCAI.

Assumption III: The distribution of spawning intensity within
each spawning component over time is relatively constant
among years. The sampling units in the IHLS for a given com-
ponent generally have comparable spatial coverage: the main
distinction between them therefore is the time when they are
done. Given that the intensity of spawning varies throughout
the year (i.e. there is a distinct spawning season), an
unknown proportion, pu, of the total amount of spawning
(between 0 and 1) will be observed by a given sampling unit.
It is therefore possible to relate the LAI for a given component,
sampling unit and year, LAIu,y, to the SCAI for that component
and year, SCAIy via the proportion pu:

LAIu,y = puSCAIy exp(d), d [ N(0,s2
LAI), (5)

where the exponential term allows for a lognormally distribu-
ted error in the LAI observations. The precision of the
survey, s2

LAI, is assumed the same across all years and all
sampling units within a spawning component.

Assumption IV: The IHLS sampling units cover the entire
spawning season and the spatial extent of spawning for each
component. Therefore, there is no spawning outside of the
area and the period covered in the survey design. In terms of
Equation (5), the sum of the proportions over the k sampling
units for any spawning component is therefore unity:

∑k

u=1

pu = 1. (6)

This assumption refers explicitly to the design of the survey,
rather than its execution: if the survey is executed fully and
all sampling units are covered, the sum of the resultant LAIs
is assumed to be an estimator of the component stock size.
Missing sampling units in a given year are therefore not proble-
matic, as long as the design covers the full spawning period of
each component (and all sampling units are done at some
point).

The resulting state-space model is conceptually similar to a delay-
difference model, such as the Schaefer production model (Hilborn
and Walters, 1992) or the biomass random-effects model (Trenkel,
2008), where the dynamics of the entire stock (such as recruitment,
mortality, and growth) are treated as unobserved processes, and
observations provide (uncertain) information. Although it might
be possible to extend the SCAI model to consider these processes,
with only a single data source available (the LAIs), the model
would be susceptible to overparametrization. The relationship
between successive population sizes [Equation (3)] has therefore
been modelled for a single process, representing the net sum of
recruitment, natural mortality, fishing mortality, and growth.

Parameter estimation
The model parameters were estimated using the random-effects
module (Skaug and Fournier, 2006) of the AD Model Builder
(ADMB) software (http://admb-project.org/). Briefly, the vector
of hyperparameters, u ¼ (mSCAI, sSCAI, sLAI, p1, . . ., pk21), was
fitted using a maximum-likelihood approach [note that the last
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sampling-unit proportion, pk, is calculated as 1 2 the sum of
the other proportions, i.e. by applying Equation (6)]. The SCAI
time-series for n years was treated as a vector of random effects
(unobserved random variables), l ¼ (SCAI1, . . ., SCAIn), with a
marginal density, hu(l), given by

hu(l)=
∑n

i=2

log
1���������

2ps2
SCAI

√ exp −
SCAIi+1 −SCAIi −mSCAI

( )2

2s2
SCAI

( )( )
.

(7)

The conditional density, fu(y|u), of the vector of m LAI obser-
vations for each spawning component, y ¼ (LAI1, . . ., LAIm), can
then be estimated:

fu y|
( )

=
∑m

j=1

log
1��������

2ps2
LAI

√ exp −
pu,jSCAIj −LAIj

( )2

2s2
LAI

( )( )
, (8)

where pu,j and SCAIj are the sampling-unit proportion and SCAI
appropriate for larval abundance index j. The marginal likelihood
function is obtained by integrating the joint density with respect to
the vector of random effects:

L u( )=
∫

fu y
∣∣( )

hu l( )dl. (9)

The ADMB software evaluates the integral in Equation (9) using
the Laplace approximation while keeping track of the numerical
derivatives with respect to each parameter. Optimization of the
likelihood function and subsequent estimation of the individual
random effects is therefore a computationally efficient process
achieved in a few seconds on a modern computer (Skaug and
Fournier, 2006).

