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2Leibniz Institute of Marine Sciences, Düsternbrooker Weg 20, 24105 Kiel, Germany
3Department of Forest Sciences, University of Helsinki, Latokartanonkaari 7, PL 27, 00014 Helsinki, Finland

*Corresponding Author: tel: +49 431 8805634; fax: +49 431 8803150; e-mail: voss@economics.uni-kiel.de

Voss, R., Hinrichsen, H-H., Quaas, M. F., Schmidt, J. O., and Tahvonen, O. 2011. Temperature change and Baltic sprat: from observations to
ecological–economic modelling. – ICES Journal of Marine Science, 68: 1244–1256.

Received 8 June 2010; accepted 16 March 2011; advance access publication 9 May 2011.

Temperature effects on Baltic sprat are many and include both direct and indirect effects. Increasing temperature is thought to
increase the survival of all early life stages, resulting in increased recruitment success. We quantified the spatially resolved temperature
trend for major spawning grounds and depth layers being most relevant for sprat eggs and larvae, using a three-dimensional hydro-
dynamic model for 1979–2005. Results confirmed an underlying positive temperature trend. Next, we tested these time-series as new
explanatory variables in an existing temperature-dependent recruitment function and applied these recruitment predictions in an age-
structured ecological–economic optimization model, maximizing for profit. Economic optimal solutions depended upon variability in
temperature trajectories. Under climate-change scenarios, mean optimal fishing mortality and related yields and profits increased. The
extent of the increase was limited by the general shape of the stock–recruitment model and the assumption of density-dependence.
This highlights the need to formulate better environmentally sensitive stock recruitment models. Under the current knowledge of
Baltic sprat recruitment, the tested climate-change scenarios would result in a change in management targets. However, to serve
as a quantitative management advice tool, models will have to address the above-mentioned concerns.

Keywords: climate change, ecological–economic model, management, species interaction.

Introduction
There has been a general global warming trend throughout the
past decades and for the European region, it has been calculated
to be in the range of 0.48C per decade (IPCC, 2007). Effects of
climate-change-related temperature increase on marine ecosys-
tems have been documented in many places, e.g. in the North
Atlantic Ocean (Beaugrand, 2009) as well as in coral reefs
(Hoegh-Guldberg et al., 2007). Such changes are affecting ecosys-
tems on all trophic levels, i.e. from phytoplankton to carnivorous
fish stocks (Beaugrand, 2009). In commercially exploited fish
stocks, distribution patterns might change (Beaugrand, 2009) or
stock dynamics could be influenced if stock–recruitment relation-
ships turn out to be temperature-dependent (Lillegaard et al.,
2005; Duplisea and Robert, 2008). Such changes in stock dynamics
would inevitably have socio-economic impacts, because the fishing
industry will be affected (e.g. fleet profitability: Bastardie et al.,
2010; net economic production: Arnason, 2007). This requires
adaptive management strategies to guarantee sustainability
(Binder et al., 2010).

Management strategy evaluation (MSE) is a powerful tool
for investigating and comparing different management
options (Schnute et al., 2007). A number of frameworks have
been established (e.g. TEMAS, Ulrich et al., 2007; FLR, Kell
et al., 2007) and applied to a wide range of stocks (Dunstan
and Bax, 2008; Dorner et al., 2009). Management goals are

typically predefined and biologically driven (stock status) with
subsequent (or parallel) economic considerations. MSE
studies, including economics as well as climate-change effects,
are, however, very scarce (Link and Tol, 2009). Nonetheless,
conceiving strategies for more sustainable fisheries also requires
an economic approach, for two complementary reasons. First,
economic incentives determine how resources are used in a
market economy. Second, unlike ecology, economics provide
sound methods for operationalizing normative societal
objectives, such as welfare and sustainability. Therefore, advice-
giving organizations (in particular ICES) have recently
broadened their scope to also exploring the potential of
coupling ecological and economic considerations for integrated
advice (ICES, 2009a).

In this study, we use Baltic sprat as an example of a feasible way to
apply economic normative objectives (in this case, maximizing the
net present value of resource rents) in an ecological–economic
model of a fishery harvesting an age-structured fish population.
We illustrate how dynamic economically optimal management tra-
jectories of fishing mortality, yield, and stock size can be derived
even when taking into account the effects of climate change. The
results of this study are intended to provide an economic baseline
scenario. Biological constraints have not been taken into account.
This could be done by setting appropriate side conditions in the
optimization, but for Baltic sprat, there is still a continuing
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discussion about the appropriate constraints. We used an
age-structured ecological–economic model, because such models
might result in significantly different management recommen-
dations from classical biomass approaches (Tahvonen, 2008,
2009, 2010). Furthermore, using an age-structured approach
fosters communication and data exchange between economists
and stock assessment scientists.

