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The assumption of a relationship between recruitment and a spawning stock is the cornerstone of the precautionary approach and
may constrain the use of a maximum sustainable yield (MSY) target for fisheries management, because the failure to include such a
relationship suggests that providing a measure of stock protection is unnecessary. The implications of fitting different functional forms
and stochastic distributions to stock-and-recruit data are investigated. The importance of these considerations is shown by taking a
practical example from management: the management plan for Northeast Atlantic mackerel (Scomber scombrus), a fish stock with an
average annual catch of 600 000 t. The historical range of spawning-stock biomass is narrow, and historical data from a stock assess-
ment explain only a small proportion of the recruitment variability. We investigate how best to reflect the uncertainty in the stock–
recruit relationship. Selecting a single model based on simple statistical criteria can have major consequences for advice and is proble-
matic. Selecting a distribution of models with derived probabilities gives a more complete perception of uncertainty in dynamics.
Differences in functional form, distribution of deviations, and variability of coefficients are allowed. The approach appropriately incor-
porates uncertainty in the stock–recruit relationship for FMSY estimation.
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Introduction
Developing and implementing management plans are requisites
for ensuring that fish stocks, their ecosystems, and their environ-
ments are maintained in a productive state (FAO, 1997).
Following the 2002 World Summit on Sustainable Development
in Johannesburg (FAO, 2003), a number of nations agreed to
implement fisheries management policy based on maximum sus-
tainable yield (MSY). These requirements have led to the develop-
ment or the adaptation of a number of scientific tools to support
this policy. To provide advice on fish stock exploitation in this
context, there is a requirement for management simulations to
include the elements of stock dynamics (Stokes et al., 1999;
Cochrane, 2002; Butterworth, 2007; ICES, 2008a). In particular,
this leads to the requirement to simulate a plausible caricature
of the recruitment to allow simulation of one or multiple stocks.
A critical aspect of this is the relationship between the recruitment
(r) and the spawning stock (S) that produces it. Here, we investi-
gate the characterization of the stock–recruit (S–r) relationship in
terms of both functional form and uncertainty, and its influence
on the estimation of exploitation targets such as MSY. We do
not attempt to define S–r over all biomasses, e.g. the detail at
the origin, but just those features required for MSY estimation.
Nor do we report a full management strategy evaluation (MSE),

which should include inter alia additional sources of uncertainty,
e.g. growth, maturation, spawning potential, natural mortality,
fishery selection, and issues of observation and implementation
uncertainty.

A universal truth is “that if you fish hard enough on any stock,
you will reduce recruitment” (Hilborn and Walters, 1992). Myers
and Barrowman (1996) state that there is a clear dependence of
recruitment in some way or other on stock size. The precautionary
approach (PA) to fisheries (Garcia, 1996; ICES, 2001) dealt with
this issue by defining an objective: the avoidance of reduced
recruitment. MSY can be considered complementary to the PA
such that a necessary condition for MSY is compatibility with pre-
cautionary limits under the PA system (ICES, 2001). In the PA
framework, managers were expected to select targets freely,
which led often to short-term considerations and loss of catch.
MSY adds to the PA concept of problem avoidance by providing
a specific target and that of maximizing the sustainable (long-
term) yield. For some stocks, yield-per-recruit, growth, and mor-
tality considerations dominate the estimate of MSY, but for others,
such as Northeast Atlantic (NEA) mackerel (Scomber scombrus),
the precautionary limits attributable to declining recruitment
define MSY. The assumption of some type of relationship
between r and S becomes the cornerstone of both approaches,
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because the failure to include such a relationship could suggest
that providing a measure of stock protection was unnecessary.
Such a view would be incompatible with the precautionary
principle.

Although we consider that S–r relationships are crucial, they
vary over time for some stocks (Brunel and Boucher, 2007;
Simmonds and Keltz, 2007; Köster et al., 2008; Drinkwater,
2009). In these examples, it is clear that recruitment depends on
environmental influences, which dominate inter-year variability,
but to assume no relationship between S and recruitment,
because it is difficult to establish, could lead to quite unrealistic
expectations when considering the tolerance to exploitation. In
some cases, the clear dependence on a changing environment
leads to the view that there are multiple states for a population,
and both these and the potential for transition is acknowledged
(King and McFarlane, 2006; Simmonds and Keltz, 2007; Yatsu
et al., 2008). On occasion, complexity through species linkage
and mixed fishery exploitation may be added (Rätz et al., 2007;
Mackinson et al., 2009). Nevertheless, in all these cases, there is
still a need to provide a plausible functional relationship
between stock and recruitment that can be considered sufficiently
stable over time, although that period may be difficult to predict
(Alheit and Niquen, 2004; Jacobson et al., 2005; Bakun and
Weeks, 2008).

