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Temporal variability is an important feature of aquatic ecosystems that can be difficult to measure. A stationary, upward-facing sci-
entific echosounder was used to record the vertical distribution of pelagic fauna in Monterey Bay, CA, for 18 months. To characterize
the distributions, a suite of metrics, including measures of density, abundance, location, dispersion, occupancy, evenness, and aggre-
gation, was developed and tested. An algorithm to detect and count the number of acoustic backscatter layers was developed using
image-analysis techniques. The metrics recorded a strong seasonal cycle, with total backscatter reaching a minimum during the spring
upwelling season and peaking in autumn and winter. Variability in the vertical distribution of animals was greatest at long time-scales
and decreased as a power (21.050 to 21.585) of signal frequency. There were significant peaks in the power spectrum at 12- and 24-h
periods, corresponding to the semi-diurnal tide and diel vertical migration. The diel signal was strongest in late winter and weakest
during the spring upwelling season. Active acoustics are a useful addition to ocean observatories, and the metrics presented provide a
useful set of tools to quantify the distribution and temporal variability of pelagic fauna.
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Introduction
Aquatic ecosystems display dynamic behaviour across a wide range
of temporal and spatial scales, with physical and biological pro-
cesses occurring both quickly and slowly over short and long dis-
tances (Stommel, 1963; Haury et al., 1978). Understanding these
processes depends on understanding their variability. Temporal
variability has been measured less frequently than spatial variabil-
ity, especially in aquatic ecosystems. Long-term, high-resolution
measurements are common for physical variables, but biologists
have typically had to be content with time-series that are either
short with high resolution or long with a low sampling frequency.
In an incompletely understood system, the scope of observations
(i.e. their extent over the smallest sample size) determines their
power to detect patterns present at multiple scales (Schneider,
2009). If true, then the relative scarcity of high-scope biological
time-series may represent a significant gap in our ecological
knowledge.

The most common approach used to describe and quantify
marine environments has been ship-based, mobile surveys.
Constraints of the ship-based approach include the difficulty of
collecting high-scope time-series and the confounding of space
and time when traversing a study area. An alternative approach

is marine observatories: typically stationary platforms, on the
surface or bottom, providing an attachment point, power, and/
or a communications link for instruments. Ocean observatories
complement ship-based research and are poised to play an increas-

ing role in marine biology. All ocean observatories measure phys-

ical variables, at the very least, temperature and salinity. Many
measure chlorophyll or fluorescence as proxies for primary pro-

duction, but few are equipped to monitor higher trophic levels.

Active acoustics (i.e. sonar) is a technology capable of remotely
sensing the distribution and density of animals underwater.

Traditionally deployed on ships in conjunction with net-sampling,

scientific echosounders are also suited for observatory use, provid-
ing a synoptic view of fish and zooplankton through the water

column with high resolution in both space and time. Taxonomic

resolution is coarse, especially in long-term deployments,
because of difficulties in acoustic species identification (Horne,

2000). Used as a proxy for biomass, analogous to satellite ocean

colour for primary productivity, acoustic backscatter can be used
to characterize patterns and dynamics in the pelagic zone

through time.
To date, there have been relatively few deployments of bottom-

mounted and moored echosounders, with most studies focused on
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the behaviour of fish in freshwater (e.g. Arrhenius et al., 2000;
Prchalová et al., 2003; Mehner, 2006) and the coastal ocean (e.g.
Axenrot et al., 2004; Kaartvedt et al., 2009; Kaltenberg and
Benoit-Bird, 2009). Farther offshore, stationary acoustics have
been used to monitor micronekton (Trevorrow, 2005) and
marine mammals (Doksæter et al., 2009). Others have used sta-
tionary acoustics to investigate specific ecological processes, in-
cluding bird foraging on mesopelagic animals in pack ice
(Kaufmann et al., 1995), copepod diapause (Osgood and
Checkley, 1997), and the effect of physical processes on thin
layers of zooplankton (McManus et al., 2005).

A few studies have taken a more general approach, using active
acoustics to characterize the aggregate state and variability of the
pelagic ecosystem over multiple months and years. Flagg et al.
(1994) used acoustic Doppler current profilers (ADCPs) to
record currents and biological scattering, in conjunction with
chlorophyll a measurements over 15 months in the Mid-Atlantic
Bight. Cochrane et al. (1994) used an ADCP to measure the tem-
poral variability of euphausiid (Meganyctiphanes norvegica) con-
centrations over 49 d on the Scotian shelf. Brierley et al. (2006)
used an acoustic mooring to monitor changes in the abundance
of Antarctic krill (Euphausia superba) over 3 months at South
Georgia Island in the Southern Ocean. Radenac et al. (2010) ana-
lysed ADCP data from the TAO/TRITON array in the equatorial
Pacific, linking patterns in the acoustic backscatter with environ-
mental forcing. ADCPs are widely deployed on oceanographic
moorings, but quantitative interpretation of their backscatter
data is limited by difficulties with their calibration (Brierley
et al., 1998).