Stock assessment time-series
For comparison with the output of the model, the time-series of
SSB of North Sea herring was taken from the most recent analytical
assessment (ICES, 2009). However, the two datasets are not com-
pletely independent of each other, because the assessment includes
information from the IHLS. Therefore, a second time-series of SSB
estimates, excluding all IHLS information, but keeping the other
input (i.e. catch data, trawl surveys, acoustic surveys, and other
larval surveys), was produced by modifying the script used to do
the assessment (revision 291, available from the HAWG assess-
ment repository, http://hawg.googlecode.com).

Results
The model proved not to be overparametrized and fitted the
observations for each spawning component well (Figure 2,
Table 2), with the LAI observations distributed evenly around
the fitted SCAI and the majority of points lying within the 95%
confidence interval. The fitted model is also consistent with
some of the underlying assumptions. The hypothesis of normally
distributed interannual changes in the log(SCAI) index cannot be
rejected (Kolmogorov–Smirnov tests: Orkney–Shetland p ¼ 0.08,
Buchan p ¼ 0.45, Banks p ¼ 0.15, Downs p ¼ 0.24), consistent
with Equation (4). In line with Equation (5), the null hypothesis
of normally distributed residuals is not rejected by the
Kolmogorov–Smirnov test at the 95% level for any of the

11 sampling units, and only for two using the Shapiro–Wilk test
for normality.

Extensions to the model were examined using the
likelihood-ratio test. Equation (5) assumes that the precision of
the observations is constant across the sampling units within a
spawning component. The sensitivity of the model to this assump-
tion was tested by modifying the model to have a unique sLAI for
each sampling unit, which meant adding 1–3 additional par-
ameters per component. When considered across all four spawn-
ing components, the improvement in the fit was not significant
(likelihood ratio ¼ 12.0, d.f. ¼ 7, p ¼ 0.10); therefore, this more
complex model was rejected. Similarly, reductions in funding of
the survey (and consequently in sampling effort) around 1990
(ICES, 2009) might have reduced the precision of the LAI esti-
mates. Therefore, a version of the model was considered fitting
two sLAI parameters, one for observations up to 1989 and one
for observations from 1990 onwards. Across all spawning com-
ponents, there was no significant improvement in model fit (like-
lihood ratio ¼ 7.9, d.f. ¼ 4, p ¼ 0.10); therefore, this modification
was also rejected.

As a test of the model’s ability to deal with gaps in the obser-
vations, a resampling procedure was used. A small fraction
(10%) of the observations were removed randomly (the “test
set”) and the remaining data (the “tuning set”) were used to fit
the model. The fitted model parameters were then used to
predict the values of the test set, and the mean residual (bias)
from the actual observations calculated. The procedure was
repeated multiple (100) times to characterize the distribution of
biases. The model proved to be capable of predicting the
missing observations in an unbiased manner (mean log-residuals
of prediction: Orkney–Shetland 0.2+ 0.9, Buchan 0.2+ 1.2,
Banks 0.0+ 0.9, Downs 0.0+ 0.8) with a precision comparable
with that obtained using the full dataset.

The sum of the SCAIs for the different components can be
interpreted as an index of the total abundance of the spawning
stock. After log-transformation of both time-series to account
for the assumed lognormal error structure, the summed SCAIs
were highly correlated with the SSB estimated by the analytical
assessment (r2 ¼ 0.90, p , 0.001). The correlation with the
second and completely independent SSB series was slightly
lower, but still highly significant (r2 ¼ 0.87, p , 0.001; Figure 3).
Moreover, in neither case were the slopes significantly different
from 1.0 (0.95+ 0.11 and 0.96+ 0.12, respectively), suggesting
a direct proportionality between the summed SCAI and SSB.

Examination of the pu parameters [Equation (5)] reveals that
the spawning intensity varies across sampling units (Figure 4).
In several cases, the differences between sampling units within
components are significant. Specifically, the Buchan (CNS) and
Downs (SNS) components exhibit clear peaks, with spawning
intensity trailing off markedly later in the season.

