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Standardization of catch per unit effort using generalized linear models (GLMs) is a common procedure that attempts to remove the
confounding effects of variables other than abundance. Simple plots and metrics are described to assist understanding the standard-
ization effects of explanatory variables included in GLMs, illustrated with an example based on New Zealand trevally (Caranx lutescens)
data.
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Introduction
For many fisheries, catch per unit effort (cpue) is a key index of
abundance; for some, it is the only index. However, using cpue as
an index of abundance is notoriously problematic (Hilborn and
Walters, 1992; Maunder et al., 2006). For instance, cpue may be
“hyperstable” or insensitive to changes in abundance (Harley
et al., 2001). Changes in fishing pattern over time can also cause dis-
tortions in the relationship between cpue and abundance (Bishop,
2006; Ye and Dennis, 2009). The fleet may change in vessel compos-
ition or may change its main fishing season or areas, causing
changes to cpue that are independent of stock abundance.

Standardizing cpue with generalized linear models (GLMs)
provides one way to remove some of these effects; for overviews
of this approach, see Maunder and Punt (2004) and Venables
and Dichmont (2004). Cpue can also be standardized by estimat-
ing regression coefficients along with other assessment model
parameters in an integrated stock assessment model that uses
other fishery and biological data (Maunder, 2001; Maunder and
Langley, 2004). However, the complexity of many age-structured
and length-based assessment models leads to a segregated
approach, with cpue standardized outside the model using a GLM.

Cpue standardization using GLMs is not an attempt to build a
predictive model for forecasting or to explain variance in a dataset.
Rather, the GLM is used in an attempt to remove the confounding
effects of extraneous variables, resulting in an index that is as

representative as possible of the vulnerable stock biomass. There
is therefore a need to explore the results, rather than simply accept-
ing the cpue indices arising from a GLM, and to understand the
standardization effects achieved by including each of the explana-
tory variables in the model.

Cpue standardization with modern statistical packages frequent-
ly involves many variables. Even when stepwise selection methods
are used, it is common for many explanatory variables to be statis-
tically significant because of the large size of the catch-and-effort
datasets (Maunder and Punt, 2004; Bishop et al., 2008).
Consequently, when standardized indices have a pattern that
differs from that of the unstandardized cpue, the reason can be dif-
ficult to understand: what effect, for instance, does each of the ex-
planatory variables have on the resulting indices of abundance?

Here, we suggest simple visualizations and metrics that are
useful for both understanding how a GLM has removed the con-
founding effects of explanatory variables and for conveying the
results of cpue standardizations to stakeholders.

Methods and example application
The methods are illustrated using an example of cpue standardiza-
tion drawn from Kendrick and Bentley (2010), in which standar-
dized cpue was developed for bottom trawling in New Zealand’s
trevally (Caranx lutescens) stock TRE 7. The reader is referred to
Kendrick and Bentley (2010) for descriptions of data grooming,
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defining the fishery, defining core vessels, and other detail. The
defined core-vessel fleet was 30% of the total fleet, but it caught
80% of the reported catch. Data were aggregated by vessel, trip,
statistical area, fishing method, and target species to produce indi-
vidual records for the GLM.

Kendrick and Bentley (2010) fitted a GLM to the log of landed
catches, excluding records with zero catches. Fishing year was
forced in as an independent categorical variable, and a stepwise
selection procedure based on improvement in the Akaike
Information Criterion (AIC) was used to include other explana-
tory variables until the improvement in the deviance explained
was ,1%. Explanatory variables offered to the model were
month, statistical area, target species, vessel, form type,
month × statistical area interaction (all offered as categorical vari-
ables), log of the number of tows, log of fishing duration, sea
surface temperature (SST), and SST anomalies (all offered as a
third-order polynomial). For ease of presentation, we do not
repeat this variable selection process, but instead use a simplified
version of the final model from Kendrick and Bentley (2010):

log(Ci) = aY
yi
+ bf log( fi) + aM

mi
+ aV

vi
+ aT

ti
+ aA

ai
, (1)

where Ci is the catch for the ith record, aY
yi

the coefficient asso-
ciated with year yi, and similarly for the coefficients associated
with month (M), vessel (V), target species (T), and statistical
area (A), and bf is the coefficient for the number of tows, fi.

Model terms in Equation (1) are listed in the order that they
entered the GLM during stepwise selection. Table 1 provides the
usual GLM summary statistics associated with each explanatory
term: degrees of freedom, the increase in the deviance explained,
and the AIC of the model after the term is included. Based on
these statistics, log(tows) had the greatest explanatory power, fol-
lowed by month and vessel.

In this example, standardized cpue differed dramatically from
unstandardized cpue (Figure 1), unstandardized cpue exhibited an
increasing trend, with a rapid increase in 2006, whereas standardized
cpue underwent an initial decrease for 3 years before flattening out.
It is obviously of some importance to understand how the explana-
tory variables caused the difference between these two cpue trends.