This study used a bottom-mounted, upward-facing scientific
echosounder to collect water column profiles over 18 months at
the Monterey Accelerated Research System (MARS, http://www.
mbari.org/mars/) observatory in Monterey Bay, CA. The objec-
tives were twofold. The first was to develop methods to character-
ize the distribution of animals in the water column. To this end, a
suite of summary metrics was developed to measure characteristics
and features of the vertical density distribution. The second object-
ive was to use these metrics to quantify temporal variability in
Monterey Bay through time and across temporal scales, identifying
dominant modes of variability and significant changes in the
ecosystem.

Methods
Instruments and data
Monterey Bay is a large open embayment on the central California
coast. It is mainly shallow (,100 m), but is bisected by the
Monterey Submarine Canyon, which brings deep-water habitat
close to shore in the centre of the Bay. The Bay is situated in the
California Current System, and its oceanographic seasons are
defined by the presence or the absence of wind-driven upwelling.
Upwelling events are episodic during spring and summer, tailing
off into a late-summer and early autumn “oceanic period”, fol-
lowed by the winter appearance of the north-flowing Davidson
Current (Huyer, 1983; Pennington and Chavez, 2000).

The MARS observatory node, operated by the Monterey Bay
Aquarium Research Institute (MBARI), is located at 36842.75′N
122811.21′W near 900-m depth on the continental slope north
of the Canyon (Figure 1). MARS is connected to shore by a
52-km cable, providing continuous power and communications
for up to eight scientific instruments. The node consists of a

3.7 × 4.6 × 1.2 m trawl-resistant metal frame housing an
electronics assembly, which regulates power and transmits data
to shore. Instruments are deployed and recovered by remotely
operated vehicles (ROVs) from MBARI vessels.

The Deep Echo Integrating Marine Observatory System
(DEIMOS) was deployed at 2875 m from 27 February 2009 to
18 August 2010. An active acoustic observing package, DEIMOS,
was built around a Simrad EK60 38 kHz scientific echosounder.
The transducer had a beam width of 78 (between half-power
points) and was oil-filled, allowing operation to depths of
1500 m. The transceiver and other electronics were housed in a
borosilicate glass pressure sphere and mounted, with the trans-
ducer, on a galvanized steel frame. The echosounder sampled
the water column at a frequency of 0.2 Hz, using a pulse length
of 1.024 ms. Transmitted power was restricted to 825 W to
conform to sound pressure levels specified in the US Marine
Mammal Protection Act and the Endangered Species Act.

Over the 18-month deployment, data collection was inter-
rupted several times, because of problems with software, commu-
nications, and the power supply. The longest of these interruptions
was from 18 May to 14 August 2009, when increased electrical
noise saturated the DEIMOS receiver and rendered the data un-
usable. There were three other multiday outages: 3–13
September 2009 (software crash), 23 March–7 April 2010
(power supply noise), and 22 July–4 August 2010 (shore cable
severed by burrowing rodents).

DEIMOS was calibrated in situ using a 38.1-mm tungsten-
carbide reference sphere following procedures outlined in Foote
et al. (1987). On 24 June 2010, the ROV “Ventana” put the calibra-
tion apparatus in place. The sphere was held 12 m above the trans-
ducer face, anchored by two small lead weights on either side of the
transducer, and suspended from a syntactic foam float 5 m above.
All calibration components were connected by a monofilament
line. The sphere moved through the acoustic beam with the

Figure 1. Monterey Bay, showing the MARS node (black square) and
the cable (black line). Isobaths are at 500 m intervals. The inset
shows the location on the coast of California. Bathymetry after
Carnigan et al. (2009).
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currents and completed beam coverage in 3–4 d. The calibration
sphere was left in place for 8 weeks and removed on 17 August,
1 d before DEIMOS was recovered. In that period, we conducted
nine separate calibrations. For each calibration, beam-angle cor-
rections were calculated using Simrad’s LOBE program, and trans-
ducer gains and area-backscattering coefficient (Sa) corrections
were calculated by integrating all on-axis target detections using
Echoview software (v. 4.9, Myriax Pty Ltd, 2010). Before analysis
was started, we corrected all raw acoustic data using the mean
values of these calibration parameters.

Acoustic datafiles were processed using Echoview. Initial pro-
cessing removed noise interference (e.g. electrical fluctuations,
passing ships) and identified data-gaps. The top 10 m and
bottom 7 m of the water column were excluded from the analysis
to avoid integrating bubbles from breaking waves or echoes in the
acoustic nearfield. Background noise was estimated and subtracted
using methods reported in DeRobertis and Higginbottom (2007),
who recommended collecting data at least 600 m below the
bottom (in our case, above the surface) for unbiased noise esti-
mates. Although we only collected data to �300 m above the
surface, we did not find any difference between the estimates
from their algorithm and standard estimates using passive listen-
ing data (Nunnallee, 1990). A signal-to-noise ratio (SNR) thresh-
old was not applied to the final de-noised data, because during
extended periods of slightly higher background noise, mean
volume backscattering values were biased low by eliminating
pixels with a low SNR. After elimination of bad data regions and
noise subtraction, acoustic data were exported in 5 s horizontal
by 0.5 m vertical matrices of mean volume backscattering strength
(Sv; MacLennan et al., 2002) for further analysis.