An MSE is an evaluation of management under a range of
plausible biological conditions, but also taking into account
measurement uncertainty in the likely levels of compliance with
regulation. Stock–recruit relationships are one of the most impor-
tant aspects of such a simulation because they dominate the supply
of fish available for exploitation. Although variability in recruit-
ment is acknowledged in almost all cases, it is common for a
single stock–recruit relationship to be selected explicitly for a
particular stock study (ICES, 2005; Kell et al., 2009), adding a sto-
chastically varying component to describe inter-year variability.
The inclusion of a stochastic component is a good solution to
an inability to predict the necessary detailed environmental
changes or how they will specifically influence recruitment,
although some temporal autocorrelation between years may also
be required. The functional form of the S–r model may be
chosen for biological reasons, or selected on statistical fit criteria
using, for example, the Akaike Information Criterion (AIC) to
select among models (Shimoyama et al., 2007). Sometimes, it is
clear that a fixed S–r relationship is inadequate because the
stock dynamics seem to have changed either with time (King
and McFarlane, 2006; Simmonds and Keltz, 2007) or explicitly
with climate (Stige et al., 2006; Fogarty et al., 2008). In some of
these cases, several management options have been developed to
account for different S–r regimes, although they are sometimes
presented without any specific indication as to which scenario
should be selected and how future uncertainty might be dealt
with (Nash et al., 2009). In others (King and McFarlane, 2006),
detecting the regime shift is specifically addressed, although
within a regime, a single functional form of the S–r model is
chosen. The consideration of uncertainty in the model form was
introduced by Michielsens and McAllister (2004) when they pre-
sented an approach using multiple models. In their case, model
selection resulted in a very strong preference for one model form
over another, and the results were insensitive to the complexity,
suggesting that the approach might be unnecessary. Brodziak
and Legault (2005) examined 12 models and made comparisons
between informative and uninformative priors to evaluate

rebuilding targets for several groundfish stocks. They used
Bayesian model averaging to evaluate the results. That approach
recognizes the need to consider the different biological hypotheses
implied by different relationships. They evaluated the precision of
estimates for recovery under the different assumptions by aver-
aging the models rather than allowing a range of potential
models to exist simultaneously and considering the risks of
depletion, as we do here. Rademeyer et al. (2007) postulated
that, given a number of hypotheses related to population current
status and productivity, the performance of a harvest control
rule (HCR) should be integrated over all possible hypotheses/
scenarios considered, with relative weights assigned to the
output statistics, to account formally for the relative likelihoods
of the hypotheses postulated. The approach we present here for
hypotheses of the S–r formulation conforms directly to that phil-
osophy. Our approach also fits with the suggestions of McAllister
and Kirchner (2002) that “a set of alternative models [be selected]
each of which specify a unique functional form of some biological
or fishery process or density function where it is not convenient or
possible to formulate a single generalized model from them”. In
that paper, the authors examined some parametric modelling
uncertainty in the stock assessment to provide advice on
management.

For NEA mackerel, the modelling problem is made more diffi-
cult by the absence of informative data on the slope of the S–r
function near the origin, both the biomass at which the decline
in recruitment begins and also the Allee effect which may occur
for pelagics (Quinn and Deriso, 1999). We consider that the
former is important, but that the latter would be expected well
outside the range of biomasses encountered under MSY exploita-
tion and should not influence the analysis. One approach favoured
by some (e.g. Myers and Barrowman, 1996; Brodziak and Legault,
2005) is to use a meta-analysis from other comparable populations
to infer stock dynamics. However, the dynamics of a highly
migratory pelagic stock are bound to be greatly influenced by
the biotic and abiotic environment over which they range (if
they were not, they would be ubiquitous). We consider that
these aspects are going to have a greater influence over stock pro-
ductivity and resilience than that controlled by their being the
same species. This viewpoint has some support; there is only
one other population of S. scombrus, which is found on the
western side of the Atlantic. Moustahfid et al. (2009) present
stock-and-recruit data for NWA mackerel under two differing
modelling assumptions, and in both cases, a totally different
type of recruitment dynamic from that of NEA mackerel is
evident, with very much greater variability. The reported perform-
ance of the NWA mackerel assessment (Anon., 2010) is poor with
major retrospective errors, which also raises questions about its
usefulness. The report shows severe retrospective patterns in the
estimates of S, F (fishing mortality), and recruitment, and for
the early period (going back to the 1960s), landings data were
questionable and the biological samples taken relatively poor.
Nevertheless, the differences between NWA and NEA mackerel
are stark. Whereas NEA mackerel has relatively consistent recruit-
ment with a range of less than one order of magnitude, Moustahfid
et al. (2009) show that, for the same period, NWA mackerel has a
spread of recruitment of nearly two orders of magnitude. NEA
mackerel spawning is spread smoothly over a wide range of lati-
tudes and over a long season. Spawning in NWA mackerel is
much less spatially contiguous and temporally more variable and
discrete (Sette, 1950). This difference in the dynamics could be
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due in part to the markedly different hydrography in the two areas.
Recruitment dynamics are clearly different for the two stocks, so
making inference from one to the other inappropriate.

This metadata approach may be applicable where the stock in
question is one among several in the midrange of similar ecosys-
tems. Here, we present an approach that relies explicitly on the
data available, which we favour in this case as a way to account
for our level of knowledge. However, for other situations where
the biological arguments for inference among stocks are robust,
the modelling approach described below could be applied
equally well with informative priors. However, in such cases, the
reliability of the results would be influenced by the increase in cer-
tainty resulting from the inclusion of informative priors, making
the choice of priors critical to the analysis.

As discussed above and as seen in the many of the cases cited,
the shape of the S–r functional form is basic to the stock dynamics
implied in the simulations. There are two basic philosophical
approaches to the problem of selection models to test. One may
prefer to select or reject models based explicitly on knowledge of
the dynamics and biological hypotheses of say the independence
of recruitment at high biomass (hockey stick/Beverton–Holt),
cannibalism (Ricker), or depensation at low biomass (Saila–
Lorda/sigmoid Beverton–Holt). For NEA mackerel, all of these
biological processes are potentially valid, and in cases such as can-
nibalism, there is some evidence (Olaso et al., 2005). Throughout
we have taken a statistical approach, allowing for a wide range of
plausible biological hypotheses that can be formalized as S–r func-
tions, taken from the review of Needle (2002).

