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A dynamic size-structured model is developed for phytoplankton and nutrients in the oceanic mixed layer and applied to extract
phytoplankton biomass at discrete size fractions from remotely sensed, ocean-colour data. General relationships between cell size
and biophysical processes (such as sinking, grazing, and primary production) of phytoplankton were included in the model
through a bottom–up approach. Time-dependent, mixed-layer depth was used as a forcing variable, and a sequential data-assimilation
scheme was implemented to derive model trajectories. From a given time-series, the method produces estimates of size-structured
biomass at every observation, so estimates seasonal succession of individual phytoplankton size, derived here from remote sensing
for the first time. From these estimates, normalized phytoplankton biomass size spectra over a period of 9 years were calculated
for one location in the North Atlantic. Further analysis demonstrated that strong relationships exist between the seasonal trends
of the estimated size spectra and the mixed-layer depth, nutrient biomass, and total chlorophyll. The results contain useful
information on the time-dependent biomass flux in the pelagic ecosystem.

Keywords: mixed-layer modulation, ocean colour, phytoplankton, sequential data assimilation, size spectrum, size-structured model,
size succession.

Introduction
The phytoplankton constitutes a size-structured community of
primary producers. Phytoplankton size regulates a range of bio-
physical activities of pelagic biota, including primary production,
respiration, response to light, grazing, and energy flux in oceanic
ecosystems (Platt and Denman, 1977; Silvert and Platt, 1978;
Peters, 1983; Morel et al., 1993; Caparroy et al., 2000; Baird and
Suthers, 2007). The stability and the biological responses of
pelagic ecosystems are also related to phytoplankton size structure.
However, acquiring size-resolved phytoplankton biomass data is
difficult.

Satellite remotely sensed, ocean-colour data have been used to
determine a range of ecological indicators of marine ecosystems
(Platt and Sathyendranath, 2008). The size spectrum of the phyto-
plankton community is an important ecosystem indicator, but
limited progress has been made in recovery of information on the
size of individual cells from remote sensing. Although a few relevant
size-based properties of phytoplankton, such as total absorption,
can be retrieved (Platt and Sathyendranath, 2008), they provide
only indirect indications of phytoplankton size. Consequently,
except for a few studies (e.g. San Martin et al., 2006), both in situ
and remotely sensed, only indirect procedures are available for esti-
mating size-resolved phytoplankton biomass fractions. Size groups
are generally classified as small and large, or of small, medium, and
large cells (Vidussi et al., 2001; Ciotti et al., 2002; Devred et al.,

2006). These large size classes are differentiated either from the
light-absorption properties of phytoplankton (Hirata et al., 2008)
or from pigment characteristics (Vidussi et al., 2001). In the latter
case, a set of characteristic pigments is used to diagnose taxonomi-
cally different functional groups (Vidussi et al., 2001; Ciotti et al.,
2002). However, currently just seven diagnostic pigments are used
(Vidussi et al., 2001; Hirata et al., 2008), and the approach
cannot resolve the size of individual cells.

Here we propose and implement a method to explore the evol-
ution over time of biomass fractions of individually sized phyto-
plankton from a remotely sensed chlorophyll series, and develop
a dynamic model on a discrete time-scale (resolution 1 d) to
describe the time-evolution of different sizes of phytoplankton
in the community. The modulation of the oceanic mixed-depth
layer accounts for the nutrient supply to the mixed layer and the
individual phytoplankton organisms contribute to total primary
production according to their cell size. Interaction parameters
are based on the theoretical dependence of ecosystem processes
on phytoplankton size. We also “borrow” a sequence of
mixed-layer depths from a biogeochemical model and a remotely
sensed chlorophyll time-series corresponding to the location
of interest, and possible size-resolved phytoplankton biomass
information is estimated using a sequential data-assimilation
technique. The primary goals of this approach are to address the
questions below.
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(i) Can a time-series of biomass fractions be extracted from
remotely sensed, ocean-colour data for individual sizes of
phytoplankton? Equivalently, can the time-series of phyto-
plankton size spectra that corresponds to the remotely
sensed chlorophyll series be estimated?

(ii) Is there any direct correspondence between the succession of
estimated bulk size classes and that of estimated taxonomic
groups (such as diatoms and cyanobacteria)?