Metric selection and testing
To describe this large dataset parsimoniously, we developed a suite
of metrics to characterize vertical distributions of acoustic back-
scatter through time. Acoustic backscatter is interpreted as a
proxy for the density of aquatic organisms (Foote, 1983).
Metrics were derived from backscatter, as well as indices used to
describe the spatial structure and variance of animal population
densities (Bez and Rivoirard, 2001; Woillez et al., 2007; Burgos

and Horne, 2008). These metrics quantify the vertical distribution
of pelagic animals, including total abundance, mean density, occu-
pied area, mean location, spread, evenness, aggregation, and the
number of backscattering layers (Table 1). In the descriptions
below, volume and area-backscattering strengths (Sv and Sa) are
the logarithmic forms of the volume and area-backscattering coef-
ficients sv and sa [i.e. Sv ¼ 10 log10(sv)]. All calculations were per-
formed using linear units.

Total backscatter, a proxy of total biomass in the water column,
was measured using the area-backscattering strength Sa, the inte-
gral of volumetric backscatter (sv) over the entire water column
expressed as a decibel value (MacLennan et al., 2002). Mean
density was measured by the mean volume-backscattering strength
Sv. Occupancy was calculated as the proportion (Pocc) of the water
column with Sv above 290 dB re 1 m2 m22. Mean location was
measured using the centre of “mass” CM, the average of all
depths sampled weighted by their sv values. Bez and Rivoirard’s
(2001) inertia I measures dispersion or spread as the sum of
squared distances from the centre of mass, weighted by the sv at
each distance and normalized by the total sa. Evenness was
measured using the equivalent area EA, calculated as the squared
integral of sv over depth (i.e. s2

a) divided by the depth integral of
s2

v. Values represent the area that would be occupied if all datacells
contained the mean density (Woillez et al., 2007). This quantity
can alternatively be expressed as its reciprocal, the index of aggre-
gation IA, which is high when small areas are much denser than
the rest of the distribution. Metrics were calculated from the pro-
cessed data using Python scripts with the SciPy module for effi-
cient array operations (Jones et al., 2001-2011). Applying these
spatial statistics through the water column for each ping yielded
a set of time-series that summarized each quantity of interest
over the entire deployment. Figure 2 shows a representative echo-
gram over 2 d, with the corresponding metric time-series. The
metrics track diel vertical migration (DVM), including the forma-
tion and dissolution of layers, as well as the passage of aggregations
near the surface.

The final metric in the suite, the number of scattering layers,
used an image-analysis approach. We defined layers as local scat-
tering maxima in the vertical direction and used the slope of

Table 1. Metrics for description of the vertical distribution of pelagic biomass, as estimated by acoustic backscatter.

Quantity Metric Symbol Formula Unit Reference

Density Mean volume-backscattering strength Sv
10 log10

�
sv(z)dz

H

( )
dB re 1 m21 1

Abundance Area-backscattering strength Sa 10 log10

�
sv(z)dz

( )
dB re 1 m2 m22 1

Location Centre of mass CM
�

zsv(z)dz�
sv(z)dz

M 2, 3

Dispersion Inertia I
�
(z − CM)2sv(z)dz�

sv(z)dz

m22 2, 3

Occupied area Proportion occupied Pocc
�

z|sv(z) . sthresh
v dz

H

– 2, 3

Evenness Equivalent area EA
�

sv(z)dz
( )2

�
sv(z)2dz

m 2, 3

Aggregation Index of aggregation IA
�

sv(z)2dz�
sv(z)dz

( )2

m21 2, 3

Layer structure Number of layers Nlayers See explanation in text Layers –

In all formulae, z represents the depth, and sv(z) the volume-backscattering coefficient at depth z. H is the total water column depth. The numbers in the
reference column refer to: 1, MacLennan et al. (2002); 2, Bez and Rivoirard (2001); 3, Woillez et al. (2007).
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backscattering intensity with depth to identify them. The echo-
gram was first smoothed by convolution with a Gaussian kernel
to eliminate small-scale variability. The first and second derivatives
of Sv were then estimated in the vertical direction on the smoothed
echogram by taking the first and second differences along the ver-
tical axis. Layers were defined as locations where the absolute value
of the first derivative was close to zero, and the second derivative
was negative. The first of these conditions selected areas where Sv

did not change much with depth, meaning the tops of ridges (i.e.
layers) and the bottoms of the troughs between them. The second
condition, a negative second derivative, ensured that only areas at
the tops of ridges would be selected. Before counting the layers,
two additional filtering operations were performed. The first was

a convolution with a median filter, replacing each cell’s value
with the median of all cells in its neighbourhood. This operation
ensured that pixels meeting the two slope-based conditions
would not be counted as layers if they were isolated in “non-layer”
regions. The second was a convolution with a dilation filter, re-
placing each pixel with the maximum value in its neighbourhood.
This operation eliminated isolated “non-layer” pixels within
“layer” regions. It was then possible to count the number of tran-
sitions between “layer” and “non-layer” in each ping. This
number, divided by 2, yielded the number of layers in the water
column.