In the Baltic Sea, sprat (Sprattus sprattus) is an ecologically
important pelagic fish species (Kornilovs et al., 2001) as both a prey
for top predators (e.g. cod and harbour porpoise) and a predator of
zooplankton and fish eggs (Bagge et al., 1994; Köster and
Möllmann, 2000a, b). Currently, it also represents the most abundant,
commercially exploited species in the Baltic (ICES, 2010a). The Baltic
sprat stock has displayed large fluctuations that were influenced by
variable recruitment strength (Köster et al., 2003). Temperature
appears to be one of the main drivers for recruitment success during
all early life stages of sprat (Baumann et al., 2006a; their Figure 5).
Higher temperatures result in: (i) lower egg mortality (Hinrichsen
et al., 2007), (ii) faster egg development, resulting in lower predation
mortality (Nissling, 2004; Petereit et al., 2008), (iii) higher larval
growth rates, being coupled with better survival (Baumann et al.,
2006b), (iv) higher larval prey abundance, i.e. Acartia sp. abundance
(Möllmann et al., 2003; Dickmann et al., 2006), and (v) better juvenile
growth and survival (Peck and Daewel, 2007).

Therefore, environmentally sensitive stock–recruitment models
have been formulated that include temperature as an explanatory
variable (ICES, 2010b). The model explaining most recruitment
variability includes spawning-stock biomass (SSB), a larval trans-
port index (bottom depth anomaly; Baumann et al., 2006a), and
satellite data of sea surface temperature in May, recorded on a
2 × 28 grid (ICES, 2010b). However, sea surface temperature as
recorded by satellite data might only be a rough indicator of temp-
eratures experienced by sprat early-life-history stages. Eggs are
usually found in 50–60 m depth (ICES, 2010c) and larvae, as well
as juveniles, do not only inhabit a thin surface layer, but the
upper 10 m of the water column (Voss et al., 2007).

The first objective of this study was therefore to confirm and
quantify historical (1979–2005) temperature increase in the
Baltic Sea in depth layers inhabited by sprat eggs and larvae/juven-
iles. Based on a spatially resolving hydrodynamic model for the
Baltic Sea, we established a temperature time-series providing a
full coverage of the potential distributional area of eggs and
larvae/juveniles. The second objective was testing these time-series
data as explanatory variables in the recruitment function to deter-
mine whether these data offered a better alternative to satellite data.

The third objective was to calculate optimal fishing mortality
rates and corresponding stock size for a matrix of economic vari-
ables (costs and interest rate), as well as for environmental forcing
variables (temperature and bottom depth anomaly). In a final step,
we calculated optimal fishing mortalities, maximizing the net
present value of resource rents under two climate-change scen-
arios. These final calculations should, however, be seen as only
an illustrative example rather than real management advice,
because some strong assumptions about species interactions and
economic costs had to be made.

Material and methods
Temperature trends
To obtain vertically and spatially resolved temperature fields, a
hydrodynamic model for the Baltic Sea (Lehmann, 1995) was

utilized for 1979–2005. The hydrodynamic model is based on
the free surface Bryan–Cox–Semtner model (Killworth et al.,
1991), which is a special version of the Cox numerical ocean
general circulation model (Bryan, 1969). A detailed description
of the equations and modifications necessary to adapt the model
to the Baltic Sea can be found in Lehmann and Hinrichsen
(2000). A detailed analysis of the Baltic Sea circulation was done
by Lehmann et al. (2002).

The model has a 5 km grid horizontal resolution and 60 depth
levels. The thickness of the different levels is chosen to account best
for the different sill depths in the Baltic. The Baltic Sea model is
driven by atmospheric data provided by the Swedish
Meteorological and Hydrological Institute (SMHI: Norrköping,
Sweden) and river run-off taken from a mean run-off database
(Bergström and Carlsson, 1994). The meteorological database
covers the entire Baltic Sea drainage basin with a grid of 1 × 18
squares. Meteorological parameters, such as geostrophic wind,
2 m air temperature, 2 m relative humidity, surface pressure, clou-
diness, and precipitation are stored with a temporal increment of
3 h. Prognostic variables of the model are the baroclinic current
field, the three-dimensional temperature and salinity distri-
butions, the two-dimensional surface elevations, and the barotro-
pic transport. Physical properties simulated by the hydrodynamic
model agree well with known circulation features and observed
physical conditions in the Baltic (Lehmann and Hinrichsen, 2000).

Data were primarily aggregated monthly for 10 m depth layers
and for rectangles (representing quarters of ICES rectangles) of
�15 × 15 nautical miles (Figure 1). To obtain life-stage-specific
temperature trends, data about typical peak seasonal, as well as
vertical abundance, were further aggregated over distribution
ranges. Peak egg abundance was assigned to 50–60 m depth
(ICES, 2010c) in May (Voss et al., 2006), with spawning being
aggregated in the deep basins. Temperature trends were calculated
separately for the three major spawning grounds (Bornholm Basin,
Gdańsk Deep, Gotland Basin; Figure 1), as well as for the entire
area (weighted by spawning ground size), by averaging tempera-
ture data in the specific depth intervals. Because sprat larvae and
juveniles are distributed in the 0–10 m depth layer (Voss et al.,
2007), we investigated whether there existed significant tempera-
ture trends in this depth layer in May (larvae) and August

Figure 1. Major sprat egg distribution areas (50–60 m depth) in the
Baltic Sea. Rectangles indicate primary horizontal resolution;
different shadings indicate aggregation to spawning grounds for later
analysis.
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(juveniles). Because of the high drift and mixing potential
(Hinrichsen et al., 2005; Baumann et al., 2006a), no sub-basin
classification was applied for this life stage. We calculated
decadal temperature trends by taking the slope from linear
regression lines. These trends were tested for statistical
significance.