A simple way to explore the effects of explanatory variables,
described by Bishop et al. (2008), is to plot the year indices that
result as each explanatory variable is added to the model to see
how they change (Figure 2a). Although log(tows) has high ex-
planatory power, its addition to the model causes only a slight

change in annual cpue indices. In contrast, there is a large
change in the indices when vessel coefficients are introduced.
This “step plot” suggests that the vessel variable has a major influ-
ence on standardized cpue, i.e. that changes in relative effort
among vessels have a large influence on the pattern of unstandar-
dized cpue independent of abundance.

Here, we suggest a way of quantifying the “influence” that each
explanatory variable has on the unstandardized cpue in each year.
The metrics presented provide a measure of the contribution of
each explanatory variable to the difference between standardized
and unstandardized annual year effects. Step plots provide some
indications, but they show only incremental changes in the cpue
index rather than the relative influence of each explanatory vari-
able in the final model.

A measure of the influence of an explanatory variable can be
derived from the GLM coefficients associated with that variable.
Variables with coefficients of high magnitude do not necessarily
have great influence. For a variable to have great influence, there
must be changes in the relative distribution of that variable
among years. When there are changes in the distribution of a vari-
able, there are also changes in the coefficients associated with the
variable. In a year when the values of the variable differ from their
average, the variable will have greater influence on the difference
between unstandardized and standardized cpue.

To calculate such a measure of influence, the mean value of the
coefficient associated with an explanatory variable over all records,
r, is calculated. Then, for each year, we calculate the mean differ-
ence between the coefficient and r over all records in that year. For
a categorical variable A,

rA =
∑i=n

i=1 a
A
ai

n
, (2a)

dA
y =

∑i=ny

i=1 aA
ai
− rA

( )
ny

, (2b)

and for a continuous variable B,

rB =
∑i=n

i=1 b
Bbi

n
, (3a)

dB
y =

∑i=ny

i=1 bBbi − rB

ny
, (3b)

Table 1. Summary of the explanatory power and influence in the
TRE 7 standardization model, with explanatory variables listed in
order of their acceptance into the model.

Term
Degrees of

freedom

Explanatory power

Increase in
deviance
explained

r2

(%) AIC

Overall
influence

(%)

Year 18 1 306.4 3.8 40 270 –
Log(tows) 1 7 773.2 22.9 37 553 10.8
Month 11 3 649.0 10.7 35 989 7.5
Vessel 26 2 924.2 8.6 34 559 19.8
Target 1 1 267.7 3.7 33 843 10.3
Area 5 632.3 1.9 33 475 7.7

AIC, Akaike Information Criterion; r2, proportion of deviance explained. The
overall influence metric is explained in text.

Figure 1. Unstandardized (geometric mean of annual observations)
and standardized (year coefficients from GLM) cpue indices for
TRE 7. Error bars indicate +2 s.e. Each series has been normalized to
a geometric mean of 1.
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where n is the number of records in the entire dataset and ny is the
number of records in year y.

In a multiplicative GLM, as normally used for cpue, where
catches are log-transformed (or the log-link function used), it
makes sense to exponentiate these mean coefficient differences
to obtain a multiplicative index of influence:

IX
y = exp(dX

y ) (4)

If IX
y , the influence for a variable X in year y is .1, it implies that

that variable increased the unstandardized cpue in that year, irre-
spective of abundance. Because the standardization removes this
effect, adding this variable to the model will make the standardized
cpue less than the unstandardized cpue. The implication of a value
,1 is the converse, and an annual influence of 1 means that the
variable had no influence in that particular year.

Figure 2b shows the annual influence IX
y for each explanatory

variable in the final standardization model. The annual influence
of the vessel effect increases substantially from 1990 to 2008, mir-
roring the change in the cpue index seen in the step plot after
“vessel” is introduced into the model (Figure 2a). The target vari-
able also shows a similar increasing trend in annual influence,

particularly in the final few years. Note that the step plot
(Figure 2a) implies that area has little influence (when it is
added to the model, the cpue index changes very little). In con-
trast, the plot of annual influence (Figure 2b) suggests that, al-
though small compared with other variables, the influence of
area is not inconsequential and has been increasing. The difference
arises through partial confounding between area and vessel, which
the step plot fails to capture, but which is represented in the final
model coefficients and hence the annual influence measures.

As described above, the pattern of annual influence for an
explanatory variable arises from a combination of its GLM coeffi-
cients and its distributional changes over years. It is common to
provide separate tables or graphs of this information (e.g.
McKenzie, 2008), but to understand the patterns of annual influ-
ence, it is useful to combine the coefficient values, the distribu-
tional changes, and the annual influence into a single plot: the
coefficient–distribution–influence (CDI) plot.