There is a broad agreement in the development of the SCAI of
the different spawning components over time (Figure 5), although
these estimates are completely independent. Each component
appears to have generally followed the overall dynamics of the
stock, starting from low levels in the 1970s followed by recovery
and peaks in the late 1980s and early 2000s. However, there are
also appreciable differences. Immediately obvious is that the
Orkney–Shetland spawning component appears to have increased
much quicker after the two recent depletion events (after 1976 and
1993) than the others did. In contrast, the Downs component
remained in a relatively depressed state during the 1980s recovery
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and has only been rapidly rebuilding during the 2000s. The
dynamics of the Buchan and Banks components are quite
similar, and generally lie between the extremes represented by
Orkney–Shetland and Downs.

The different dynamics of the components cause large changes
in the stock composition (Figure 6). In particular, the faster
increase in the Orkney–Shetland component from lows in 1976
and again in 1993 means that the biomass recovery of the
overall North Sea herring stock was led by this component. The
largest fraction of the total SSB in the past 35 years has generally
been represented by the Orkney–Shetland component (on
average 50%), but the ratio has ranged between 25 and 80%. In
recent years, the Downs component has made a comeback and
it now represents the largest component, whereas the Buchan
component is now the smallest.

Discussion
This simple state-space model allows for the estimation of trends
in the four different components of the North Sea autumn-
spawning herring stock. Assessing the quality and appropriateness
of such a model, however, remains a challenging task. Here, a
number of different approaches have been used, including visual
examination of the fit, statistical tests to ensure that the underlying
assumptions are met, examination of alternative model configur-
ations, and a comparison with other indices of stock abundance.
Perhaps, the most powerful test is the close agreement between
the combined indices and completely independent SSB estimates
for the entire stock: as each index is fitted independently to data
for the single spawning components, this result strongly suggests
that the model is capturing the underlying component dynamics
as well.

Figure 2. Time-series of modelled SCAIs on a log scale (heavy line), with 95% confidence intervals (grey region) for the (a) Orkney–Shetland
(OrkShe), (b) Buchan, (c) Banks, and (d) Downs spawning components, compared with LAI observations (placed on a common ground by
dividing by the fitted spawning proportion, pu, for that unit). The key at the bottom-right of each panel relates the symbols to the
sampling-unit codes given in Table 1.
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However, several weaknesses can readily be identified in the
model. The first is that the assumption of population integrity
(assumptions I and II) might not be fulfilled. Herring stocks do
sometimes change their spawning grounds (Glover, 1957;
Geffen, 2009), and some might even utilize multiple spawning
grounds during a lifetime (Slotte, 1999). A change in spawning
distribution is known to have occurred in the North Sea, when
Aberdeen Bank (a geographical region within the Buchan spawn-
ing component; Figure 1) was recolonized in 1983 (Corten, 1999).
Nevertheless, the model fits the observations during 1980–1985
well and, therefore, appears to have handled this event gracefully
(Figure 2b), suggesting that it is relatively robust to changes of
this nature.

Changes in the spawning phenology might also violate the
underlying assumptions of the model (specifically assumption
III). Natural variability in the timing of spawning around the
mean distribution could be expected (e.g. owing to variability in
environmental cues), but systematic changes in the phenology
are also known in fish stocks (e.g. Baltic cod; Wieland et al.,
2000). Natural variability in timing will add noise to the pu

parameter and, therefore, be absorbed into the error term in
Equation (5): s2

LAI could therefore be thought of more accurately
as the sum of noise owing to observation error and to variations in
the timing of spawning. Systematic changes in the spawning
phenology, however, will have the effect of introducing a time-
dependent bias. Such a bias would become apparent in both the
pu parameter (in the form of unusually broad confidence intervals)
and also as a systematic pattern in the residuals. There is no strong
evidence in the results obtained to suggest that such systematic
changes have happened in this stock during the period investi-
gated. However, given the relatively low temporal resolution in
the survey design and the number of gaps in the data, it is imposs-
ible to rule out the possibility completely.

The model uses the readily available LAIs as the source data.
However, in using these indices, other information gathered
during the IHLS, such as the larval length distributions and
catches of larvae .10 mm (.11 mm for the Downs) remain
unused. Once available, the use of larval production estimates
that incorporate this kind of information might improve the
quality of the input further.