Stock–recruitment models
We tested whether the use of the newly compiled ambient temp-
erature time-series would improve the fit of an existing environ-
mentally sensitive stock–recruitment function. The ICES
Workshop on Including Socio-Economic considerations into the
Climate–recruitment framework developed for clupeids in
the Baltic Sea (WKSECRET) formulated the following stock–
recruitment function (ICES, 2010b):

log(X1t) = r1 + r2 log(SSBt) + r3 SSTt + r4SST2
t + r5BDAt

+ r6BDA2
t + r7BDA3

t , (1)

where X1t denotes the recruitment-at-age 1 (millions), SSBt the
SSB (×1000 t), SSTt the satellite-derived surface temperature in
May (8C), BDAt the bottom depth anomaly (a transport index;
ranging from approximately 21 to 2), all in year t, and the rj,
j ¼ 1, . . . ,7, the constant.

The model revealed no violation of assumptions regarding the
independence, homogeneity of variance, and normality of the
residuals when checking the autocorrelation graphs and
the Shapiro–Wilk normality test of residuals. The model explains
more than 75% of the variance. The model was fitted to time-series
1979–2008, because BDAt is only available from 1979 on
(Baumann et al., 2006a). We compared the fit of the model
based on the Akaike information criterion (AIC) when using
different temperature time-series: (i) May surface temperature
based on satellite data (original model), (ii) May 0–10 m depth
(larval distribution), (iii) August 0–10 m depth (older larvae/
juveniles), and (iv) May 50–60 m depth (egg depth at peak spawn-
ing; aggregated data). AIC describes the predictive error of the
model, thereby taking into account the fit, but also the model
complexity (Burnham and Anderson, 2004). Terms that were no
longer significant when using an alternative temperature time-
series were removed from the model. For this comparison, the
time-series had to be restricted to 1979–2005, because hydrodyn-
amic model results were only available up to 2005.

The same analysis was repeated for a second, alternative
stock–recruitment model. Here, we used the same environmental
dependence, but included density-dependence in a Ricker-type

model:

log
X1t

SSBt

( )
= r̂1 + r̂2 log(SSBt) + r̂3 SSTt + r̂4 SST2

t

+ r̂5BDAt + r̂6BDA2
t + r̂7BDA3

t . (2)

It seems sensible to suggest density-dependence in sprat because of
the existence of cannibalism (Köster and Möllmann, 2000a), as
well as food competition (Casini et al., 2006). In Baltic herring,
food competition with sprat was reported as the main driver of
growth variation at sprat stock sizes above a threshold value
(Casini et al., 2010). The strong increase in sprat stock size in
the 1990s therefore contributed to the drastic decline of herring
SSB. This indicates a total carrying capacity for clupeid fish in
the Baltic Sea and advocates the use of a density-dependent
stock–recruitment relationship in our optimization model,
without which unrealistically high stock sizes might result.

Ecological–economic modelling
Finally, we applied an age-structured ecological–economic model
to investigate the sensitivity of optimal fishing mortality rates and
corresponding stock size for a matrix of economic (costs × inter-
est rate), as well as for environmental forcing variables
(temperature × bottom depth anomaly), using the best environ-
mentally sensitive stock–recruitment function from the previous
analysis. We used Xat to denote the stock (in numbers) of age
class a ¼ 1, . . . ,A in year t ¼ 0, 1, . . . . We considered eight age
classes, i.e. we set A ¼ 8 as in the ICES standard assessment
(ICES, 2010a). The population dynamics of the age-structured
fish stock are given by:

X1, t + 1 = r
∑A

a=1

mawaXat

( )
; r SSBt( ),

Xa+1,t+1 = ba 1 − fa 1 − e−q Et
( )( )

Xat, a = 1, . . . ,A − 2,

XA,t+1 = bA−1 1 − fA−1 1 − e−q Et
( )( )

XA−1,t+

bA 1 − fA 1 − e−q Et
( )( )

XAt,

(3)

where ba, a ¼ 1, . . . ,A are age-specific survival rates, ma, a ¼
1, . . . , A the proportion mature at age, wa the weights of a fish
at age a, fa, a ¼ 1, . . . ,A are age-specific catchability parameters,
q is an age-independent catchability parameter (Table 1), and r
(SSBt) a recruitment function. The SSB was given by
SSBt =

∑A
a=1 mawaXat .

In Equation (3), Et denotes fishing effort in year t. In the follow-
ing calculations, we choose units of effort such that the

Table 1. Parameters used in the ecological–economic model.

Age class Maturity (ma) Weight (wa) (kg) Catchability (fa) Survival rate (ba) Numbers 1 April 2009 (109) Price ( E kg21)

1 0.17 0.0053 0.31 0.6703 109.529 0.12
2 0.93 0.0085 0.54 0.7261 28.698 0.12
3 1.0 0.0097 0.76 0.7483 28.945 0.12
4 1.0 0.0103 1.0 0.7558 8.392 0.12
5 1.0 0.0108 1.0 0.7408 2.029 0.12
6 1.0 0.0112 1.0 0.7408 5.368 0.12
7 1.0 0.0113 1.0 0.7189 1.770 0.12
8 1.0 0.0110 1.0 0.7189 0.604 0.12
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age-independent catchability parameter is normalized to unity,
i.e. we set q ¼ 1. Age-specific catchabilities (fa) were estimated
based on mean age-specific fishing mortalities for 2007–2009
(FBAR 07 – 09), as reported in ICES (2010a), with fA ¼ 1 for the
oldest age class by normalization. With this specification of the
harvesting function (Spence, 1973; Tahvonen, 2009), Et can be
directly interpreted as the instantaneous fishing mortality that
applies to the oldest age class.