The number of layers detected depends in part on the param-
eter values used to define the layers: the acoustic threshold, the

Figure 2. Echogram for 2–4 March 2009, with the corresponding metrics plotted below. From top to bottom, metrics are mean
volume-backscattering strength (Sv), area-backscattering strength (Sa), centre of mass (CM), inertia (I), proportion occupied (Pocc), equivalent
area (EA), index of aggregation (IA) and the number of layers (Nlayers). Refer to methods and Table 1 for calculation and detail.
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slope threshold defining where the derivative is close to zero, and
the widths of the three filtering windows. To select the appropriate
values for these parameters, we visually inspected “type” echo-
grams from different times of the year. When two people com-
pared the number of layers identified by eye, the greatest
difference between their counts was one layer, and always fewer
than ten layers were identified visually. Initial values were selected
for the algorithm’s parameters by starting with the smallest pos-
sible filter widths and incrementally widening them until the algo-
rithm appeared to give results agreeing with the number of layers
identified by the eyes. Based on this heuristic approach, initial par-
ameter values of 19 × 19 pixels (9.5 m × 95 s) were selected for
the standard deviation of the Gaussian filter, 0.2 dB m21 for the
slope threshold, and 19 × 19 pixels for the median and dilation
filters.

To test the response of the layer detection algorithm to different
combinations of input parameters, we conducted a Monte
Carlo-based global sensitivity analysis. Input parameters were ran-
domly selected using a Latin hypercube sampling (LHS) design
(McKay et al., 1979). In an LHS design, the possible range of
each parameter is divided into n strata, sized according to the
probability density, and one value is selected randomly from
each of these intervals. In each iteration, one of these previously
selected values is drawn randomly for each parameter, making
the number of parameter sets tested in the Monte Carlo run
equal to that of strata n. LHS sampling has the advantage of ensur-
ing that all portions of each input parameter’s range are tested sim-
ultaneously, without requiring the testing of all parameter
permutations. The complete coverage of the multidimensional
parameter space is not guaranteed in a single run, so multiple
runs need to be conducted. Rose (1982) found that an LHS
design with 200 runs produced stable results; this number is
used here. Each parameter’s range was divided into ten strata of
equal size, with ranges spanning the practical width of each para-
meter’s values. The three convolution filters could have widths
between 1 and 31 pixels, representing smoothing operations
ranging from no smoothing to the approximate width of the
layers identified visually. The slope threshold, controlling which
areas of the echogram were designated as “flat” (and hence candi-
dates for inclusion in layers), could take values from 0 to
0.15 dB m21. Based on informal testing, values above
0.15 dB m21 included regions of the echogram that were sloped.
The range of the acoustic threshold was set from 2100 to 265 dB.

To ensure the applicability of the results to the entire dataset,
we divided the acoustic record into 30 equal temporal strata and
randomly selected one data file from each stratum to repeat the
Monte Carlo runs. Each file contained acoustic data from a
period of �3 h. Within each file, 30 pings (i.e. individual profiles
of the water column) were selected randomly in which to count
layers after the application of the detection algorithm. Testing
data from all periods of the deployment permitted comparison
of the variability attributable to parameter adjustments with vari-
ability attributable to changes in the layer structure over time. All
other metrics underwent Monte Carlo sensitivity testing analogous
to that used on the layer detection algorithm, although there was
only one parameter to adjust, the acoustic threshold, making an
LHC design unnecessary.

Pattern description
For computational convenience and to ensure even spacing in
time, all metric series were averaged into 1-h bins. A principal

component analysis (PCA) assessed the degree of colinearity
among metrics. As metrics do not share the same units, they
were transformed to have zero mean and unit variance before con-
ducting the PCA. All metrics displayed an annual trend, which was
removed by fitting sinusoids with 1-year and 0.5-year periods to
the data using ordinary least squares. All further analyses were per-
formed on the residuals from these fits.

Fourier and wavelet transforms were used to characterize the
variability in the detrended metric series as a function of temporal
scale. Wavelet transforms decompose a series across time and fre-
quency simultaneously, allowing the analysis of series that are non-
stationary or contain frequency components at some times and
not others. This is accomplished by convolving the series with a
localized waveform (i.e. the wavelet), which is stretched or com-
pressed to different scales, analogous to periods in Fourier analysis.
The product is a two-dimensional array, mapping variability in the
series as a function of time and scale. Wavelets offer the advantage
over Fourier transforms of being able to locate transient frequency
components in time. They also offer advantages over the
short-time Fourier transform, in that their resolution is not
fixed (Kaiser, 1994), allowing good time resolution for high-
frequency events and good frequency resolution for low-frequency
events.

As both Fourier and wavelet transforms require gap-free series
with evenly spaced observations, a gap-filling scheme was used to
fill periods of missing data. We used the stochastic interpolation
method described in Percival et al. (2008). This algorithm uses
the autocorrelation structure of the observed data to interpolate
the expected value of missing observations between points on
either side of the gap, then adds a stochastic noise component
with the same autocorrelation structure and frequency spectrum
as the rest of the series. The simulated data in the gap can be
regarded as a realization of one section of the stochastic process
that produced the rest of the time-series. The gap-filled series
can then be used to calculate any subsequent statistics, such as
the Fourier or wavelet spectrum, requiring continuous observa-
tions. By generating many realizations of the stochastic compo-
nent, calculating the desired statistic each time, then taking the
mean of all calculated statistics, confidence in the results is
increased. This method uses the best linear predictor of the
missing values, given the observations on either side of the gap
and the autocorrelation structure of the series. By preserving the
periodic and stochastic characteristics of the rest of the series, it
reduces bias in estimates of the Fourier and wavelet spectra.