Table 2. SCAI with the s.e. of the log(SCAI) for each spawning component (cf. Figure 2) and year [95% confidence interval can be
obtained from exp(log(SCAI)+ 1.96 s.e.)].

Year

SCAI s.e. of Log(SCAI)

OrkShe Buchan Banks Downs OrkShe Buchan Banks Downs

1972 2 563 29 818 13 0.62 0.87 0.52 0.57
1973 1 890 17 1445 11 0.50 0.71 0.50 0.53
1974 1 151 183 902 11 0.46 0.71 0.52 0.51
1975 699 160 501 8 0.52 0.81 0.50 0.53
1976 717 24 434 11 0.51 0.99 0.49 0.58
1977 985 109 507 15 0.47 0.63 0.45 0.62
1978 1 323 216 582 41 0.46 0.86 0.44 0.48
1979 2 370 83 662 162 0.48 0.63 0.44 0.46
1980 2 671 18 540 324 0.46 0.70 0.46 0.43
1981 2 683 27 764 563 0.46 0.72 0.47 0.47
1982 3 132 466 913 592 0.46 0.63 0.45 0.41
1983 3 537 2 567 1 460 489 0.46 0.65 0.47 0.39
1984 4 420 4 038 3 496 579 0.46 0.62 0.46 0.39
1985 6 029 4 153 4 583 747 0.46 0.61 0.45 0.39
1986 6 543 2 783 4 401 683 0.46 0.62 0.44 0.40
1987 8 079 3 500 5 817 1 047 0.46 0.62 0.45 0.39
1988 10 349 8 753 6 834 1 427 0.50 0.64 0.46 0.39
1989 10 086 5 323 4 413 2 608 0.53 0.61 0.44 0.41
1990 7 399 6 126 4 798 3 061 0.55 0.62 0.50 0.45
1991 3 801 5 077 2 956 2 918 0.47 0.80 0.49 0.45
1992 2 153 2 443 811 2 028 0.51 0.81 0.54 0.44
1993 1 281 923 765 1 938 0.68 0.88 0.55 0.43
1994 1 363 752 705 1 409 0.63 1.32 0.57 0.43
1995 3 108 612 585 1 058 0.54 1.32 0.65 0.44
1996 4 049 499 678 1 763 0.56 0.86 0.66 0.39
1997 6 402 272 635 2 802 0.58 0.89 0.72 0.41
1998 9 133 1 290 595 2 494 0.61 0.91 0.62 0.39
1999 10 182 561 823 2 586 0.59 0.79 0.60 0.39
2000 11 305 199 1 508 2 881 0.59 0.71 0.63 0.39
2001 13 608 637 3 189 4 233 0.61 0.79 0.64 0.39
2002 13 035 2 551 6 326 4 515 0.59 0.82 0.66 0.40
2003 11 585 5 763 9 794 8 157 0.57 0.84 0.63 0.40
2004 11 392 7 816 9 705 10 067 0.57 0.85 0.66 0.40
2005 9 843 4 223 8 684 9 523 0.55 0.81 0.67 0.39
2006 8 841 1 925 6 763 11 837 0.51 0.84 0.69 0.39
2007 8 517 2 974 5 579 12 851 0.56 0.82 0.75 0.40
2008 9 872 2 274 8 462 15 119 0.59 0.92 0.85 0.46
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The summed SCAIs are closely correlated with the MLAI (r2 ¼

0.95, p , 0.001), as might be expected, because the two indices
simply represent different ways of working up the same time-series
of larval abundance. However, the SCAIs have the important
advantage that, rather than assuming that the relative distribution
among the spawning components is constant over time, each
component is treated individually and there is no assumption
of correlation between components. In fact, the individual
components clearly display appreciable differences in their
dynamics and, therefore, in their relative stock composition
(Figure 6), invalidating the basic assumption underlying the
MLAI. Therefore, although the MLAI appears to work well as an
index of overall stock abundance (Simmonds, 2009), it is not a
suitable basis for drawing conclusions about the dynamics of indi-
vidual components.