Age-specific survival rates [ba ¼ exp (2M2a)] were derived
from predation mortality estimates (M2a values) as estimated by
a stochastic multispecies model (SMS: Lewy and Vinther, 2004;
ICES, 2010a) for the size of the cod stock in 2009 (ICES, 2010a).
Age-specific maturity (ma), as well as age-specific weights (wa)
used in Equation (3), were taken from single-species standard
assessment (ICES, 2010a).

The objective function we applied was to maximize the net
present value of utility from harvesting fish:

∑1
t=0

@t 1

1 − h

∑A

a=1

pwafa(1 − e−Et )Xat − cEt

[ ]1−h

. (4)

Here, utility in year t is a concave function of this year’s aggregate
profit

∑A

a=1

pwafa(1 − e−Et )Xat − cEt . (5)

We used @ ≤ 1 to denote the discount factor, which can be calcu-
lated with the annual discount rate d as @ = 1/(1 + d).

The term [1/(12h)] formulates the fact that there is a broad
aversion against large fluctuations in catches or income between
years in the fishing industry. The higher the h, the more a constant
income stream over time is preferred. Such a desire for relative
constancy is reflected in several management plans for European
fish stocks (e.g. Baltic cod; EU Commission, 2007), which have
been agreed upon by a broad range of stakeholders, including
fishers. For example, the formulation stipulates that TACs shall
not change by more than a certain percentage between two sub-
sequent years (15% for Baltic cod). For h ¼ 0, the objective func-
tion, Equation (3), was simply the net present value of resource
rents (or net revenues). In this study, results were calculated by
applying a slightly non-linear objective function, h ¼ 0.1.

According to European legislation, sprat has only one market-
ing category, independent of age or size. Hence, the price p was the
same for all age classes. Unit effort costs are denoted by c. Data
availability did not allow an estimate of the unit effort cost for
Baltic sprat. North Sea herring represents a stock similar to
Baltic sprat in characteristics relevant to harvesting, i.e. a schooling
pelagic fish that has a harvesting function available for unit effort
cost (Bjørndal and Conrad, 1987; Nostbakken and Bjørndal, 2003;
Nostbakken, 2008). In the following, we describe our approach of
transferring the unit effort cost parameter for North Sea herring to
our Baltic sprat model. Using a biomass model of North Sea
herring, Bjørndal and Conrad (1987) estimated a catchability
coefficient of qher-nsea,SSB ¼ 0.0011 per vessel year. The relevant vari-
able for the production function of a fishery is the concentration of
fish (Clark, 1990, Chapter 7.6), which can be approximated as the
current stock level divided by the carrying capacity (the unfished
stock size). Nostbakken and Bjørndal (2003) estimated the carrying
capacity of North Sea herring to be 5270 thousand tonnes.

When exerting zero fishing mortality in our age-structured
population model, the parametrization yields a biomass of the
unfished Baltic sprat stock of 1962 thousand tonnes. This can be
interpreted as the carrying capacity of the Baltic Sea, which
follows when applying our model specifications. Hence, for trans-
ferring the catchability parameter of North Sea herring to Baltic
sprat, it has to be adjusted by the factor of 5270/1962≈2.69,
which means that the same effort would result in a 2.69-fold
higher fishing mortality for Baltic sprat than for North Sea
herring. The catchability parameter for North Sea herring
applies for the SSB, whereas in our model, it applies to the
oldest age class. To adjust for this, we estimated the maximal
fishing mortality relative to fishing mortality on SSB for Baltic
sprat from ICES (2010a) data, obtaining a factor of 1.63 on
average over the years 2006–2009. This results in a catchability
parameter of q ¼ 0.0011 × 2.69 × 1.63 ¼ 0.0048 per vessel year.
Nostbakken and Bjørndal (2003, Table 3) and Nostbakken
(2008) report an average variable cost per vessel year of
1 189 656 NOK in 2001, which was equivalent to �0.15 million
Euros. This yields a unit effort cost parameter of 0.15/0.0049 ¼
31.25 million Euros per unit of effort, where effort is measured
in units of 1/q. To check for the influence of deviations from
our cost estimate, we performed a sensitivity analysis for a broad
range of cost estimates. The average price for sprat was, according
to Finnish Statistics Yearbooks for 2004–2009 (Finnish Game and
Fisheries Research Institute, http://www.rktl.fi/english/statistics/
economy_and_the/producer_prices_for), 0.12 million Euros per
1000 t.

To determine the optimal management of the Baltic sprat, we
numerically solved the optimization problem. For this, the
dynamic optimization was performed using the interior-point
algorithm of the Knitro (version 6.0) optimization software with
Matlab (R2009b) and AMPL (A Modeling Language for
Mathematical Programming, AMPL Optimization LLC,
Albuquerque, USA).