In our example of NEA mackerel, we show the importance of
S–r model uncertainty by taking a practical example from a
specific management problem: the management plans for the
stock. In 2007, ICES received a request for advice on long-term
management of NEA mackerel (ICES, 2007), an important fish
stock with an average annual catch of 600 000 t. The historical
stock dynamics are available from a stock assessment performed
annually (ICES, 2009). Based on those data, we investigate how
best to reflect the uncertainty in the S–r relationship for the
stock. Our results show that it is critical to use multiple functional
relationships with distributions of coefficients, to account for
uncertainty in S–r dynamics. It is also necessary to consider the
form of the parametric distribution providing the stochastic varia-
bility. This distribution has often been assumed to be lognormal
(ICES, 2005; Kell et al., 2009), although other continuous distri-
butions may provide more plausible stochastic variability for
some stocks.

Methods
Stock and recruit data
The data used (Figure 1) are the time-series of S and r taken from
the most recent stock assessment (ICES, 2009). S–r estimates from
recent years (2007–2009) are excluded because of the lack of con-
vergence of S for those years and the associated poor estimation of
recent year classes in the assessment. Estimates of S in earlier years
(1972–1979) are more uncertain (ICES, 2008b), because the data
for separating the older ages in early catch information are not
available (in the historical data, a plus group at age 4 in 1972 is
incremented annually to age 12 in 1980). To account for the
additional uncertainty in S in those years, extra variability is
added in the modelling of these S data in the time-series
(Supplementary material). An alternative solution to the

problem would have been simply to exclude these data, but the
recruit estimates for those years are as valid as the rest of the time-
series, and the additional uncertainty in S is small relative to the
information potentially available on stock dynamics. S in the ear-
liest years (1972–1978 inclusive) is higher than that observed at
any other time, so including the data in the analysis extends the
information on stock dynamics.

Stock–recruit models
Needle (2002) provides a comprehensive review of stock models
proposed since the S–r relationship was postulated mathemat-
ically in the 1950s. He presents seven functional relationships
that have a continuous parametric form ideally suited to simu-
lation (Table 1). He also presents other methods that are con-
strained to the observed dynamic range of the data, although
these would not be suitable for a simulation of S that extends
beyond the range of the observed values of S. The S–r model
equations are fitted using the maximum log-likelihood method
(Fisher, 1922) with normal, lognormal, or gamma distributions
to characterize the stochastic component.

The likelihoods are calculated for each of the stochastic distri-
butions as shown below. Normal distribution (N) with standard
deviation s proportional to the model mean (m):

P ji =
1

sjm ji

����
2p

√ exp − 1

2m2
jis

2
j

(ri − m ji)2

( )
. (1)

Lognormal distribution (L) with standard deviation s:

P ji =
1

risj

����
2p

√ exp − 1

2s2
j

(ln(ri) − m ji)2

( )
. (2)

Figure 1. Point observations of spawning-stock biomass (S) and
recruitment (r) from the ICES assessment (ICES, 2009), with numbers
referring to year classes. Two fitted stock–recruit relationships with
the lowest AICc are shown, Ricker (dashed) and hockey stick
(dotted), both fitted with normal distribution of deviations.
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Gamma distribution (G) with shape factor k:

P ji = r
(kj−1)
i exp(−riu ji)u

kj

ji/G(kj) where u ji = kj/m ji (3)

Here, mji is the modelled mean recruitment given the Si, the
observed recruitment ri, and the model parameters aj, bj, and gj,
using the equations for m listed in Table 1.

The log-likelihood of model j, given the data Si and ri, is given
by

Pj =
∑

i

ln(P ji). (4)

The fit of model j with k parameters based on n observations can
be compared with other model fits using the AIC corrected for
small sample size, AICc (Akaike, 1974), given by

AICcj = 2k − 2Pj +
2k(k + 1)
n − k − 1

. (5)

Sensitivity to year ranges
To investigate the sensitivity of the analysis to the period, a limited
number of models was fitted to subsets of the entire period (1972–
2006). These periods were chosen as 1980–2006 (removing early
data at high biomass) and 1980–2000 (removing early data and
the most recent more-variable uncertain recruitment).

Distribution of coefficients
To establish the distributions of the model coefficients, while
taking into account the correlation between parameters, the
models were also fitted in a Bayesian Markov chain Monte Carlo
(MCMC) framework (Gelman et al., 2004) using WINBUGS soft-
ware (Spiegelhalter et al., 2003). The model parameters were
loaded into the statistical package R using the R CODA package
(Best et al., 1997). The WINBUGS framework also provides a
deviance information criterion metric, DIC (Spiegelhalter et al.,
2002; Gelman, 2003) for selecting models. DIC is a Bayesian equiv-
alent to AIC, but incorporating the effect of correlation between
variables through the model complexity parameter (pD). The
DIC is used to compare the fit of the different functional models
in WINBUGS. The priors were kept uninformative to give reliance

on the data, to reflect the uncertainty in the available information.
Priors and initial values are listed in the Supplementary material.

Model selection and probability of different model types
The Bayes posterior probabilities of a model were calculated from
the converged MCMC using the harmonic mean of the likelihoods
of the l models taken from the chain (Kass and Raftery, 1995;
Michielsens and McAllister, 2004):

Pj =
1∑

l 1/P j,l
. (6)

For each model, a set of 1000 coefficients was taken from the
MCMC of 40 000 by thinning by 1/40.

In all, 21 models (seven functional forms and three stochastic
distributions) are available. However, several of these can imply
similar dynamic and management outcomes (see the “Results”
section), and the method to obtain the probability of each is con-
ditional on the number and types of models used in the analysis. If
one evaluated ten models of one type and one of a different type,
utilizing all the models would weight the results in favour of the
larger group by a factor of 10, so the outcome would depend on
the choice of model types tested. To avoid this methodological
problem, an equal number of models of each type was selected
in a two-stage process. During the first stage, models were selected
based on their underlying dynamics, i.e. models having the same
functional form through the data and the same probability distri-
bution for the stochastic process. Where several models have the
same functional form through the data, the model with the best
fit based on DIC was selected.