To carry out this gap-filling procedure, an autocovariance func-
tion (ACVF) for the series is necessary. Percival et al. (2008) used
theoretical ACVFs calculated from autoregressive (AR) and frac-
tionally differenced (FD) time-series models fitted to their time-
series. Based on preliminary examination, the data contained
both periodic behaviour and long-range autocorrelation,
meaning that reasonably low-order AR and FD models would be
poor fits to the data. Rather than try to build a complicated time-
series model, we took a non-parametric approach and used the
sample ACVF. In all, 500 realizations of the gap-filling process
were generated, with the Fourier and wavelet spectrum of each
realization calculated as described below. The mean of these 500
spectra was used as the final value for each transform.

Power spectra were calculated for the gap-filled series using a
fast Fourier transform (Cooley and Tukey, 1965), normalized by
a factor of N21s22 (where N is the length of the series and s2

is its variance). The final spectrum, averaged over all 500
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gap-filling realizations, was smoothed with a modified Daniell
kernel of width 15 (Daniell, 1946). Regression curves were fit to
the unsmoothed final spectrum to model the dependence of vari-
ability on frequency.

Wavelet spectra of the metric series were calculated using con-
tinuous wavelet transforms (CWTs), following procedures
described in Torrence and Compo (1998). The CWT is a highly re-
dundant (i.e. non-orthogonal) transform, although the redun-
dancy gives it fine resolution in time and scale (Torrence and
Compo, 1998; Cornish et al., 2006). There are a number of con-
tinuous wavelet functions available, each with different properties.
We used the Morlet wavelet with a frequency of 6, which has been
used in ecological analyses (e.g. Ménard et al., 2006; Keitt, 2008)
and offers a good compromise between time and frequency reso-
lution (Torrence and Compo, 1998). The wavelet spectra were
tested for significance at the 0.95 level against the theoretical spec-
trum of a first-order AR process fit to each series (Torrence and
Compo, 1998).

Results
Metric sensitivity and characteristics
The layer detection algorithm proved relatively insensitive to the
choice of parameters near the initial values selected visually
(Figure 3). The average number of layers detected decreased grad-
ually from 10.6 to 3.1 as the acoustic threshold was raised from
2100 to 265 dB. This result reflected the exclusion of weaker

scattering layers below a higher threshold. As the slope threshold
was raised from 0 to 0.08 dB m21, the mean number of layers
detected increased from 0.9 to 8.0, then remained relatively flat
through the maximum threshold tested, 0.3 dB m21. The algo-
rithm was most sensitive to the widths of the convolution filters
used, in particular the Gaussian smoothing filter and the median
filter. The mean number of layers increased from 0.4 to 10.5 as
the standard deviation of the Gaussian filter was increased from
1 to 8 pixels, then decreased to 5.6 as the filter was widened to
the maximum value tested, a standard deviation of 30 pixels.
When the median filter was at its narrowest, the mean number
of layers detected was 16.9, decreasing as the filtering window
was widened. Once the median filter was wider than 13 pixels,
the mean number of layers remained relatively constant between
4.7 and 6.8. The number of layers was less sensitive to the dilation
filter, decreasing approximately linearly from 8 to 3 as the filter was
widened from 1 to 33 pixels. For all three filters, narrower widths
gave less predictable behaviour. At their lowest values, some layer
counts as high as 50 or 60 were observed, far outside the range of
values identified visually. At wider widths (.10–12 pixels), the
coefficients of variation (CV) for all three were relatively steady,
with values ,1. Looking at the number of layers across all param-
eter combinations as a function of the time of year, there was a
clear seasonal pattern in mean number, matching the pattern iden-
tified visually (not shown).

The remaining metrics displayed different degrees of sensitivity
to the choice of acoustic threshold (Figure 4). The values of CM

Figure 3. Sensitivity of the layer detection algorithm to the choice of parameters. Box-and-whisker plots show mean, interquartile, and 95th
percentiles of number of layers counted at each parameter value (left axis). Black points show the CV at each parameter value (right axis).
Subplots show the response of the algorithm with different values of (a) acoustic threshold, (b) width of Gaussian smoothing filter,
(c) zero-slope threshold, (d) width of median smoothing filter, (e) width of dilation filter, and (f) data file (i.e. data subset) on which the
algorithm was tested.
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and I were insensitive to the threshold, although their CVs
increased and decreased, respectively, as the threshold was
raised. Values of EA and Pocc both decreased as the threshold
was raised. Total water column Sa decreased very slightly when
the threshold was raised above 270 dB. At the same time, mean
Sv increased, reflecting the exclusion of less-dense areas with low
backscatter values. This masking of low-density areas was also
reflected in the IA which increased when the threshold was
raised above 270 dB.