Climate scenarios
Using this ecological–economic model, we investigated optimal
management under two climate-change scenarios. These are
based on International Panel on Climate Change (IPCC) emission
scenarios A2 and B2 predicted using coupled regional atmospheric
and hydrodynamic circulation models (BACC, 2008; Meier, 2006).
The A2 scenario displays continually increasing emissions
throughout the 21st century, whereas the B2 scenario displays an
initial increase in emissions, which flattens from around 2050.
These runs resulted in an increase in SST of 3.5 and 38C, respect-
ively, which are average projections for 2071–2100. We followed
an approach of the Working Group on Integrated Assessments
in the Baltic Sea (ICES, 2009b) to derive future temperature
trends. In short, a time-series technique exploiting the autocorre-
lation pattern of the observed time-series was applied (Ripa and
Lundberg, 1996) to create full-time trajectories of hydrographic
variables. Time-series of future temperature were generated
using the mean, variance, and autocorrelation structure of the his-
torical time-series and a linear trend has been added to achieve the
temperature values until 2100. Finally, to account for uncertainty
in the predictions, a random noise component, based on the vari-
ation observed in 1973–2005, was added and 1000 future tempera-
ture time-series were generated and used for model forcing.

To estimate the potential impact of temperature change on
optimal management results, the two climate-change scenarios
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were compared with a no-climate-change scenario, using the same
mean, variance, and autocorrelation structure of the historical
time-series, but without a trend added.

Results
Temperature trends
On all major spawning grounds, a significant (p , 0.01) tempera-
ture increase was recorded from 1979 to 2005 for the depth layer

50–60 m (Figure 2), which is most relevant for floating sprat
eggs. The amount of temperature increase decreases from the
Bornholm Basin to the Northern Gotland Basin, i.e. from south-
west to northeast. Linear regression analysis estimated that the
total temperature increase was �0.98C (Northern Gotland
Basin) to 1.58C (Bornholm Basin) over the observation period.
Despite the overall positive temperature trend, within-area varia-
bility (as measured by the standard deviation), as well as

Figure 2. Temperature trend in the depth layer 50–60 m from 1979 to 2005, for four major sprat spawning grounds in the Baltic Sea (see
Figure 1). Area means are provided, along with standard deviations and the results of linear regression analysis (fit: r2; slope: b1).

Figure 3. Temperature trend in the surface layer 0–10 m depth from 1979 to 2005, for the complete Central Baltic in May (left) and August
(right). Area means are provided along with standard deviations.
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year-to-year variability, was high. Lowest variability was found for
both components in the central Gotland Basin, where the fit of the
linear regression was best. In all other areas, the general warming
trend was partly masked by year-to-year variability because of
additional effects. In the surface layer (0–10 m depth; Figure 3),
the regressions were not significant (p . 0.05). Within-area varia-
bility was large. Year-to-year variation was more pronounced in
May than August, and was stronger than the underlying
warming trend.

Stock–recruitment relationships
Using the alternative temperature time-series (1979–2005) as
determined by hydrodynamic modelling did not improve the fit
of the stock–recruitment function (Table 2). Out of the three
tested variants, temperature at 0–10 m depth in August had the
highest explanatory power (AIC ¼ 20.3), but still explained less
variance than the satellite data for May surface temperature
(AIC ¼ 18.65). When including density-dependence in the
recruitment model (Table 3), temperature at 0–10 m depth in
August, as derived from the hydrodynamic model, explained
most of the variability. However, the differences in model fit
using original, or new, model-based temperature datasets were
rather small, compared with the difference that existed depending
on whether or not data for the past 3 years were included. Overall,
models including density-dependence had slightly higher AIC
values.

We assumed density-dependence in our modelling approach
and used model number 7 (Table 3), i.e. the model giving the
second best fit for this kind of stock–recruitment function
(Table 3). We did not use model 8 (best fit), because temperature
projections under climate-change scenarios are currently only
available for satellite-derived surface temperature and not for

any other water depth (Meier, 2006; BACC, 2008). We estimated
the effect of variation in environmental conditions (SST and
BDA) on recruitment strength (Figure 4). In these calculations,
SSB was maintained at 800 000 t. In the range of historically
observed variability, maximum recruitment was reached at

Table 2. Fit of sprat recruitment model (as estimated by ICES, 2010b), using different temperature time-series (SST).

Model number Temperature source (SST) Years AIC Insignificant variables

log(X1t) = r1 + r2 log(SSBt) + r3 SSTt + r4SST2
t + r5BDAt + r6BDA2

t + r7BDA3
t

1 SAT-May (original model) 1979–2008 30.67
2 SAT-May 1979–2005 18.65 BDA3

3 0– 10 m Augusta 1979–2005 20.3 SST2

4 0– 10 m Maya 1979–2005 25.75 SST2; BDA3

5 50–60 m Maya 1979–2005 25.64 BDA3

Variables turning insignificant when using alternative time-series are indicated; SSB, spawning-stock biomass; SST, temperature; BDA, bottom depth anomaly;
SAT-May, sea surface temperature in May as derived by satellite data; 0–10 m August, temperature in 0–10 m depth in August; 0–10 m May, temperature
in 0–10 m depth in May; 50–60 m May, temperature in 50–60 m depth in May.
aData from hydrodynamic model.