The second stage of model selection assigned a relative prob-
ability to each model (given the others selected), which is calcu-
lated as the relative posterior probability of the model given the
other models. For the six models selected, the probability of one
(HS–N; for abbreviations, see Tables 1 and 2) is given by

PHS−N = PHS−N

PHS−N +PHS−G +PHS−L +PRN +PRG +PRL
. (7)

The issue and influence of model selection is explored further in
the discussion.

Population dynamics
The population dynamics implied by the different S–r relation-
ships were simulated using a simple fisheries operating model.
The software used was developed to evaluate HCRs for mackerel
and was tailored to accommodate the recruitment scenarios
derived here. The basic equations of the operating model can be
expressed as a Leslie matrix (Leslie, 1945, 1948):

N0

N1

N2

..

.

N11

N12+

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

t+1

=

f (S)1.........
..f...............

....f.............

.......

............f.....

.............f,f

⎛
⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎠

t

×

1
N0

N1

..

.

N10

N11

N12+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

t

, (8)

where the survival (f) is derived from a fixed age-based natural
mortality (M) and fishing mortality (Fa,y) derived from a selection

Table 1. The functional form of the seven types of model used in
the evaluations, with a, b, and g being fitted parameter values.

Model type Reference Formula

Models with asymptotic recruitment at high biomass
BH (Beverton–Holt) Beverton and Holt

(1957)
r ¼ aS/(b + S)

SB–H (sigmoidal
Beverton–Holt)

Myers et al. (1995) r ¼ aSg/(b + Sg)

HS (hockey stick) Butterworth and
Bergh (1993)

r ¼ aS/b : S , b ¼ a
: S ≥ b

P (power) Cushing (1973) R ¼ aSb : b ≥ 0
Models with peak in recruitment and decline with high biomass

Rk (Ricker) Ricker (1954) r ¼ aS exp(2bS)
Sh (Shepherd) Shepherd (1982) r ¼ aSg/[1 + (S/b)g]
SL (Saila–Lorda) Iles (1994) r ¼ aSg exp(2bS)
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pattern taken from the final year of the ICES assessment (ICES,
2009) and a target F:

fa,y = e−(M+Fa,y ), (9)

with S derived from

S =
∑12+

a=0

Nawama. (10)

Here, wa and ma are the mean weight and mean proportion mature
at age in the population taken from the ICES assessment (ICES,
2009). For these studies, no account is taken of measurement or
implementation error that would normally be required for full
management simulation.

Truncation of simulated recruitment values
The fitted models may simulate recruitment that can exceed the
observed historical range considerably. Theoretical distributions

can yield a very small number of high deviation values that are cor-
rectly represented mathematically, but may be biologically unrea-
listic. This is particularly the case when the tails of the distributions
fit poorly, as for example to the lognormal distribution illustrated
in Figure 2. To select appropriate truncation limits, simulated
recruitment was compared with observed recruitment using the
range of S–r pairs from the assessment. Then, assuming linearly
changing increments on the upper and the lower half of each dis-
tribution, the location of the end of the extent of the distribution
can be estimated approximately by extending the lower and the
upper ends of the distribution by one half increment (Figure 2).
Although this defines the limits over the observed S, they still
need to be allocated appropriately over all values of S. Three
approaches were taken to determine the upper and the lower
limits to the deviance for each distribution:

(i) limiting the proportion of simulated values to 1/70th of the
total above and below the observed minimum and maximum
recruitments;

(ii) limiting s to the same fixed limit in all models;

Figure 2. Comparison between observed and fitted deviations from modelled r values, comparing gamma, lognormal, and normal deviations
for the hockey stick model fit, showing the observed quantiles (points) and fitted quantiles (line) over the range of data. Estimated limits to r
(diamonds) are based on a half increment further in each direction.

Table 2. Estimates of fitted model parameters using the maximum log-likelihood method with L (lognormal), N (normal), and G (gamma)
deviations around the model.

Deviation Parameter

Model type (Table 1)

HS Rk P B – H S – L Sh SB– H

L (lognormal) a 1.76 5.53 3.86 3.86 5.56 9.50 2 777
b 3.86 0.50 0.00 0.00 0.14 0.93 718
g – – – – 0.00 1.66 0.00
s 0.44 0.43 0.44 0.44 0.43 0.43 0.44
AICc 74.66 74.43 74.66 74.66 76.65 76.64 77.22
Rank 13 11 14 15 20 19 21

N (normal) a 1.76 6.37 4.19 4.19 6.34 111.4 2 814
b 4.19 0.52 0.00 0.00 0.16 0.16 669
g – – – – 0.00 1.51 0.00
s 0.38 0.37 0.36 0.38 0.36 0.36 0.38
AICc 72.49 71.86 72.57 72.50 73.59 73.31 75.05
Rank 2 1 5 3 10 9 17

G (gamma) a 1.76 6.04 4.19 4.19 6.01 62.77 20.05
b 4.19 0.50 0.00 0.00 0.14 0.21 3.78
g – – – – 0.00 1.46 0.00
b 0.68 0.67 0.68 0.68 0.65 0.65 0.68
AICc 72.77 72.53 72.78 72.78 74.70 74.59 75.34
Rank 6 4 7 8 16 12 18

The estimated AICc is from maximum log-likelihood. The best fit under AICc criteria is the Rk (Ricker) model with N (normal) deviations.
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(iii) limiting the s on each model, to give an overall limit to simu-
lated recruitment (for the range of S values observed).

