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The European Common Fisheries Policy recognizes the importance of accounting for heterogeneity in fishing practices, and métier-
based sampling is now at the core of the EU Data Collection Framework. The implementation of such an approach would require
Member States to agree on the standard regional métier definitions and on practical rules to categorize logbook records into
métiers. Several alternative approaches have been used in the past to categorize landings profiles, but no consensus has yet
emerged. A generic open-source workflow is developed to test and compare a selection of methods, including principal components
analysis (PCA), hierarchical agglomerative clustering (HAC), K-means, and Clustering LARge Applications (CLARA), and to provide
simple allocation rules. This workflow is applied to a unique regional dataset consisting of bottom-trawl logbooks of five North
Sea countries. No method proved to be infallible, but combining PCA with either CLARA or HAC performed best. For 2008, a hier-
archical classification with 14 species assemblages is proposed. Discriminant analysis proved more robust than simple ordination
methods for allocating a new logbook record into an existing métier. The whole approach is directly operational and could contribute
to defining more objective and consistent métiers across European fisheries.

Keywords: cluster, Data Collection Framework (DCF), logbooks, métier, mixed fisheries, multivariate analysis, North Sea.

Introduction
The European Common Fisheries Policy (CFP) calls for the imple-
mentation of an ecosystem-based approach to fisheries manage-
ment, with increasing focus on limiting the impact of fisheries
on the environment. As part of the process, the CFP recognizes
the importance of accounting for heterogeneity in fishing prac-
tices, and the 2011 Proposal for the Reform of the CFP shows
an obvious will to move away from single-stock and towards fleet-
based management (EC, 2011). Some steps have already been
taken in this direction over the past decade through, for instance,
differential effort reductions based on gear and mesh-size
categories, and the development of mixed-fisheries scientific
advice (ICES, 2010). Analysing catch and effort by fishing activity
allows for more accurate estimates of partial fishing mortality
induced by the various fleets. To make this approach operational,

the first step is to define fishing activities. This topic is not new,
and since the seminal work of Laurec et al. (1991), classifying
fishing activities has been well investigated by the scientific com-
munity (see below). The definition of homogeneous groups of
fishing operations and/or fishing vessels is intended to character-
ize the overall fishing activity into a few, easy-to-manage categor-
ies. However, despite many years of scientific study, no single and
fully unified approach has emerged. Various criteria and scales can
be used, which lead to different perceptions of the same reality
(Ulrich et al., 2009). Nonetheless, the establishment of the
European Data Collection Framework (DCF; EC, 2008) has been
an important step forwards, not least because it has led to agree-
ment on basic concepts and terminology. The DCF has adopted
the definition that we follow here: a métier is a group of fishing
operations targeting a specific assemblage of species, using a
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specific gear, during a precise period of the year and/or within the
specific area.

The DCF defines métiers according to a hierarchical structure
using six nested levels: level 1, activity (fishing/non-fishing);
level 2, gear class (e.g. trawls, dredges); level 3, gear group (e.g.
bottom trawls, pelagic trawls); level 4, gear type [e.g. bottom
otter trawl (OTB), bottom pair trawl]; level 5, target assemblage
based on the main species type [e.g. demersal fish vs. crustaceans
or cephalopods]; level 6, mesh size and other selective devices. For
convenience, we also define here a further disaggregation level dis-
tinguishing targets at the true species level (e.g. cod, haddock) as
level 7, as distinct from DCF level 5, which deals only with
species type. This level 7 is expected to describe more accurately
the actual landings profile. It must be noted that our use of the
level 7 concept here may differ slightly from the current usage at
the national level in some cases.

To make these definitions operational Europe-wide, it is im-
portant that all coastal EU Member States agree at the regional
scale on (i) métier definition at levels 7 and 5, and (ii) practical
rules to allocate their own activities to métiers. Logbook data are
the main source of information on fishing activities. They detail
for each trip of each vessel the quantity of the main species
caught and kept on board per catch day, location, and type of
gear used. Categorizing logbook data into levels 1–4 (and to a
lesser extent level 6, depending on the accuracy of mesh-size
reporting) is straightforward because the required information is
directly available in the logbooks. Categorization into levels 5
and 7, however, is more difficult, because in the EU, fishers do
not have to declare which species they are actually targeting
when fishing. Therefore, the matching métier has to be inferred.

ICES (2003) provided general concepts and ideas to define
these métiers, but did not provide quantitative guidelines, nor
did the expert groups (EC, 2005, 2006) that led to the DCF.
However, several analyses have been conducted at the national
scale, and many approaches have been used. The earliest and sim-
plest approach consists of selecting fishing trips where a certain
catch proportion of selected key species is exceeded (e.g. Biseau,
1998; Ulrich et al., 2001). This approach is based largely on trial
and error, and often requires a qualitative, a priori, knowledge of
the fisheries. Another approach consists of conducting multivari-
ate analyses on species composition in catch data by trip or fishing
operation (referred to as catch or landings profiles), then grouping
similar profiles into métiers. This grouping can be performed by
direct visual inspection (Biseau and Gondeaux, 1988; Laurec
et al., 1991) or statistically through cluster analysis. Within this
approach, several statistical methods, settings, and software have
been used, and many local applications have been published in
the literature, also in response to the requirements of DCF
implementation. Rogers and Pikitch (1992) used two opposite
types of hierarchical clustering techniques and detrended corres-
pondence analysis to define groundfish assemblages in Oregon
and Washington waters. Lewy and Vinther (1994) used a hierarch-
ical agglomerative clustering (HAC) analysis when identifying
Danish North Sea trawl fisheries, and a similar approach was
later used by Holley and Marchal (2004) and Marchal (2008) on
French fisheries, by Tzanatos et al. (2005) in Greece, and by
Jiménez et al. (2004) in Spain. He et al. (1997), Silva et al.
(2002), and Bastardie et al. (2010) used K-means clustering
approaches for fisheries in Hawaii, Spain, and Denmark, respect-
ively. Pelletier and Ferraris (2000) combined principal compo-
nents analysis (PCA) and HAC to identify métiers of both an