(iii) Is there any correspondence between the seasonal trend in
the estimated phytoplankton size spectrum and trends in
mixed-layer depth, nutrient biomass, and total chlorophyll?

We also describe the methodology in detail, including the
acquisition of satellite time-series, the model’s equations and its
parametrization, and the sequential data-assimilation protocol
used. Finally, the results of the simulations are demonstrated,
and their significance in connection with the questions above is
discussed.

Material and methods
Phytoplankton time-series from remote sensing
A time-series of chlorophyll biomass for the period from 1 January
1998 to 31 December 2006 was acquired as the spatial average of a
2 × 28 box in the North Atlantic at 40–428N 52–548W. The data
were obtained by the Sea-viewing Wide Field-of-view Sensor
(SeaWiFS), and were extracted from the GES–DISC Interactive
Online Visualization and Analysis Infrastructure (Giovanni)
programme, part of NASA’s Goddard Earth Sciences (GES) Data
and Information Services Center (DISC). Expected daily estimates
of nitrate concentrations and mixed-layer depths, averaged
over the same box, were obtained from NASA’s Ocean
Bio-geochemical Model (NOBM; Gregg, 2008). Chlorophyll,
nitrate, and mixed-layer depth were then used as inputs to the
data-assimilation algorithm. The approach can be adapted for
any area and phytoplankton time-series.

A dynamic model for size-structured phytoplankton
The total chlorophyll biomass in the oceanic mixed layer is the
cumulative biomass of phytoplankton summed over their cell
sizes. Let the total biomass B̃t on day t consist of r different sizes
of phytoplankton with diameters di, i ¼ 1, 2, . . . , r, and let the
component biomasses be given by B(i)

t , so that

B̃t = B(1)
t + B(2)

t + · · · + B(r)
t . (1)

In the oceanic mixed layer, the r classes of phytoplankton
compete for resources according to their cell size. To explore the
time-evolution of the r components, a mathematical model was
developed that couples the changes in chlorophyll B̃t with concen-
tration of nitrate (Nt) in the surface mixed layer. The model is an
extension of the single-species model of phytoplankton–nutrient
interaction in the mixed layer originally developed by Platt et al.
(2003a). The basic model is modified to include phytoplankton
loss attributable to grazing, and extended to a multicomponent
model by incorporating size-resolved interaction parameters.
The model is expressed by the following set of difference

equations:

B(i)
t+1 = B(i)

t − m0(di) B(i)
t︸����︷︷����︸

specific loss

− mh(di) (B(i)
t )2︸������︷︷������︸

density-dependent loss

+ P(B(i)
t , B̃t)
xZm

︷����︸︸����︷growth
⎡
⎢⎢⎢⎣

⎤
⎥⎥⎥⎦

× (1 − Dt)︸���︷︷���︸
dilution effect

, (2)

Nt+1 = Nt − g
∑

i

P(B(i)
t , B̃t)
xZm

( )︷����������︸︸����������︷uptake loss

×(1 − Dt)

+ (Nd − Nt) × Dt

︷��������︸︸��������︷input to mixed layer

. (3)

Here B(i)
t is the biomass of phytoplankton i with cell diameter di on

day t. Total mortality of phytoplankton i is a combination of size-
dependent specific loss, m0 (di), and the loss associated with pre-
dation, mh (di). The term P(B(i)

t , B̃t) represents primary production
on day t by biomass B(i)

t as a part of the total biomass B̃t ; adapting
the equation from Platt and Sathyendranath (1993), it can be
written in the following functional form:

P(B(i)
t , B̃t)

xZ(t)
m

= PB
m Dt

x

( )
B(i)

t

ut

( )
f (Im

∗i) − f (Im
∗i exp(−ut))

{ }
,

ut = Z(t)
m aw +

∑r

i=1

(a∗i (di) B(i)
t )

[ ]
,

where ut is the optical thickness of the mixed layer and x the
carbon-to-chlorophyll ratio. The function f (Im

∗i ) is a known
dimensionless function of the normalized irradiance (Im

∗i ) at local
noon, evaluated under the assumption of vertically uniform
biomass and spectral independence. Its explicit form is taken
from Platt and Sathyendranath (1993). The magnitude of the nor-
malized irradiance is given by Im