When a number outside the determined range for the model
was drawn in the simulation, it was rejected, and a new number
drawn.

Results
Maximum likelihood fit
The model coefficients and AICc values for the seven potential S–r
models and three types of distribution are listed in Table 2. The
best fit using the AICc is a Ricker model with normal deviations
(Rk–N), although the difference in AICc between this and the
next best fitting model, the hockey stick with normal deviations
(HS–N) is small. These two models are shown in Figure 1,
along with the S–r dataset from the latest assessment. Fits to
normal or gamma distributions generally have lower values of
AICc than those fitted with lognormal distributions. Power (P),
Beverton and Holt (B–H), and sigmoid Beverton and Holt
(SB–H) models fit with flat recruitment throughout the observed
range of S. The Shepherd (Sh) and Saila–Lorda (SL) four-
parameter models have a peak in a similar place to the three
parameter Ricker model, and in both these four-parameter cases,
coefficients are poorly resolved. The hockey stick model fits to
the mean over the observed range of biomass, with a straight
line between the lowest observed biomass and the origin. In con-
trast, the Ricker model fits a falling slope through the observed
biomass, and the slope towards the origin is controlled by the
slope at the highest biomass, resulting in a much steeper slope at
the origin.

The fit for the different distributions is similar for each func-
tional form. Cumulative distributions and quantile–quantile
(Q–Q) comparisons between data and model show the properties
of different distributions for the example of the hockey stick form
(Figure 2). The normal and the gamma distributions fit best with
slight under- and overestimation of the skew, respectively. The log-
normal distribution is more skewed than the gamma, fitting more
poorly and with strong potential for more high recruitment than
observed.

Sensitivity of the fitted models to the period of data
In these data, there was a trend in the residuals, with earlier years
fitting with negative residuals to those models without an ability to
yield reduced recruitment at high biomass. When such a signal is
seen only once throughout an available time-series, it is not poss-
ible to determine whether it is a correlated environmental effect or
biomass-dependent recruitment. To investigate the sensitivity of
the models to the period of data, the hockey stick and Ricker
models were fitted to different ranges of years. As both models
have three parameters (a, b, s), the differences between models
can be considered as dependent only on the likelihood of the
values of the residuals from the model fit, and not the number
of parameters. The differences in the parameter values for the
two ranges of years tested are small. Model values overlap comple-
tely in regions where the data are common to all periods. The only
difference between the fits for the periods is in the estimated values
of s. Hence, the choice of period is informative only for variability,
not for mean recruitment. The longest period with the greatest
variability seems most appropriate to use in simulations. That
shorter periods have less variability might infer autocorrelation,

although there is little evidence that recruitment is autocorrelated
because there is a non-significant negative term at lag 1.

Population dynamics
Using the AICc to select from the 21 models fitted, the population
dynamics implied by the two top-ranked models (Rk–N and HS–
N; see abbreviations in Tables 1 and 2) are contrasted in Figure 3.
The dynamics implied and the resulting management advice differ
markedly. The Rk model gives a value FMSY of 0.7 and Fcrash . 1.2.
The HS gives FMSY ¼ 0.3 and Fcrash ¼ 0.55. This importantly
different view of the stock dynamics derives mainly from the dif-
fering slope of the S–r relationship towards the origin (Figure 1).

Bayesian posterior probability
The SB–H, SL, and Sh models proved difficult to fit in WINBUGS.
It was necessary effectively to reduce four-parameter models to
three (two plus s) by giving at least one parameter a very
narrow prior distribution, effectively eliminating the indepen-
dence of the third shape parameter. The DIC for each of these
models is listed in Table 3. In that case, the best fit based on selec-
tion by DIC is Rk–N, with Rk–G and HS–N next. Again based on
the functional form, the results fall into two main categories; those
that are asymptotic to fixed recruitment at high S, and those that
yield a peak in recruitment and a decline at high S.

Probability of the different models
Following the two-stage procedure described above, six models
were selected from the potential 21, based on hockey stick and
Ricker forms and the three distributions normal, gamma, and log-
normal. The choice of hockey stick was based also on additional
considerations. Whereas the hockey stick has the same asymptotic
property as the Beverton–Holt and power forms, the behaviour of
the Beverton–Holt and power forms near the origin has the
potential to give infinite resilience to fishing, because they have
unrealistic slope in the S–r function at the origin. By choosing
the hockey stick constrained to the range of observed S, we
maintained the independence of recruitment at high biomass,

Figure 3. Population dynamics (mean S, yield vs. average F4 – 8)
for populations simulated with HS (hockey stick) and Rk (Ricker)
models. FMSY (black grid lines) are at F4 – 8 ¼ 0.66 for Rk and
F4 – 8 ¼ 0.33 for the HS. The maximum yield for the Rk model is at a
higher value of F than stock collapse with the HS (F4 – 8 ¼ 0.55).

Stock–recruit model for simulating stock dynamics for uncertain situations 853

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/68/5/848/646854 by guest on 09 April 2024



maintained the link to the data, and avoided unrealistic responses
or the problem of finding a way to constrain the slope for the
Beverton–Holt and power forms, but we miss the potential for
steeper slopes at the origin. However, steeper slopes are included
in the Ricker model set. The ranges of slopes and dynamics
included in the analysis are dealt with in the “Discussion” section.