Table 3. Fit of sprat recruitment model (as estimated by ICES, 2010b, and including density-dependence), using different temperature
time-series (SST).

Model number Temperature source (SST) Years AIC Insignificant variables

log(X1t/SSBt) = r̂1 + r̂2 log(SSBt) + r̂3 SSTt + r̂4 SST2
t + r̂5BDAt + r̂6BDA2

t + r̂7BDA3
t

6 SAT-May (original model) 1979–2008 34.87
7 SAT-May 1979–2005 23.37 BDA3

8 0– 10 m Augusta 1979–2005 20.77 SST2

9 0– 10 m Maya 1979–2005 29.1 SST2

10 50–60 m Maya 1979–2005 29.8 SST2

Variables turning insignificant when using alternative time-series are indicated; SSB, spawning-stock biomass; SST, temperature; BDA, bottom depth anomaly;
SAT-May, sea surface temperature in May as derived by satellite data; 0–10 m August, temperature in 0–10 m depth in August; 0–10 m May, temperature
in 0–10 m depth in May; 50–60 m May, temperature in 50–60 m depth in May.
aData from hydrodynamic model.

Figure 4. Sprat recruitment strength (age 1) in dependence of sea
surface temperature in May (SST) and bottom depth anomaly (BDA,
representing larval drift). Recruitment per SSB is calculated according
to the formula: log(X1t/SSBt) = r̂1 + r̂2log(SSBt) + r̂3 SSTt + r̂4SST2

t +
r̂5BDAt + r̂6BDA2

t + r̂7BDA3
t .
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�6.38C sea surface temperature in May and a BDA of 1.4 (indica-
tive of retention of larvae within spawning grounds). Because
changes in BDA cannot currently be forecast, we used the
average value in 1979–2008 for further computations (BDA ¼
0.096).

Optimal management of the Baltic sprat stock
Time-trajectory under no climate change
The time-trajectory assuming no positive trend in temperature
demonstrated that the largest year-to-year changes in F, SSB,
yield, and profit happened in the first 5 years of the simulation

(Figure 5). Already after 5 years, i.e. in 2015, a stable steady state
is reached. Mean optimal fishing mortality rapidly adjusted
from ,0.3 in the first year of the simulation (2010) to 0.39
in the steady state. Small deflections in the trajectories during
transition to the steady state are attributed to the initial age
structure. The long-term mean optimal size of the SSB is esti-
mated at �970 000 t, with an annual catch of �250 000 t and
an estimated profit of �19 million Euros. There is a broad
range of possible solutions that depend on variability in the
1000 temperature time-series iterations. Because the recruit-
ment function has a maximum at �6.38C and because it is

Figure 5. Maximizing net revenue from the Baltic sprat stock: model results of 1000 temperature time-series iterations, assuming no climate
change. Mean values (black lines) are given along with a range of possible solutions (grey area).
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density-dependent, there is an upper bound, which is regularly
reached. The existence of an upper limit in the recruitment
function resulted in a skewed distribution of possible outcomes
around the mean. This skewed distribution in recruitment
caused skewed distributions also in the results on F, SSB,
yield, and profit.

Effect of SST and BDA
We investigated optimal management for a range of combinations
of SST and BDA values that were held constant over time. The
general shape is the same for fishing mortality, SSB, and profit
(Figure 6). Highest values were calculated for a combination of
environmental conditions that were most favourable for recruit-
ment. After 20 years of simulation, i.e. when a steady state was
reached after the initial adjustment period, instantaneous fishing
mortality rates varied between 0.1 and 1. Only under a permanent
state of optimal environmental conditions could values as high as
1 be reached. For the long-term mean values of BDA and SST, an
optimal fishing mortality of �0.39 would result from the simu-
lations (see also Figure 5). Therefore, SSB levels vary between
200 000 t and 1.6 million t, whereas profits range between 0 and
70 million Euros per year.

Effect of costs and interest rate
Variations in fishing costs have a large impact on the optimal
solution (Figure 7). As could be expected, rising costs generally
resulted in lower fishing mortalities and associated higher SSB
values, but lower profits. In the extremes, fishing mortality
ranged from 0.22 (high costs and small interest rate) to 1.27
(zero costs and high interest rate). Variation in interest rate
had only minor impact at a cost parameter of 31.25, our
best-guess estimate, but became important at very small cost
estimates.

Climate-change scenarios
Using the climate-change scenarios A2 (Figure 8) and B2 (Figure 9)
resulted in quite similar solutions. As for the no-climate-change
scenario, the largest year-to-year changes occurred in the first 5
years. However, the period needed to achieve a (relatively) stable
state was considerably longer. Over a long period, fishing mortality
did not reach a fixed value, but steadily increased with temperature
increase. After an initial decline, optimal SSB was calculated to be
larger than in the no-climate-change scenario, i.e. .1 million
tonnes in both scenarios. At the beginning of the simulation,
mean yields and profits were somewhat lower, but reached higher
values at the latest in 2020. Maximizing net revenues resulted in

Figure 6. Ecological–economic optimization for a range of SST and BDA values: Results after 20 years modelling time, i.e. after reaching the
steady state, are given for instantaneous fishing mortality (F; left panel), SSB (middle panel), and profit (right panel).