∗i = Im
0 a

B
i /PB

m, where Im
0 is the

surface irradiance at local noon (which depends on latitude and
time of year), and PB

m is the maximum specific production of
the total biomass B̃t at saturating light. The quantity aB

i is the size-
dependent initial slope of the production–irradiance curve, whose
value is proportional to fm a∗i (di), where a∗i (di) is the size-
dependent, specific-absorption coefficient corresponding to phy-
toplankton i, and fm the maximum quantum yield. The quantities
x and fm are assumed to be independent of size because, although
their magnitudes vary for different types of phytoplankton, no
specific functional relationship between x and cell size or
between fm and cell size is known.

For a given location, daylength (Dt) and the depth of oceanic
mixed layer (Zm) vary with time of year. The modulation of
mixed-layer depth Zm is represented by the quantity Dt; its magni-
tude is described by the form proposed by Platt et al. (2003a):

Dt =

Z(t+1)
m − Z(t)

m

Z(t+1)
m

, if Z(t+1)
m . Z(t)

m ;

0, if Z(t+1)
m ≤ Z(t)

m .

⎧⎪⎪⎨
⎪⎪⎩ (4)

Mixed-layer modulation generates a dilution effect on the concen-
tration of chlorophyll biomasses distributed over a mixed layer of
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length Z(t)
m . If r ¼ 1, i.e. the population consists of a single size

class, and if there is no effect of predation, i.e. the third term in
Equation (2) is absent, the current model reduces to the
size-independent, single-species model proposed and analysed
by Platt et al. (2003a). The dynamic behaviour of the current
model based on fixed-point analysis (which is outside the scope
of this paper) will be reported elsewhere.

Model parametrization
The parameters m0(di), mh(di), and a∗i (di) were determined by
individual phytoplankton size. The size-dependent relationships
were characterized by known functions of diameter based on the
literature (Morel and Bricaud, 1981; Jiang et al., 2005).
A graphic representation of the size dependencies of these proper-
ties is given in Figure 1. Three other size-independent parameters,
x, fm, and PB

m, were specified from the literature. No temporal
variations of the parameters were assumed, and from their respect-
ive ranges of values given in the literature (Platt et al., 2003b;
Edwards et al., 2004), their magnitudes were generated by
Monte Carlo sampling. The daylength on any day of the year for
the selected latitude was calculated using Spencer’s formulae
(Spencer, 1971). The expected time-series of daily mixed-layer
depth Zm for the area (Figure 2a) was taken from NOBM
(Gregg, 2002); from that series, several ensemble series for Zm

were generated by Monte Carlo sampling. The ensemble values
of fm and the calculated magnitude of Im

0 for any day were used
to calculate Im

∗i . The expected time-series of nutrient concentration
was also taken from NOBM, and the ensembles generated by
Monte Carlo sampling. A detailed description of the parameters
and their numerical ranges is provided in Table 1.

Data assimilation
A data-assimilation technique was established to simulate the
model over the observation period, using the Ensemble Kalman
Filter (EnKF) technique (the detail EnKF can be found in
Evensen, 2006, and Gregg, 2008). In that algorithm, the
size-structured model was simulated starting from an ensemble
of initial states and the ensemble members of the forcing par-
ameters already generated from prior information. The vector of
state variables of the model (xt) at any assimilation step t consisted
of the biomass of r size classes of phytoplankton and the concen-
tration of nutrients: xt = B(1)

t · · · B(r)
t Nt

[ ]T
. The assimila-

tion step was taken as t ¼ 8 d, and the 8-d averages of the
satellite chlorophyll series (BO

t ) and the NOBM nutrient series

(NO
t ) were considered as the observed states given by the obser-

vation vector: yt = BO
t NO

t

[ ]T
. At every time-point, a set of

observation ensembles y j
t, j ¼ 1, 2, . . . , L was generated by intro-

ducing random noise to yt:

y
j
t+1 = yt+1 + h

j
t+1, (5)

where the noise of perturbation h
j
t+1 was drawn from a normal

distribution with zero mean and covariance S
y
t+1. Similarly, the

initial ensemble of the state variable xt and the ensemble values
of the model parameters were generated: x, fm, PB

m, and Zt
m.