The parameter estimates of selected models are listed in Table 4.
The use of a harmonic mean to evaluate the probability of model
type is sensitive to the likelihoods of the least likely models because
1/P increases rapidly as P becomes small. The sensitivity of model
probabilities to the P of the least likely models is depicted in
Figure 4. By removing the least likely values progressively, it is
possible to see the influence of those in the extreme tails of the
likelihood distributions. Once six models (0.6% of 1000) had
been removed, the more-rapid changes in model probability
ceased and the proportions were more stable, varying by ,0.5%
for each subsequent model. Although the changes over the next
2–3% of models are evident, these are considered to reflect the

appropriate influence of the tails in the distributions, not just
noise from single models. The model probabilities are listed in
Table 5. They imply 404, 103, 47, 20, 306, and 120 models for
HS–N, Rk–N, HS–L, Rk–L, HS–G, and Rk–G, respectively, if
1000 populations are to be simulated.

The maximum likelihood fit, which considers only the most
likely model, selects the Ricker model over the hockey stick. In
contrast, the method of Kass and Raftery (1995) considers the
co-varying distribution of coefficients, not just the most likely
model. As the hockey stick coefficients are less correlated and
more precisely estimated than those for Ricker, the hockey stick
distribution fits to the S–r observations with more certainty, so
receives a greater weighting, resulting in more populations with
this characteristic.

The values of S before 1980 are uncertain owing to the changing
plus group in the catch-at-age data from 1972 to 1979. The values
of r, however, are as well established as elsewhere in the series. This
uncertainty has been explicitly included in the modelling
(Supplementary material), and the differences in the results are
negligible.

Truncation of simulated values of recruitment
The lower and the upper limits to observations of r are 0.96 and
8.42, respectively. These limits are extended for simulation to
limits of 0.61 and 9.03. Using a linear fit to the increments in
the Q–Q plot, these overall limits are depicted in Figure 2 as the
extreme non-filled points on the Q–Q plots.

Table 4. Parameter estimates, the mean, and 0.025, 0.5, and 0.975
quantiles for the selected Bayesian models used in the recruitment
simulation.

Model Parameter pdf Mean s.d. 2.5% 50.0% 97.5%

HS
(hockey
stick)

a N 1.761 0.013 1.760 1.760 1.880
G 1.761 0.019 1.760 1.760 1.940
L 1.761 0.026 1.760 1.760 1.950

b N 4.195 0.278 3.653 4.189 4.754
G 4.236 0.297 3.686 4.222 4.863
L 3.895 0.304 3.330 3.881 4.533

s N 0.393 0.058 0.300 0.386 0.527
G 0.416 0.050 0.331 0.411 0.528
L 0.455 0.058 0.358 0.449 0.586

Rk
(Ricker)

a N 0.628 0.126 0.385 0.627 0.877
G 0.647 0.175 0.317 0.645 0.995
L 0.401 0.285 0.002 0.488 0.843

b N 8.524 2.842 4.378 8.071 15.310
G 9.470 4.453 3.726 8.567 20.540
L 5.460 3.466 1.382 5.358 13.500

s N 0.389 0.056 0.298 0.383 0.514
G 0.420 0.052 0.331 0.415 0.538
L 0.455 0.059 0.358 0.450 0.587

Figure 4. The proportion of models of each form relative to the
percentage of least likely models removed from the set, showing how
a very small proportion of models in the tail of the distribution can
affect the relative probability of the different forms.

Table 5. Probability of different model types.

Model Deviations Probability

HS (hockey stick) N (normal) 0.404
Rk (Ricker) 0.103
HS L (lognormal) 0.047
Rk 0.020
HS G (gamma) 0.306
Rk 0.120

Table 3. Model selection criteria for Bayesian models, model
complexity (pD), and deviance information criteria DIC (with DIC
analogous to AIC in the maximum likelihood method in Table 2).

S–r model Distribution pD DIC Rank

BH (Beverton–Holt) N (normal) 2.068 135.6 5
G (gamma) 2.010 136.1 8
L (lognormal) 2.058 145.8 14

HS (hockey stick) N (normal) 2.034 135.5 3
G (gamma) 2.014 136.1 7
L (lognormal) 2.052 139.9 11

P (power) N (normal) 2.010 135.6 4
G (gamma) 2.020 136.1 9
L (lognormal) 2.037 139.9 12

Rk (Ricker) N (normal) 2.376 134.8 1
G (gamma) 0.867 135.2 2
L (lognormal) 1.560 139.6 10

SB–H (sigmoidal
Beverton–Holt)

N (normal) 2.115 135.7 6
G (gamma) 2.093 155.7 15
L (lognormal) 0.984 143.2 13
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Using method 1 to constrain recruitment resulted in a small
number of unrealistically high values of more than twice the
highest previously observed recruitment. Method 2 gave a spread
of limits that constrained some model maxima well below the
observed maxima, while delivering others at .2× the observed
maximum, suggesting that this was not an effective method.
Method 3 seemed the most realistic, but required setting model-
specific limits in each of the 1000 cases. The average probabilities
at which the different distributions are clipped are listed in Table 6.

Very few draws from the gamma and lognormal distributions
are discarded at the lower end, and similarly for high values
from the normal distribution, but significant truncation is
required at the high end for lognormal, because the distribution
fits poorly (Figure 2). Including the highest 2.5% of values from
a lognormal distribution would yield some very high values of
recruitment if this was used without truncation. The gamma
and normal distributions are less affected, losing just over 1% of
high and low values, respectively. To deal with the truncation
without creating bias, small adjustments were made to the
model parameters to maintain the mean for each truncated
model over the observed range of S.

Simulated values of recruitment
The probabilities of the different models are listed in Table 5 and
were used to define a 1000 randomly selected model set with the
parameters defined from the MCMC chains of the Bayesian analy-
sis (Table 3), truncated as described above. The resulting distri-
bution of simulated recruitment for different levels of S is
illustrated in Figure 5a. A comparison of observed and simulated
values of S is provided in Figure 5b. The match is a good compro-
mise, better than any model shown above (Figure 2). The mean
simulated recruitment is ,2.5% greater than the observed value,
and the distribution of deviations is a good match to the observed
deviations as described, through either a comparison of cumulat-
ive distributions (Figure 5b) or a Q–Q plot (Figure 5c).