The PCA of the metric series showed a moderate degree of col-
linearity (Figure 5). The first component accounted for 62.0% of
total variance, with the second and third components accounting
for 17.2 and 8.6%. When summed, the first four principal compo-
nents accounted for 95% of the variance. Pocc, Nlayers, and I were all
correlated and aligned with the first component, and CM was
aligned negatively with the first component. The IA and EA were
anticorrelated with each other, with loadings orthogonal to
those of Sa and Sv, which were strongly collinear.

Pattern description
Collectively, the eight metrics captured a seasonal cycle in the vertical
density distribution of Monterey Bay’s pelagic fauna (Figure 6). Total
integrated backscatter reached a minimum (Sa , 255 dB) in May of
both years of the deployment, with the water column largely empty
(Pocc , 0.1). Biomass was concentrated near the surface (CM
. 2200 m). By late summer, Sa had increased to approximately
240 dB because of the appearance of a large, non-migrating scatter-
ing layer between 2400 and 2600 m. The presence of this deep layer
lowered the CM to 2500 m and raised the occupancy to 0.7. Over
autumn and winter, the deep layer gradually thinned, causing the

occupied proportion of the water column to decline and the CM
to rise. Total backscatter and mean density (Sa and Sv) remained
high during that period, owing to the presence of a dense scattering
layer near the surface. By spring 2010, the vertical distribution was
similar to that seen in the previous year, with Sa 14 dB below its
winter peak and concentrated high in the water column (i.e. CM
near 2100 m). From its lowest point in May 2010, Sa climbed
rapidly through June and July, coinciding with the reappearance of
the deep scattering layer. There was typically a distinct boundary at
the bottom of the lowest scattering layer, below which only low dens-
ities of individual targets were observed. This boundary moved
upwards in late winter and spring to a depth of �400 m before
moving down again in summer, reaching depths of .700 m in
early September 2009 and late August 2010.

This seasonal cycle accounted for large proportions of the vari-
ability in all metrics. Regressions of metric values on annual and
twice-annual sinusoids (Table 2) were all significant (p ,,

0.001). Adjusted R2 values indicated that these sinusoids
accounted for between 24.6% (IA) and 87.7% (Pocc) of total vari-
ability. All other series had R2 values between 0.474 and 0.688.
Even after de-seasonalizing the series, they remained positively
autocorrelated with lags between 4 and 27 d.

Variability was also present on subannual time-scales. The
Fourier and wavelet power spectra of the deseasonalized series
had most of their energy concentrated at low frequencies (i.e.
long periods/scales), with the energy decreasing roughly as a
power of the frequency. Power-law fits on the Fourier spectra
had exponent values ranging from 21.732 to 20.8399, with R2

values between 0.18 and 0.31 (Figure 7). This energy was not dis-
tributed equally through time, as shown by the wavelet spectra

Figure 4. Sensitivity of metrics to the choice of acoustic threshold. Box-and-whisker plots show mean, interquartile, and 95th percentiles of
metric values (left axis). Black points show the CV at each acoustic threshold (right axis). (a) Mean volume-backscattering strength (Sv),
(b) area-backscattering strength (Sa), (c) centre of mass (CM), (d) inertia (I), (e) proportion occupied (Pocc), (f) equivalent area (EA), (g) index
of aggregation (IA).
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(Figure 8). Significant energy at scales between 60 and 130 d was
present during spring 2010 in all metrics except the index of aggre-
gation, which reflected large changes in animal density distribu-
tions from March through June. In April 2010, there was a
strong frequency component at the 30–40 d scale in Sv, Sa, and
Pocc. Local peaks in the wavelet power were also present for
most metrics at scales between 4 and 30 d, but they rarely attained
statistical significance.

DVM of scattering layers was observed nearly year-round, al-
though it was not uniform through time. The power spectra of
all metrics except IA had significant peaks at the 24-h period, as
well as near the 12-h period in the CM, Pocc, and I spectra
(Figure 7). Significant peaks near 12 and 24 h were also seen in
the wavelet spectra of these series, particularly during February
and March in the CM and I. The strong daily oscillation in the
metrics at those times is attributed to the presence of several
layers migrating to the surface from depths .300 m. The non-
migrating component of the deep layer was mostly absent then.
Significant variability was also observed in the wavelet spectra at
time-scales ,12 h, mainly during winter for CM, EA, I, Pocc,
and Nlayers, and in Sa and Sv during their spring minima. During
February and March of both years, dense aggregations were
present near the surface during daylight, typically passing
through the beam in several minutes and registering as sharp
spikes in Sa, Sv, CM, and IA.

Discussion
The seasonal cycle in density distributions of animals in the water
column coincided with the seasonal oceanographic cycle of
Monterey Bay and the California Current. The spring backscatter-
ing minima were just before the typical peak of upwelling in June,
when cool, nutrient-rich water shoals close to the surface, with
subsequent peaks in chlorophyll and primary production
(Pennington and Chavez, 2000). Within 3 months of its
minimum, backscatter had increased an order of magnitude,
with a much greater proportion of the water column occupied.
This agrees with previous observations in Monterey Bay that
peak zooplankton biomass lags primary production by 2–3
months (Robison et al., 1998; Croll et al., 2005). This lag is due
either to the growth of these populations following the increase
in food availability or to aggregation at the upwelling front,
which is offshore early in the season but collapses shorewards in

late summer (Abbott and Barksdale, 1991; Robison et al., 1998;
Croll et al., 2005). Interestingly, the total biomass (represented
by total acoustic backscatter Sa) remained high through winter
and peaked in January, when primary production is typically
close to zero (Pennington and Chavez, 2000).