Note that, except Zt
m, all other parameters were assumed to be

time-invariant, so that corresponding to each of these, only one
set of ensemble values was generated at the start, then used for
the entire assimilation. With this method, at each assimilation
step, a range of ensemble observations from one observation
value was generated corresponding to each value of chlorophyll,
nutrient, and mixed-layer depth.

The assimilation scheme included two steps at every time-
point: the forecast step and the analysis step; here the superscripts
j2 and j+, respectively, were used for the forecast and analysed
value of the ensemble member j. At step t, the model forecasted
the state variables for step t + 1 as follows:

x
j−
t+1 = f (x j+

t , u j+
t ), (6)

with f(.) representing the model for state evolution given by
Equations (2) and (3), and ut i+ representing the parameter
ensembles. The forecast from step t to t + 1 was obtained by
taking the average of state variables of the model run over 8
d. The state-ensemble forecasts of the model were then updated
according to the Kalman filter equation (Evensen, 2006) as

x
j+
t+1 = x

j−
t+1 + K x

t+1 (y
j
t+1 − H(x j−

t+1)), (7)

with H(.) the operator mapping the model states to the observed
states, and Kx

t+1 the Kalman gain for correcting the state trajec-
tories given by Evensen (2006):

Kx
t+1 = S

xy
t+1 S

yy
t+1 + S

y
t+1

[ ]−1
, (8)

where S
x y
t+1 and S

yy
t+1 represent the cross-covariance between state

ensembles and prediction ensembles, and the forecast-error
covariance, respectively.

Figure 1. Size dependence of model parameters from the literature. Size-dependent (a) specific mortality m0, (b) grazing mortality mh, and (c)
specific absorption at l ¼ 676 drawn against cell diameters, with references given in text. (d) Daylength for the study area is calculated based
on latitude following Spencer’s formulae.

Modelling the time-evolution of phytoplankton size spectra 721

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/68/4/719/647222 by guest on 19 April 2024



The assimilated states of the model obtained at the analysis step
included the nutrient concentration and components of biomass in
various size classes. Therefore, an output of the assimilation exper-
iment included estimates of time-series (8-d average) of chlorophyll

biomass partitioned into sizes of individual cells. The state estimates
were obtained as ensembles (x j+

t , j = 1, 2, . . . , L), and from them
their median values and possible ranges were retrieved over the
observed time-points. A set of nine size classes was considered,

Figure 2. Model outcomes and satellite observations for the period 1 January 1998 to 31 December 2006. (a) Daily mixed-layer depth taken
from NOBM; (b) nutrient time-series (8-d average) obtained from NOBM and generated through assimilation by the model; (c) chlorophyll
time-series (8-d average) obtained from model predictions before state correction, with the model outcome after state correction, the ranges
assimilating chlorophyll and satellite chlorophyll. Seasonal patterns of (d) SeaWiFS chlorophyll, and (e) the ensemble median of the model
chlorophyll—plotted are the logarithmic values of the respective concentrations. (f) A plot of the time-varying assimilation increment given as
a percentage: the increment values above and below the zero level represent the positive and the negative increments, respectively; the 5th,
90th, and 95th quantile values of the assimilation increment are displayed as horizontal lines.
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with cell diameters ranging from 0.45 to 40 mm, whereby the cell
diameters varied by two orders of magnitude. We experimented
with different numbers of ensemble members (i.e. L), starting
from a small value and fixed L ¼ 2000, one order higher than the
minimum value of L, for which the results were independent of
the ensemble size.

Although satellite observations were obtained in every 8-d
interval, observations were unavailable for a few time-points
because of cloud cover. In the sequential state correction
adopted here, these were considered as missing data, and corre-
spondingly no state corrections were made in the data-assimilation
process.

Results and discussion
Model simulation and data assimilation were carried out for a
period of 9 years, from 1 January 1998 to 31 December 2006.
The outputs, along with the observations, were used to investigate
the interplay between the time-evolved variables and the succes-
sion of the size-structured population.