Figure 7. Ecological–economic optimization for a range of cost (unit effort cost parameter) and interest rate values. Results after 20 years
modelling time, i.e. after reaching the steady state, are given for instantaneous fishing mortality (F; left panel), SSB (middle panel), and profit
(right panel).
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mean profits in 2030, which were .18% higher in the A2 scenario
than in the no-climate-change scenario (15% for B2 scenario).
At the start of the simulation, as well as after reaching the (rela-
tively) steady state after 25 years, all output components (SSB,
recruitment, F, yield, and profit) were statistically different
between the no-climate-change scenario and scenarios A2 and B2
(Table 4). The two scenarios assuming climate change were,
however, never statistically different (p . 0.05). After only 5
years of simulation, some statistical differences were noted
(Table 4).

Discussion
This study examined how the effect of climate-change-induced
temperature increase can be examined using an ecological–econ-
omic model of a fishery harvesting an age-structured fish popu-
lation. For Baltic sprat, we illustrated how to combine field
observations of temperature increase and stock–recruitment
modelling to estimate optimal management strategies in depen-
dence of economic factors and climate-change scenarios.
Optimal management strategies, in our terminology, maximize a
societal objective function that takes into account the benefits

Figure 8. Maximizing net revenue from the Baltic sprat stock: model results of 1000 temperature time-series iterations, assuming climate
change under the A2 scenario. Mean values (black lines) are given along with a range of possible solutions (grey area).
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(i.e. the economic value of the yield) and the costs of fishing. We
considered an explicitly dynamic framework, where current
reductions in profit (which are necessary to rebuild the currently
overfished stock) are pitted against higher future profits from
fishing. The effects of fishing and climate-change on the stock
were taken into account as dynamic constraints in the
optimization.

Only a few studies have tried to quantify the economic conse-
quences of climate change for fisheries. These include an analysis
of the stability of fishery agreements under climate change
(Brandt and Kronbak, 2010) or the fisheries impact of global
warming on the Icelandic and Greenland economy (Arnason,

2007). A comparison of harvesting strategies under climate
change (here: changes in the strength of the Atlantic thermohaline
circulation) was provided by Link and Tol (2009) for the Barents
Sea fisheries. They demonstrated that environmentally induced
changes in recruitment success could cause the associated fisheries
to become unprofitable and argue for a more flexible harvest strat-
egy to deal efficiently with climate-change effects on fisheries.

Using Baltic sprat as an example of how to approach ecologi-
cal–economic modelling of a fishery under climate change had
several advantages because of data availability and process under-
standing. The three-dimensional ocean circulation model of the
Baltic Sea used here to determine ambient temperatures of sprat

Figure 9. Maximizing net revenue from the Baltic sprat stock: model results of 1000 temperature time-series iterations, assuming climate
change under the B2 scenario. Mean values (black lines) are given along with a range of possible solutions (grey area).
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early-life-history stages has been well corroborated and provides a
coherent picture of the circulation, water mass exchange, and
physical properties within the Baltic Sea (Lehmann and
Hinrichsen, 2000; Meier et al., 2006). The large within-area temp-
erature variability observed demands a more detailed investigation
of mesoscale spatial processes which, however, was not a focus of
the current study. Using temperature estimates for August at 0–
10 m depth enhanced the recruitment prediction when assuming
density-dependence. This agrees with earlier studies, which high-
lighted the importance of larval and juvenile stages for Baltic
sprat recruitment (Baumann et al., 2006a; Voss et al., 2006).

A better spatial representation of egg and larval/juvenile distri-
butions before averaging ambient temperature could improve the
estimates and result in a more pronounced enhancement of the fit
of temperature-dependent stock–recruitment functions.
However, prognostic simulations with the circulation model of
the Baltic Sea are unavailable. Therefore, surface temperature
data were used, for which climate-change scenarios were available
(ICES, 2010b).

Factors contributing to variations in recruitment strength
are crucial for management considerations and stock projec-
tions (ICES, 2009c). In Baltic sprat, recruitment variation is
largely influenced by environmental conditions (Baumann
et al., 2006a; Voss et al., 2006). Environmentally sensitive
stock – recruitment relationships were partially formulated by
previous investigators (Köster et al., 2003; MacKenzie and
Köster, 2004; Margonski et al., 2008), but those relationships
did not include SSB and also utilized non-predictable environ-
mental variables (i.e. January– February NAO index,
MacKenzie and Köster, 2004). The fit of the models could be
enhanced further using regionalized variables, such as the
BDA (Baumann et al., 2006a), which are related to some
degree to the NAO index, but remain unpredictable. These
shortcomings made those models unsuitable for economic
optimization purposes under climate-change scenarios. In this
study, we used the most recent formulation of environmental
dependence, including surface temperature as a predictable
and BDA as an unpredictable variable (ICES, 2010b), as well
as density-dependence of the spawning stock. A sensitivity
analysis indicated that the model was influenced by different
values of BDA; hence, for the climate-change scenarios, the
average long-term value was employed. If climate change
would, however, result in more frequent, stronger wind-driven

larval transport to the coast, such changes in BDA could coun-
teract the positive effect of temperature increase on sprat
recruitment. The assumption of density-dependence in the
stock – recruitment function seems reasonable, because sprat
are cannibalistic (Köster and Möllmann, 2000a) and exhibit
food competition (Casini et al., 2006, 2010). The available
time-series of stock and recruit data do not indicate reduced
recruitment at higher stock sizes (ICES, 2010a); however,
these might be reached under an economic optimization
setup. Although incorporating environmental forcing, the
recruitment model does not capture irregularly appearing
very strong year classes of sprat (ICES, 2010a). Therefore, the
use of a stochastic stock – recruitment model is one challenge
in our future work. This emphasizes the need for further
coupled investigations of temperature change, ocean circula-
tion, and recruitment dynamics in the Baltic to permit formu-
lating effective harvest control rules.