Population simulation with full S–r variability
The results of simulating the 1000 selected populations, each para-
metrized with its own S–r relationship and exploited at a range of
constant F computed as the mean for ages 4–8 (F4 – 8) are shown in
Figure 6. For comparative purposes, included on the plots are the
historical observed values of r, S, and catch against F4 – 8 from the
2009 assessment (ICES, 2009). These observed values lie within
the range of simulated values, confirming that the simulations
conform closely to the data. The plots show the relatively stable
average recruitment for F4 – 8 of ,0.35. Above that level, there is
a rapidly rising probability of declining r, catch, and S. The risk
of S being below Blim rises rapidly from �5% for F4 – 8 ¼ 0.35 to
around 50% at F4 – 8 ¼ 0.4. The wide intervals on S and catch at
F4 – 8 . 0.35 illustrate the uncertainty in stock dynamics over
that range of F. The values of F for MSY vary among the simulated
populations, and the point values obtained above are now a pdf
(Figure 6d), which indicates a peak at F4 – 8 ¼ 0.35.

In this study, we were concerned with the S–r relationship, but
in practice, management will involve errors, which can be con-
sidered as probability distributions of realized values of F for a
given point or variable target Fs. This uncertainty in real F will
spread or smear the distributions of r, S, and catch horizontally,
reducing the slope on the risk curves and increasing the risks at
lower values of F. Therefore, for management purposes, given
the uncertainty in realized F, the MSY target F4 – 8 resulting in a
low probability of stock depletion will be significantly lower
than F4 – 8 ¼ 0.35 (ICES, 2007). The management plan derived
from these simulations is given as a thick blue line in Figure 6b
and c. The plan includes some protection for low biomass by
reducing F as S declines below 2.2 million tonnes.

Discussion
Although this work was part of a full MSE for NEA mackerel, the
sensitivity of the MSE to the S–r relationship can be judged
through its influence on the estimate of MSY for the population.
Here, we identified one key area of uncertainty for managing the
stock, the slope of the S–r curve as it approaches the origin. It is
clear from the maximum likelihood model selection that statisti-
cally barely indistinguishable models give totally different
responses to exploitation (Figure 3). Had this fact been ignored
and standard statistical fit criteria used, we would have given
advice that did not recognize the real uncertainty in the situation.
We chose to include model uncertainty by modelling multiple
populations each with a different S–r function drawn from par-
ameter sets of statistically selected models with similar responses.
There are other approaches. One would have been to select one
or two models a priori, e.g. only the Beverton–Holt and Ricker
models, and to evaluate them without consideration of other
options. Another option would have been to choose the
Shepherd model, which can take either form. By evaluating all
three model options and more, though, we have determined
whether there is sufficient signal in the data to resolve the issue
of choosing the Shepherd formulation over the hockey stick and
Ricker forms. Clearly, there are insufficient data to support the
Shepherd formulation, the range of S–r curves that result are
similar in form to the Ricker form, and the addition of an extra
parameter in the Shepherd function is not statistically justified.

The key issue for the estimation of MSY for this stock is the
slope of S–r at the origin, and the information available is poor.
The methodology presented includes a range of slopes that are
quite extreme, with the steepest 10× the shallowest. The steepest
slope comes from the Ricker type and implies much higher
recruitment at biomasses of just over a million tonnes, well
outside the range of the data. However, by including it, we
acknowledge its possibility. The models with extreme slopes
imply F4 – 8 for maximum yield of 1.5 and 0.29, although Fcrash

for the shallow slope is 0.31, just above the maximum making
this level hard to sustain, implying a lower value of FMSY. The
extreme cases can be compared with the maximum likelihood
models in Figures 1 and 3, which have a factor of 2 for S–r
slope at the origin and values of F4 – 8 for maximum yield of
0.55 and 0.33. The overall MSY is estimated at F4 – 8 ¼ 0.35
(Figure 6). By explicitly allowing such extreme values to be
included in an analysis, the uncertainty is acknowledged and
accounted for by assigning probabilities derived directly from
what can be shown as known.

This approach has its critics; Rochet and Rice (2009) argued
that numerical approaches such as described here disguise a lack

Table 6. Truncation levels for different parametric distributions
used to generate S–r deviants.

Model G (gamma) L (lognormal) N (normal)

Lower limit 0.00024 0.00001 0.0118
Upper limit 0.989 0.974 0.999
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of knowledge, as in a cloak of scientific illusion. Indeed, if the
approach here was described as representing the truth about
NEA mackerel population dynamics, we would be guilty of
exactly that. The use of an extensive numerical analysis of the
type reported here is not an attempt to say that we have defined
the recruitment response for the stock, but rather that we have
attempted to characterize our ignorance of the dynamics in our
evaluation by including a wide range of possible functions based
explicitly on the data available. As the fishery is managed not
with wise words, but with distinct quantities of catch, a require-
ment of any analysis is advice in this numerical form. The analysis
here works because it is statistically based and results in estimates
consistent with historical estimates of recruitment, S, and catch.

In giving advice, one needs to be conscious of the history of the
stock. It is particularly important not to be overly optimistic about
the reproductive potential for NEA mackerel at low stock size.

Iversen (1981) records the collapse of the North Sea mackerel
stock at high, but uncertain, levels of fishing, and that component
of the stock has still not recovered to previous levels some 30 years
later. Acknowledging the uncertainty in the manner shown here
adds the necessary caution.