Time-evolution of chlorophyll and nutrients
The assimilation process produces time-series for nutrient concen-
tration and chlorophyll biomass. The nutrient series produced
after assimilation is similar to NOBM nutrients (Figure 2b). The
ensemble medians of the nutrient series obtained from the
model simulation follow systematically the seasonality of the
nutrient level, and the range of dispersion of this series is consist-
ent with the NOBM nutrients (Figure 2b). The 8-d average chlor-
ophyll generated by ensemble trajectories of the model is similar to
the observed chlorophyll (Figure 2c). The median values of the
model ensembles closely follow the fluctuations and seasonal
pattern for blooms observed in SeaWiFS chlorophyll (Figure 2c).
The ranges of ensemble predictions envelope fluctuation levels
of the satellite chlorophyll and the medians of these distributions
are close to the observations throughout (Figure 2c).

However, on a common biomass scale, the model outputs,
before the state-correction step of assimilation, slightly underesti-
mate the chlorophyll values observed during high peaks or in
spring, and slightly overestimate them during low biomass or in
summer (Figure 2c–e). In other words, the model propagation
errors for the two extreme ends of the biomass level are opposite
in sign. This is an indication that the model propagates in the
same phase as the observations and that the high peak heights
and low minimum values are achievable through the “state-
correction” step of assimilation. Consequently, the chlorophyll

series produced after assimilation closely resembles the seasonal
trend and peaks and valleys of the satellite time-series
(Figure 2c). The increments (positive or negative) in chlorophyll
biomass (in percentages) obtained from the model by assimilation
of the satellite chlorophyll (Figure 2f) are calculated as (assimilated
value – model value)/(model value). For some 80% of the obser-
vations, the assimilation increments in the model output are
within a level of +38% (Figure 2f). Moreover, for .90% of the
observations, the same are within a level of +50% (note that
the possible error in satellite chlorophyll is +35%).

Therefore, the observed total chlorophyll and NOBM nutrient
series are reproduced through data assimilation by the
size-resolved model. As the sequence of total assimilated chloro-
phyll reproduces the total observed chlorophyll, the multiclass
model yields size-resolved biomass sequences corresponding to a
discrete set of pre-assigned cell sizes. For the chosen location in
the North Atlantic, we used the corresponding size-resolved
chlorophyll series, obtained from the model, to calculate
phytoplankton size spectrum.

Time-evolution of the phytoplankton size spectrum
Phytoplankton biomass typically exhibits a power-law dependence
on cell size (Sheldon et al., 1972; Platt and Denman, 1977; Peters,
1983). Platt and Denman (1977) proposed the normalized
biomass size spectrum that plots the biomass within a size class
normalized by the width of that size class against the size of the
size class. The normalization creates a spectrum shape that is inde-
pendent of the width or distribution of size classes that are plotted.
Platt and Denman (1977) proposed the following equation:

Bv

dv
= av−b; i.e. log

Bv

dv

( )
= log a − b log(v); (9)

where Bv is the total biomass in size class v, and a and b are con-
stants; the constant b is referred to as the exponent of the size spec-
trum. Using the discrete-size model, the satellite chlorophyll series
was partitioned into biomass series of various size classes.
Equation (9) was applied to the size-resolved chlorophyll
biomass to extract the phytoplankton size spectrum.

At every time-point, the parameters a and b of Equation (9)
were estimated from the size-resolved biomasses by linear
regression. The biomasses corresponding to various size classes
do not deviate significantly from the regression lines representing
the size spectrum (i.e. the linear fittings by regression were statisti-
cally significant, with r2 . 0.95 at every time-point).
Consequently, the total predicted biomass, calculated as the sum
of biomasses obtained from the estimated exponents using
Equation (9), corresponds remarkably well with SeaWiFS chloro-
phyll (Figure 3c). We therefore obtained a time-series of the size
exponents derived from partitioning the total biomass, which
itself was derived from the ocean-colour observations (Figure 3a).

The 8-d time-series of the size-spectrum exponent for a period
of 9 years varied in the range 1.05–1.50 and revealed strong sea-
sonality in each year (Figure 3a). However, the magnitudes of
the exponents varied over time every year, representing temporal
fluctuations of size-structured diversity of phytoplankton
biomass. For a given time of year, the size-spectrum exponents
varied by +15% from the corresponding average value
(Figure 3b).