In contrast to an MSE approach, our approach considers a one-
dimensional objective (the current value of profits from fishing)
rather than multiple criteria. In this respect, our approach is
closely related to an economic cost–benefit analysis. Rather than
considering one or a few management strategies, however, the
optimization approach determines the optimal management strat-
egy out of an infinite number of possibilities.

Given the rather strong assumptions, the results of this
approach should be interpreted as an example of how to apply
the method, rather than as a concrete proposal for a new manage-
ment approach for the Baltic sprat fishery (such as the HCR pro-
posed by ICES 2009c, d). Because of missing data, we had to
transfer an economic parameter from the North Sea herring
fishery to Baltic sprat, i.e. the unit effort cost parameter. The
most relevant variable for the production function is the concen-
tration of fish, which was approximated by the current stock level
divided by the carrying capacity, thereby not explicitly taking into
account area size. This approach assumes that catchabilities and
vessel costs in North Sea herring and Baltic sprat fishery are
the same. Herring is one of the best-studied examples in fisheries
economics (Bjørndal and Conrad, 1987; Nostbakken and
Bjørndal, 2003; Nostbakken, 2008) and is similar to sprat in
characteristics relevant for fishing. Moreover, no ecological inter-
actions, e.g. competition between sprat and herring stocks, or
other feedbacks were incorporated into the model, although
such relationships do exist (Casini et al., 2006, 2010). The only
exception was cod predation on sprat, which was included in
SMS, the most recent Baltic Sea multispecies model (Lewy and
Vinther, 2004; ICES, 2010a). Changes in Baltic cod stock size,
such as the successful rebuilding of this major predator stock
to levels in the 1980s, would certainly influence our results
both directly, via effects on natural mortality and therefore
sprat stock size, as well as indirectly via changed unit effort
costs because of lower concentrations of sprat (unpublished
data).

Our simulations used a slightly non-linear objective function,
h ¼ 0.1. For a linear objective function (h ¼ 0), the optimal
outcome would be pulse fishing, i.e. intermittent high catches
during one period interrupted by one or more periods with zero
or very low catches. The annual mean catches have been demon-
strated to be only slightly higher (,1%) than the non-pulse
fishing solution, given h ¼ 0.1. For h . 0.1, the long-term
steady state was not influenced by increasing h, but the transition
period towards the steady state was longer.

Table 4. Results of statistical analysis (F-test), comparing outcomes
of different climate-change scenarios.

Years Scenario SSB Recruitment F Yield Profit

2 NO-A2 *** *** *** *** ***
2 NO-B2 *** *** *** *** ***
2 A2-B2 n.s. n.s. n.s. n.s. n.s.
5 NO-A2 *** n.s. ** * n.s.
5 NO-B2 *** * *** *** ***
5 A2-B2 n.s. n.s. ** * n.s.
25 NO-A2 *** *** *** *** ***
25 NO-B2 *** *** *** *** ***
25 A2-B2 n.s. n.s. n.s. n.s. n.s.

NO, no climate change; A2, climate-change scenario A2; B2, climate-change
scenario B2; SSB, spawning-stock biomass; F, fishing mortality; n.s., not
significant.
*p,0.05; **p , 0.01; ***p , 0.001.
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The goal of future work will be to provide appropriate multi-
species management advice that includes economic considerations
in a variable or changing environment. Under the current knowl-
edge of Baltic sprat recruitment, the tested climate-change scen-
arios would result in a change in management targets. To serve
as a quantitative management advice tool, however, the model
will have to address the above-mentioned concerns.
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Gårdmark for valuable comments on a first draft, which consider-
ably improved the manuscript. The study was carried out with
financial support from the Cluster of Excellence “Future Ocean”
of Kiel University and from the European Communities as a con-
tribution to the FP7 Specific Targeted Research Project 244966,
Forage Fish Interactions (FACTS). This article does not necessarily
reflect the views of the European Commission.

References
Arnason, R. 2007. Climate change and fisheries: assessing the econ-

omic impact in Iceland and Greenland. Natural Resource
Modelling, 20: 163–197.

BACC Author Team. 2008. Assessment of Climate Change for the
Baltic Sea Basin. Springer-Verlag, Heidelberg, Germany. 473 pp.

Bagge, O., Thurow, F., Steffensen, E., and Bray, J. 1994. The Baltic cod.
Dana, 10: 1–28.

Bastardie, F., Vinther, M., Nielsen, J. R., Ulrich, C., and Storr-Paulsen,
M. 2010. Stock-based vs. fleet-based evaluation of the multi-annual
management plan for the cod stocks in the Baltic Sea. Fisheries
Research, 101: 188–202.

Baumann, H., Hinrichsen, H-H., Möllmann, C., Köster, F. W.,
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