Figure 3 is the CDI plot for vessel, the variable that shows the
greatest variation in annual influence. The top panel of the plot
provides normalized coefficients exp(aV − rV ) and their standard
errors. In the bottom left panel, bubbles indicate the annual distri-
bution of records across each level of the variable (in this case V);
this is the proportion of records from each vessel in each year. The

Figure 2. Step plot and annual influence plot for TRE 7. (a) Cpue index at each step in the stepwise selection of variables. Each panel shows
the standardized cpue index as each explanatory variable is added to the model. The index obtained in the previous step (if any) is shown by a
dotted line and for steps before that by grey lines. (b) Annual influence values for each explanatory variable in the final GLM model.
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bottom right panel shows the annual values of influence for vessel
IV

y calculated from Equations (2) and (4) or, equivalently, matrix
multiplication of the normalized coefficients in the top panel by
the proportions in the bottom left panel. Note that there is a
shift in the proportion of records (bottom left panel), with
vessels with low coefficients dropping out of the fishery, and
vessels with a high coefficient remaining (top left panel), causing
the increasing trend in influence (right panel).

A second example is the CDI plot for month (Figure 4), a vari-
able that has high explanatory power (Table 1), but which shows
little influence on annual cpue indices (Figure 2b). The coefficients

for each month (top left, Figure 4) show as much variation as the
coefficients for each vessel (top left, Figure 3). However, in contrast
to vessel, there are only small changes in the distribution of records
among months (bottom left panel), resulting in only small and
variable changes in annual influence (right panel). The high
influence in 1999 arises because there was a greater than usual pro-
portion of effort in the months with the highest coefficients
(November-March).

For some categorical explanatory variables, there is a natural
order, as there is for month. For others, such as vessel, there is
no natural order, and the CDI plot is more easily understood if

Figure 3. Vessel CDI plot for TRE 7. See text for explanation of the panels.

Figure 4. Month CDI plot for TRE 7. See text for explanation of the panels. October is the first month of the quota management year for
TRE 7.
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the variables are ordered by their coefficient values. In Figure 3, the
vessels were ranked from lowest to highest coefficient. For con-
tinuous variables, such as the number of tows or temperature, dis-
tributions can be plotted by binning the variables in some
appropriate manner.

It is possible to summarize the individual values of IX
y into mea-

sures of influence that reflect the alternative patterns shown in the
annual influence plot (Figure 2b) and CDI plots (Figures 3 and 4).
For instance, the overall influence (�I) of a variable across all years is
the mean of the absolute values of annual influence:

�I
X = exp

∑y=m
y=1 dX

y

m

( )
− 1, (5)

where m is the number of years. This statistic summarizes the
extent to which the variable changes cpue from year to year. For
example, a value of 0.1 means that, on average, the variable
changed unstandardized cpue by 10% each year in either direction.

For the TRE 7 example, the overall influence statistics (Table 1)
suggest that vessel was by far the most influential variable, at 20%,
and that the other variables had influences of 7–11%. The sub-
stantial trend in the influence of vessel (Figure 2b) explains
much of the difference in slope between standardized and unstan-
dardized indices (Figure 1). The trend is also seen clearly in the
lower right part of Figure 3.

The influence of a variable in a standardization model is inde-
pendent of its explanatory power. In the TRE 7 example, the vari-
able with the most explanatory power was not the most influential,
as measured by the overall influence statistic �I (Table 1). Variables
with high explanatory power are typified by large coefficients and
large variation among records; those with large influence are typi-
fied not only by large coefficients, but also by great variation
among years. In TRE 7, the month variable, with high explanatory
power but low influence, had large coefficients, but the variable
tended to be nearly uniformly distributed among years
(Figure 4). The vessel variable, with less explanatory power, but
more influence, was heterogenous among years (Figure 3).

Hence, the difference between standardized and unstandar-
dized cpue in TRE 7 (Figure 1) can be explained mainly by the
model’s accounting for changes in the fleet towards more efficient
vessels, seen in a greater proportion of records coming from vessels
with high coefficients in more recent years (Figure 3). There was
also some effect of shifts in fishing practice, with more targeting
of trevally, seen in the influence plot (Figure 2b) and overall influ-
ence metric for the target-species variable (Table 1).

Discussion
The tools described here aid understanding why cpue standardiza-
tion has produced the result it does. They allow the analyst to tease
apart the effects of a GLM to gain more insight, and hence generate
greater confidence in the standardization process. Without these
types of diagnostic tool, it is easy for a GLM to be a black box ana-
lysis from which cpue indices simply emerge with little under-
standing of the reasons for the result. We have used these tools
for several cpue standardizations and found them to be an invalu-
able tool in explaining the results to technical working groups,
fisheries managers, and stakeholders.

The tools do not address any of the potential problems with
using GLMs to standardize cpue or the influence of unknown vari-
ables on cpue (Bishop, 2006). They do not address any basic pro-
blems with cpue as an abundance index, such as hyperstability or
hyperdepletion (Hilborn and Walters, 1992), but they do provide a
means for better understanding the GLM results and can perhaps
assist in exploring such potential problems.

A package for the R statistical language which can generate step
plots, influence plots, CDI plots, and influence metrics is available
at http://projects.trophia.com/influ.
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