Based on data collected by Atlantic Meridional Transect (AMT)
cruises and a Marine Productivity (MarProd) cruise, San Martin

Table 1. Parameters and their values.

Notation Description Value/source

m0(di) Size-dependent specific loss Figure 1a
mh(di) Density-dependent loss Figure 1b
a∗i (di) Size-dependent specific

absorption
Figure 1c

Dt Latitude-dependent daylength Figure 1d
PB

m Light-saturated primary
production

3– 8 mg C (mg Chl)21

h21

x Carbon-to-chlorophyll ratio 75–125
aw Light attenuation by water 0.046 m21

g Nitrogen-to-chlorophyll ratio 8.8 mg N (mg Chl)21

fm Quantum yield 0.008– 0.02 mol C
(mol photon)21
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et al. (2006) calculated the size-spectrum exponents of plankton
(using the FlowCAM instrument) over the Atlantic Ocean. The
size-spectrum exponents ranged from 0.93 to 1.46 during 2003
and 2004 [Figure 3d taken from San Martin et al. (2006) for com-
parison with our results]. Most values of the size-spectrum expo-
nent estimated by our method from satellite chlorophyll over the
years 1998–2006 (Figure 3a) were in the range reported by San
Martin et al. (2006), who calculated the exponents from
AMT-12, AMT-13, AMT-14, and MarProd cruises during 2003
and 2004 for locations near 408N. For close comparison, we
derived from our estimated series the size-spectrum exponents
for those observation points that matched the timing of the four
cruises. The four sets of estimated values are presented separately
and together in Figure 3e. These plots indicate that the magnitudes

of the size-spectrum exponents estimated here from satellite obser-
vations are similar to those calculated previously from the four
cruises (Figure 3d and e).

Along with satellite chlorophyll, NOBM mixed-layer depth,
and NOBM nutrients, we now have estimates of the time-varying,
size-spectrum exponent with an 8-d resolution for the period
1998–2006. From these time-series, for each of the four quantities,
a seasonal mean (climatology) with a resolution of 8 d was gener-
ated, which represents the mean of the corresponding quantity for
that 8-d time of year over the 9 years. The data reveal strong inter-
play between the seasonal variations of the size-spectrum exponent
and those of the mixed-layer depth, nutrient series, and chloro-
phyll series. The seasonal mean values of size-spectrum exponents
are positively correlated with those of mixed-layer depth (r ¼ 0.61,

Figure 3. Time-evolution of phytoplankton size spectrum. (a) The exponent of size spectrum calculated using model results, with annual
variation presented against 8-d averages. (b) Temporal deviations of the size-spectrum exponent over the observed years presented as a
percentage. (c) Comparison of total biomass calculated using the estimated size spectrum and values from SeaWiFS. (d) The latitudinal
pattern of the slopes of the normalized biomass spectrum in the Atlantic; the figure is taken from San Martin et al. (2006). (e) Box plots
representing the estimated size-spectrum exponents at the time of AMT-12, AMT-13, AMT-14, and MarProd cruises; for each box, the central
mark is the median, the edges are the 25th and 75th percentiles, and the whiskers represent the most extreme values.
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p , 0.001; Figure 4a). Cross-correlation analysis between these
two seasonal mean time-series confirmed this significant corre-
lation; the cross-correlations peak near the zero lag (Figure 4d).
A similar result was obtained for seasonal mean values of the
NOBM nutrient series and those of size-spectrum exponents: a
significant positive correlation (r ¼ 0.81, p , 0.001; Figure 4b),
and a cross-correlation peak at zero lag (Figure 4e). These
results suggest that the time-evolution of seasonal average of the
phytoplankton size spectrum is influenced significantly by the
mixed-layer depth and nutrient concentrations. Further, the influ-
ences in both cases being positive, either a deeper mixed layer or a
higher nutrient availability would increase the seasonally averaged
slope of the size spectrum.