Seasonal movements of the boundary between the mostly occu-
pied upper water column and the mostly empty lower water
column also appeared consistent with the known seasonal cycle.
This boundary was between 2400 and 2700 m, consistent with
the upper edge of the oxygen minimum zone (OMZ) in
Monterey Bay. The OMZ, usually defined by concentrations of dis-
solved oxygen ,0.5 mg ml21, is located between �2500 and
21000 m and moves upwards during the upwelling season
(Lynn et al., 1982; Robison et al., 2010). Physiological constraints
imposed by low oxygen concentrations contribute to the structure
of ecological communities in the meso- and bathypelagic depth
zones (Robison, 2004). Our observations showed that the depth
range of sound-scattering animals is restricted by oxygen
availability.

Characteristics of the frequency spectra suggested that fluid tur-
bulence influences the temporal variability of pelagic fauna.
Spectrogram slopes of CM, I, Pocc, Sv, and Sa were all close to
the theoretical value of 25/3 for diffusive turbulent mixing
(Platt and Denman, 1975), and power-law distributions provided
good fits to these empirical spectra. The observations indicated
that the total abundance, mean vertical location, and dispersion
of animals in the water column varied as the velocities of passively
drifting particles. In contrast, the variance of IA and Nlayers

decayed more slowly with increasing frequency. The temporal vari-
ability of these metrics, both measuring aggregation, was not con-
sistent with passive-particle variability, confirming that midwater
animal assemblages are mobile and aggregated independent of
fluid motions. This finding is consistent with other observations
of the distributions of mobile aquatic organisms.

Considerable variability was also present at short time-scales.
There were significant frequency components with a 24-h period
in all metrics except IA corresponding to the diel cycle.
Significant variability at a near-12-h period was also present in
the CM and Pocc indices, likely because of movements of animals
by tidal currents. Diel variability was more pronounced in location
and dispersion metrics than in those indexing total abundance and
density. This contrast is expected if DVM is primarily vertical. The

Figure 5. Principal component analysis of metric time-series. (a) Biplot, showing the values of the first two principal components (points) and
the loadings of the metrics along these two components (labelled). (b) Same as (a), but showing the second and the third principal
components. The numbers in parenthesis on the axis labels show the proportion of variance explained by the corresponding component.
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fact that Sa and Sv displayed energy peaks at the 24-h period indi-
cates some cyclic variability in total abundance and density at that
temporal scale. Variability at that scale could be attributable to

changes in acoustic target strength as animals change orientation
during DVM (Foote and Ona, 1987; Simard and Sourisseau,
2009) or to a horizontal component in the diel migration cycle

Figure 6. Metrics time-series for entire deployment (27 February 2009 to 18 August 2010). The grey lines show values binned at 1-min
intervals, and the black line shows daily averages. (a) Mean volume-backscattering strength (Sv), (b) area-backscattering strength (Sa), (c)
centre of mass (CM), (d) inertia (I), (e) proportion occupied (Pocc), (f) equivalent area (EA), (g) index of aggregation (IA), and (h) number of
layers (Nlayers). Refer to methods and Table 1 for calculation and detail.
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(e.g. Benoit-Bird and Au, 2004). It could also be due to the migra-
tion of animals into the top 10 m of the water column, which were
excluded from analysis.

Because there was no direct sampling, we cannot positively
identify the organisms observed from DEIMOS. Monterey Bay
has been sampled for a number of decades, and we can infer
species compositions from the published literature. Barham

(1956), in the first acoustic study of the Bay’s ecology, identified
the main constituents of acoustic backscatter layers as myctophid
fish (Diaphus theta and Lampanyctus leucopsarus), and to a lesser
extent, mesopelagic shrimp (Sergestes similis) and Pacific krill
(Euphausia pacifica). Later studies, including visual observations
from ROVs, have shown that layers are of mixed composition
(Robison, 2004; Robison et al., 2010) and that as much as one-

Table 2. Summary of seasonal models fitted to metric time-series, with seasonal cycles estimated as the sum of sinusoids, with periods of 1
and 1.5 years.

Metric Source MS F4, 9390 p-value R2 Maximum Minimum

Sv Model 7.787 × 103 2.693 × 104 ≈0 0.534 270.8 265.9
Error 2.89 10 September 5 May

Sa Model 1.467 × 104 4.597 × 103 ≈0 0.662 237.5 244.2
Error 3.19 9 September 5 May

CM Model 1.681 × 107 5.167 × 103 ≈0 0.687 2154.8 2421.5
Error 3.253 × 103 7 May 14 September

I Model 8.299 × 010 2.118 × 103 ≈0 0.471 33 581.6 17 222.6
Error 3.918 × 107 11 December 11 April

Pocc Model 24.25 1.683 × 104 ≈0 0.878 0.796 0.519
Error 1.440 × 1023 9 September 4 May

EA Model 1.627 × 107 2.976 × 103 ≈0 0.559 408.8 145.5
Error 5.469 × 103 3 September 1 May

IA Model 1.651 × 1022 7.690 × 102 ≈0 0.246 0.0099 0.0024
Error 2.147 × 1025 19 April 17 August

Nlayers Model 7.489 × 103 3.632 × 103 ≈0 0.607 8.57 3.56
Error 2.062 17 September 21 April

The table shows the analysis of variance and estimated maximum and minimum values of the fitted seasonal model, with the corresponding dates.