The SCAI model can cope with the presence of occasional
gaps in the time-series of observations. Multiple missing obser-
vations (cf. Figure 2b: 1994–1995) are treated in a manner con-
sistent with human intuition, i.e. by interpolating between the
neighbouring observations and increasing the uncertainty of
the indices at these points. Tests based on a subset of the data
demonstrated that the model could both fit the reduced

Figure 5. Comparison of the SCAIs for each component (cf.
Figure 2).

Figure 3. Relationship between the sum of the SCAIs and the SSB
from 1972 to 2008 on log scales. The SSB is estimated using the
standard assessment of this stock, but excluding the MLAI. The solid
line represents a linear regression between the log-transformed
values (r2 ¼ 0.87, p , 0.001, slope ¼ 0.96+ 0.12).

Figure 4. Proportion of the total component spawning intensity,
pu, by sampling unit (cf. Table 1) as estimated by the model for the
(a) Orkney–Shetland, (b) Buchan, (c) Banks, and (d) Downs
spawning components. Error bars represent the 95% confidence
interval on the estimated proportion.

Figure 6. Time-series of the fractional contribution of each
spawning component (cf. Figure 2) to the total stock, as estimated
from the SCAIs, with shaded areas arranged from top to bottom
according to the north-to-south arrangement of the components.
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dataset and still make unbiased predictions of the omitted
observations. Moreover, the ability to handle missing obser-
vations allows a time-series of observations, such as from
CNS4 (which was last sampled in 1989 and has since been dis-
continued) to be used still. Although many modelling
approaches would have to discard such time-series, because of
their limited extent, this model incorporates all information
for all time-series. This robustness to missing observations is a
clear advantage for the analysis of patchy data, because the
application to IHLS data gives insight into the historic dynamics
of the components not available previously.

Regarding design and execution of the IHLS, there appears to
be a mismatch between the sampling units most frequently sur-
veyed and those that cover the greater part of the spawning activity.
This is especially apparent in the northern components, where the
OS1 and B1 units capture 60 and 70% of the spawning, respect-
ively, whereas OS2 and B2 are carried out more frequently
(Table 1). The majority of the Downs spawning occurs during
the first sampling unit (SNS1), suggesting that it might be worth
adding an earlier survey unit (1–15 December) to ensure that
the entire spawning period is adequately covered. Finally, the
CNS4 unit only covers around 1.5% of the spawning and its aban-
donment in the early 1990s (ICES, 2006) therefore appears
justified.

Although there are common trends among the different
spawning components, there are also substantial differences in
their dynamics. As a direct consequence, the relative compo-
sition of the entire stock changes throughout time, possibly
giving rise to differences in exploitation rates (Bierman et al.,
2010) and the associated risk of local depletions (Kell et al.,
2009). Clearly, maintaining such spatial diversity within a
stock should provide resilience to both anthropogenic and
natural stressors (Harden Jones, 1968; McPherson et al., 2001;
Secor et al., 2009). Continued monitoring of the spatial compo-
sition of the North Sea herring stock, through the IHLS survey
in conjunction with the type of model advocated here, is critical
if management advice is to incorporate measures that could help
to avoid local depletions.

The results support and strengthen those of Schmidt et al.
(2009), who suggested that a recovery seen in the total SSB of a
stock does not necessarily mean that the stock has fully recovered
in all its aspects. Figure 6 clearly shows that whereas the total SSB
recovered relatively quickly from the 1970s collapse, it was not
until at least the early 1990s, and possibly the mid-2000s, before
the stock had regained its component diversity.

The approach presented here addresses one side (larval pro-
duction) of the component dynamics of North Sea herring. The
other side is to understand recruitment at the component level.
Recent work has established that year-class strength, at the total
stock level, is determined between the early larval stage and the
late larval stage (Nash and Dickey-Collas, 2005; Payne et al.,
2009). Resolving the problem of assigning observations on the dis-
tribution of late larvae to the spawning component from which
they originate (e.g. using hydrographic-drift models; Christensen
et al., 2007) therefore potentially yields not only component-level
recruitment information, but also it might help to pinpoint the
events contributing to differential survival. In this sense, the
SCAI model represents a first step in the direction of a full
component-resolved understanding of the dynamics of the
North Sea autumn-spawning herring stock.
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