Conversely, the relationship between the seasonal mean of total
chlorophyll and those of the size-spectrum exponents is not
straightforward. First, there is no significant simple correlation
(e.g. Pearson) between these variables (Figure 4c). Moreover,
there is no cross-correlation peak at zero lag; in fact, there is a
cross-correlation minimum not far from the zero lag
(Figure 4f). The seasonal means of the size-spectrum exponent
are significantly influenced by the seasonal means of chlorophyll
appearing at a fixed time interval (Figure 4f; around a lag of 20,
two correlation peaks appear almost symmetrically). These
cross-correlations suggest that the seasonally averaged series of
size-spectrum exponents depends on the history of the seasonally
averaged chlorophyll series, and that these two time-series

Figure 4. Correlation between the seasonal means of the size-spectrum exponent and those of mixed-layer depth, NOBM nutrients, and
satellite chlorophyll. The Pearson correlation between the seasonal means of the exponent of size spectrum and those of (a) mixed-layer
depth, (b) NOBM nutrients, and (c) SeaWiFS chlorophyll. Cross-correlation coefficients (over entire lags) between the seasonal mean series of
size-spectrum exponents and those of (d) mixed-layer depth, (e) NOBM nutrient, and (f) SeaWiFS chlorophyll.
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propagate in opposite phases such that the high peaks of seasonal
chlorophyll correspond to the low-value, size-spectrum expo-
nents, and vice versa. The seasonal average of these two variables,
when plotted as a continuous series in the phase plane, demon-
strated a clear cyclic relationship (Figure 4c, connected dots).
This cycle represents the seasonal succession of chlorophyll
biomass and the size-spectrum exponent, such that the two
time-varying quantities evolve in opposite phases.

Similar phase differences in time-series and cyclic relationships
in phase plane are typical properties of classical predator–prey
relationships, where the biomass of the predator regulates that of
the prey, and vice versa. A cyclic predator–prey-like relationship
between chlorophyll and the size-spectrum exponent (Figure 4c)
therefore represents the mutual regulation of the total biomass
and the slope of the size spectrum over time. Moreover, because
of its cyclic relationship with total biomass, the slope of the nor-
malized phytoplankton biomass spectrum is likely to vary over a
maximum range at an intermediate level of total chlorophyll,
resulting in a largely uneven distribution of biomass among differ-
ent size classes.

Phytoplankton size succession
The 8-d average biomass series of individual sizes depicted succes-
sion patterns of phytoplankton size over time. Different phyto-
plankton sizes dominated at different times of year, and the
timing of phytoplankton blooms of a given size may not be pre-
dictable [Figure 5a(i)–a(ix)]. This result is consistent with theor-
etical and empirical understanding of phytoplankton succession
(Tilman, 1982).

The individual size biomass can be pooled to obtain the
biomass sequence of size groups classified as large (e.g. micro d
. 20.0 mm), medium (e.g. nano 2.0 ≤d ≤20 mm), and small
(e.g. pico d , 2.0 mm) cells; these series depict fluctuations and
seasonal successions of the large, medium, and small cells
(Figure 5b–d). The biomass of small cells generally appeared
high compared with those of large or medium cells. However,
the seasonal pattern of large and medium cells was quite different
from those of small cells (Figures 5b–d); compared with the large
and medium cells, the small cells appeared to dominate towards
winter (Figure 5b–d).

For the period of observation, the expected biomass of diatoms
and cyanobacteria were obtained from the NOBM. Although the
timings of peaks of neither NOBM diatom and estimated large
cells, nor NOBM cyanobacteria and estimated small cells,
appeared to match accurately (Figure 5e and f), the correspon-
dence between peak timings for the latter pair was reasonable,
and appeared to be better than the former (Figure 5e and f).
One reason for this could be that small cells are probably domi-
nated by cyanobacteria in the study area, but that large or
medium cells are unlikely to be dominated only by diatoms. The
diatom biomass obtained from NOBM was low in a significant
number of observed points (Figure 5e), but the estimated
biomass of either large or medium cells fluctuated (Figure 5b–
d); the high diatom biomasses may correspond either to large or
medium cells (Figure 5b, c, and e).