Figure 7. Fourier power spectra of all metrics, with the variance in each time-series plotted as a function of frequency (log axes). Subplots are
labelled as in Figure 6, the grey points show the raw spectra, and the black lines show the spectrum after smoothing with a 15-point modified
Daniell kernel. Regression lines show power-law distributions fitted to the raw spectra, with their exponents (i.e. the slope of the line on the
log–log plot) and R2 values displayed. Vertical lines are plotted at 24- and 12-h periods (left and right lines, respectively).
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quarter of the pelagic biomass is gelatinous (Robison, 2004).
Particularly notable are organisms such as the siphonophore
Nanomia bijuga, a common gelatinous predator that is also a
strong acoustic target as a result of its gas-filled pneumatophore
(Barham, 1963; Robison et al., 1998). ROV observations show
that Nanomia undergoes a seasonal cycle in abundance lagging
primary productivity by �3 months, with peak densities near
500 m deep (Robison et al., 1998). Single targets in the region
below the backscattering layers are likely macrourids and other
fish (Yeh and Drazen, 2011). Future studies using stationary
acoustics would benefit from direct sampling and additional
acoustic frequencies, allowing better discrimination of different
types of scattering organism (Horne, 2000).

Vertically applied spatial metrics other than Sv and Sa are rela-
tively uncommon in fisheries acoustics. A typical approach would
subdivide the water column into layers of interest and track the
mean density or total backscatter within each of these layers.
This was the approach taken by Flagg et al. (1994) and
Cochrane et al. (1994) to add detail to the basic backscattering sta-
tistics. Burgos and Horne (2008) rigorously investigated a wide
range of metrics to characterize walleye pollock (Theragra chalco-
gramma) aggregations in the Bering Sea, arriving at a similar set to
that used in this paper.

Although the metrics do not measure compositional variability
(i.e. changes in the abundance of different taxa), they do provide a
powerful, high-scope view of aggregate variability (i.e. changes in
the overall abundance or density; cf. Micheli et al., 1999). As
demonstrated by the PCA, considerable collinearity exists
between metrics, as would be expected, given the mathematical
relationships between them (Bez and Rivoirard, 2001; Woillez

et al., 2007). As metrics were calculated over the entire water
column, they integrated distinct features observed in the acoustic
record. For example, the signature of diel variability attributable
to vertical migration in the upper water column was damped in
the metrics by the presence of the deep non-migratory layer.
The CM and I indices both assume a single centre, but the vertical
density distribution was typically multimodal, with several distinct
layers. Depending on the process or the region of interest, the
metrics could be constrained to specific regions in the water
column.

The suite of metrics presented here effectively captures the ver-
tical density distribution, rendering a large dataset into a tractable
form, and provides a flexible set of tools to quantify variability in
the ecosystem. They are capable of measuring periodic variability
(e.g. DVM), long-term shifts (e.g. interranual changes), and tran-
sient events (e.g. dense aggregations). These phenomena are im-
portant when characterizing ecosystems and could be used to
detect potential changes associated with climate trends. Metrics
used in this study could be extended and applied in two or three
spatial dimensions as succinct descriptors of density distributions
through time. The metrics are well-suited to pattern description in
high-scope dataseries: they are objective, simple to calculate, retain
full resolution in the indexing dimension (i.e. time), and provide a
description of the vertical density distribution with a minimum of
assumptions. Other applications potentially include unsupervised
monitoring of a datastream or as preliminary indicators of data
quality.

Long-term, continuous sonar records can be used to address
ecological questions. DVM is an obvious process to investigate
with stationary acoustics, but appropriately located acoustic

Figure 8. Wavelet transforms of the metric time-series, plotting the variability in the series as a function of the time and temporal scale.
Shading indicates the magnitude of the wavelet power, normalized by 1/s2. The thick black contour line encloses regions significant at the
95% level, and dotted lines indicate the “cones of influence”: wavelet coefficients outside (i.e. below) these lines may be reduced in magnitude
by edge effects.
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instruments could also be used to observe the timing of horizontal
migrations, either on short (diel) time-scales (Benoit-Bird and Au,
2004) or on longer scales for more mobile organisms (Kaltenberg
et al., 2010). When combined with oceanographic observations,
stationary acoustics facilitates the investigation of biophysical
coupling through the water column across temporal scales.
Stationary acoustics could also be used to complement ship-based
surveys for resource management as methods for temporally based
stock assessment are developed (cf. Brierley et al., 2006).
Stationary acoustics offer a powerful tool to monitor an ecosystem
at multiple trophic levels (Koslow, 2009). The efficiency and effi-
cacy of monitoring is greatly improved with a suite of objective
metrics such as that presented here.
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