This approach may appear superficial in its consideration of
temporal stability and overelaborate in modelling the relationship
with abundance. For some stocks, this approach would indeed be
inappropriate. However, it is the uncertainty of the slope of the
S–r relationship at the origin that is currently of most importance
for this stock compared with concerns related to longer-term
change. The apparent temporal stability in recruitment may be
because the reproductive strategy for NEA mackerel involves
extended spawning in both time and latitude, making recruitment
success relatively robust to short-term variability and (relatively)
small shifts in climate with respect to the changes through the

Figure 5. Comparison of observed (red dots) and simulated (small black dots) recruitment (r). (a) Spawning-stock biomass (S) from 0.1 to
4 million tonnes, with 5th (blue), 50th (yellow), and 95th (blue) percentiles, (b) cumulative probability distributions of observed and simulated
r values over observed S ranges, and (c) Q–Q plot of observed and simulated r values over observed S ranges. Simulated values are derived
from 1000 models with hockey stick and Ricker functional forms and truncated normal or lognormal stochastic deviation.
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spawning season. Evaluations of spawning date (ICES, 2008b) and
distribution show only small deviations over the past 20 years for
the stock as a whole (Beare and Reid, 2002; Borja et al., 2002).

Including uncertainty in the stock dynamics is an important
aspect of many MSEs, and the methodology described here is
important for stocks with poorly defined dynamics. Currently, it
is rare for multiple biological hypotheses characterized by several
S–r functional relationships to be included in evaluations of
stock dynamics for setting MSY targets or carrying out an MSE.
In 2008, ICES re-evaluated 16 management plans developed over
the previous 6 years (ICES, 2008a). Several did include tests of
multiple S–r functions, although those that did, such as North Sea

herring or North Sea cod, were limited to a single functional
form with two or three values for a parameter to imply environ-
mental change. Sometimes, model choice is important but not
considered appropriately; for North Sea plaice, the choice of S–r
model between hockey stick and Ricker implies a factor of 2 in
FMSY. Although the Ricker model is used in MSE, the implication
for the estimate of FMSY is not discussed in the report on MSE
(STECF, 2007). For most of these ICES stocks, random noise is
added to the values of a fixed function with fixed parameters.
Effectively, that implies random variation in the parameter
scaling the relationship, but without varying other parameters or
the form of the function. Of the simulations reviewed by ICES,

Figure 6. Results from the stochastic equilibrium evaluation of exploitation at constant F (F4 – 8). Recruitment follows 1000 selected S–r
relationships. Plots show 0.025, 0.05, 0.25, 0.5, 0.75, 0.95, and 0.975 quantiles of (a) simulated r, (b) S, and (c) catch. Points indicate historical
values of r, S, and catch against F4 – 8. Plot (d) shows the risk of S being below Blim (thick dashed line), the risk of S being below Bpa (thick
dotted line), and the distribution of F ¼ FMSY (red solid line), and the F for exploitation at a 5% risk of S , Blim (vertical green dotted line on
all panels). The uncertainty in dynamics at higher values of F is illustrated with the wide intervals on S and catch at F4 – 8 . 0.35. FMSY and risks
are estimated here without observation or implementation error. The current management plan including implementation and measurement
error is given as the thick blue line on plots (b) and (c).
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it is only for NEA mackerel that the uncertainty is acknowledged
and the type of approach described here used to give uncertainly
in both functional form and parameter values.

In our opinion, the approach described here provides a work-
able methodology. Others have examined this issue in slightly
different circumstances. For instance, Brodziak and Legault
(2005) addressed the issue of functional form for rebuilding
targets and used a similar approach for averaging the results, but
their method is less useful for defining risk. The philosophy
espoused by Rademeyer et al. (2007), in which different hypoth-
eses are included with formal plausible weights, seems to be a
good approach. The method provided here is a practical
example of how to do this for a situation where the data are not
particularly informative but the results depend directly on the
choices. Where information on other closely related stocks is avail-
able, a move to informative priors may augment this approach.

Had we elected to use a single model here, the results would
have been highly sensitive to choices driven by AIC or DIC.
With scenario testing (ICES, 2008a), it would have been imposs-
ible to determine a composite risk and/or probability distribution
for FMSY. The weighting approach of Kass and Raftery (1995) used
provides a means of assigning probabilities and providing a set of
populations with appropriate weight for each type. This allows
risks to be evaluated from the composite of populations, a
useful approach and a step forward in providing robust advice
better reflecting a lack of knowledge.

To conclude, when the information available does not explain a
large proportion of the recruitment variability, care needs to be
taken to ensure that the form of the functional relationship and
the distribution of the variation are well founded. Under circum-
stances where the relationship is poorly supported, selecting a
single model can have great influence on advised harvest strategies,
so is not recommended. Selecting a distribution of models gives a
more complete perception of the potential for different dynamics.
In this case study, the hockey stick is favoured over the Ricker by
75–25%. The balance between different parametric deviation
models is 50, 43, and 7% for normal, gamma, and lognormal,
respectively. More complex models with four parameters are
rejected by both Bayesian and maximum likelihood methods. For
all models, the Bayesian method provides median values of s

slightly higher than that given by the maximum likelihood
method. We consider that the multifunctional approach taken
here to model recruitment is preferable to the use of a single model.

Supplementary material
Supplementary material is available at the ICESJMS online version
of this manuscript in the form of uncertainty in S before 1980, a
table of prior distribution means (m) and deviances (t ¼ 1/s2),
and truncation to exclude zero values for each parameter in each
model fitted using WINBUGS. Initial values are also provided
for three MCMC runs used to check for model convergence.
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