In this context, it is worth noting that phytoplankton sizes vary
within taxonomic groups and that these variations are relatively
prominent for large phytoplankton (Gaskin, 1979; Totti et al.,

Figure 5. Seasonal succession of size-structured phytoplankton as estimated by the model. The cell diameters range from 0.45 to 40 mm. The
biomass series corresponding to each size is extracted from the satellite chlorophyll information by implementing data assimilation using the
size-structured model mentioned in text. a(i)–a(ix) Log-transformed 8-d averages of biomass for each size are plotted against every year over
the period 1998–2006. Logarithmic time-series of size groups are classified as (b) large (d . 20), (c) medium (2 ≤d ≤20), and (d) small (d ,
2.0) cells. Seasonal succession of biomass normalized to respective maximum values for (e) large cells and NOBM diatoms, and (f) small cells
and NOBM cyanobacteria.

726 S. Roy et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/68/4/719/647222 by guest on 19 April 2024



2005; Litchman et al., 2009). In particular, diatom sizes are highly
variable, both seasonally and spatially (Marchetti and Cassar,
2009). Recent studies also suggest that their sizes may vary over
evolutionary time-scales (Finkel et al., 2005; Litchman et al.,
2009). Therefore, although taxonomically different groups of phy-
toplankton predicted by biogeochemical models (here, NOBM)
may exhibit relatively regular seasonal patterns, the seasonal distri-
butions of strictly size-resolved groups are likely to be somewhat
irregular (Figure 5). Moreover, the series of estimated size
groups and that of taxonomically resolved species groups
(obtained from NOBM) may not always be similar (Figure 5e
and f).

Concluding remarks
We have presented an adaptable method to facilitate understand-
ing of some key properties of marine phytoplankton biomass.
Given an input of mixed-layer depth from physical models and
a series of chlorophyll biomass values from satellite observations,
time-series of the biomass fractions of individual sizes can be
derived and considerable insight into phytoplankton size-structure
dynamics obtained.

Generally, bulk groupings of phytoplankton size structure, i.e.
pico-, nano-, and microplankton, are used in oceanographic
studies (Vidussi et al., 2001; Ciotti et al., 2002; Hirata et al.,
2008). However, the seasonal evolution of individual size is an
important property in marine ecosystems. For example, during
massive blooms, phytoplankton communities are generally domi-
nated by one or two types of phytoplankton, such that the individ-
ual size diversity reduces significantly. The estimates of
size-structured biomass at every observation time represent the
pattern of seasonal succession of individual sizes, so carry infor-
mation about size diversity. Estimates of the size-resolved
biomass were also used to retrieve an important property of size
structure, namely the size-spectrum exponent; the time-evolution
of this property carries important information about the biomass
flux over an ecological time-scale. The analysis revealed significant
interplay between the seasonal variations of the estimated size-
spectrum exponent and those of both mixed-layer depth and
nutrient concentration. However, the seasonal variations of the
exponent had a complex, cyclic relationship with those of satellite
chlorophyll, similar to typical predator–prey oscillations. These
time-series associations are useful for understanding, and hence
predicting, the time-evolution of the size fractions of remotely
sensed phytoplankton biomass, which in turn is applicable to
studies of the productivity and functioning of pelagic ecosystems.
For example, given that size-selective predation is common in eco-
systems, knowledge of the size structure of phytoplankton biomass
can further understanding of temporal variations at higher trophic
levels.

Although some biogeochemical models can produce estimates
of phytoplankton size groups based on taxonomy (e.g. Gregg,
2008), the approach here differentiates individual sizes at low
computational cost. Although the taxonomic approach provides
information on phytoplankton taxonomic composition, the
method used here is more likely to resolve size-based properties.
This is particularly important, because the average size of taxo-
nomic groups such as diatoms may change over time (Finkel
et al., 2005; Litchman et al., 2009). The time-series of size classes
obtained with the approach described here and the taxonomic
groups obtained from a biogeochemical model may differ, and
the discrepancy is prominent for large phytoplankton. However,

the two pieces of independent information, both derived from sat-
ellite remote sensing, may provide insight into the formation and
characterization of phytoplankton blooms in a given area.

The current method may be improved further in several ways.
For example, the biomasses of individual sizes were not compared
with independent biomass data to establish reliability. Moreover,
the size-spectrum exponent could be improved by extracting the
biomasses of bulk size classes using other methods (Vidussi
et al., 2001; Hirata et al., 2008) and including them in the
data-assimilation step. Finally, direct estimation of mixed-layer
depth and nutrient concentration may also improve the model
output.
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