artisanal Senegalese fishery and French Celtic Sea fisheries, a se-
quence of methods much used in subsequent studies (Ulrich
and Andersen, 2004; Tzanatos et al., 2006; Campos et al., 2007;
Katsanevakis et al., 2010). Finally, non-hierarchical clustering
methods were used to classify métiers in the Iberian Peninsula,
with partitioning around medoids (PAM) used for Portuguese
purse-seine fisheries (Duarte et al., 2009) and its variant,
Clustering LARge Applications (CLARA), used for Spanish otter
trawl fisheries (Castro et al., 2010, 2011; Punzón et al., 2010).

Reviewing these studies raises a number of questions. First, al-
though mostly statistical, clustering has generally included an
element of subjective choice, and the robustness of the results to
these choices is unknown. Second, although the DCF aims at
unifying métier definitions at a regional scale (i.e. across nations
operating in the same region), all the analyses described above
were performed at the national level, involving limited datasets.
The requirement for regional métiers is likely to provide different
results by combining different fishing strategies across different
member states and may potentially also raise computational
challenges associated with larger datasets. Finally, all studies were
performed on historical data aggregated over given periods of
time (generally per year), but they did not usually address the re-
quirement to assign future logbook records to a métier, as would
be useful for real-time monitoring of fisheries.

To address these issues, we developed an operational frame-
work that will allow (i) analysis of the sensitivity of métier defin-
ition (at level 7) to the classification method, (ii) linking the métier
obtained at level 7 to the target assemblage at level 5, and (iii) cat-
egorizing any new logbook records into the most relevant métier
class. In this work, focus is solely on level 7 as a way to enhance
and operationalize level 5, so we disregard level 6. Although
DCF levels 1–5 were defined at a whole European level and
meant to be generically available, level 6 was defined regionally
and is not available in all regions. Therefore, the methods
described below deal only with the analysis of landings profiles
and not with their linkages with mesh size, as was attempted by
Pelletier and Ferraris (2000), Ulrich and Andersen (2004), and
Marchal (2008).

The application of the whole procedure is illustrated with the
example of the international OTB fishery using combined
logbook data from the main countries (Denmark, England,
France, Scotland, and the Netherlands) fishing in the North Sea
region, i.e. ICES Subarea IV (North Sea), Division IIIaN
(Skagerrak), and Division VIId (Eastern Channel). According to
ICES (2010), the bottom trawling component of these nations to-
gether accounts for some half of the total landings of the main
assessed species (cod, haddock, whiting, saithe, sole, plaice, and
Nephrops) in the North Sea. This study represents the first
attempt to merge national logbook data into a regional dataset,
and so in addition to its generic statistical scope, it also represents
a major insight into the nature of North Sea demersal trawl
fisheries.

Material and methods
The workflow was developed entirely in R (R Development Core
Team, 2010). The code associated with this work is included in the
“vmstools” R package (http://code.google.com/p/vmstools/),
which is a library of tools for fishery data-related analyses (Beare
et al., 2011; Hintzen et al., 2011). Some R-specific extension packages
were also used (FactoMineR, cluster, SOAR, amap, MASS, mda).
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Data
The dataset included detailed 2007/2008 logbook data for OTB
fishing in ICES Subarea IV (North Sea), Division IIIa
(Skagerrak–Kattegat), and Division VIId (Eastern Channel). The
term “logbooks” is used here in its broad sense, implying a
merging of the actual logbooks completed by fishing vessels,
with cash-value information coming mainly from sales slips and
information on the fishing vessel coming from the fleet register,
so that complete information is available for each fishing trip
(Hintzen et al., 2011). In the EU, a logbook has to be completed
for each fishery sequence, i.e. for each combination of fishing
day, gear, mesh size, and ICES rectangle. However, in practice, na-
tional fisheries research institutes do not all have access to the same
level of disaggregation. For some, data are available down to
fishing operation (haul-by-haul information), whereas for
others, all operations of a given fishing trip are aggregated into a
single record, with only the main area fished and gear used indi-
cated. The best information available for each country was
retained, and the generic term logbook event (LE) was used to
refer to each observation. This implies that for the countries
whose available information was disaggregated to the fishing oper-
ation or day, a single fishing trip could be characterized eventually
by one or several métiers. For 2007, 74 712 LEs were recorded, and
for 2008, there were 96 758 (the initial number of LEs in 2008 was
98 017, but 1.3% of LEs had some missing value information and
were removed). The exchange format used throughout the study
was the standardized EFLALO format, previously used in many re-
search projects (e.g. Marchal, 2006; Beare et al., 2011). In this
format, each row represents an LE, and columns include several
descriptors (vessel, gear, mesh size, ICES rectangle, etc.), as well
as the weight and the value of landings by species. ICES (2003)
recommended that métiers be defined preferably on landings com-
position expressed in cash value if available, as this may reflect
more accurately the actual targeting choices of the fishers. This
option was retained here. The number of species recorded varied
significantly between countries, from 49 (in Scotland) to 220 (in
France), and when pooled together, the whole dataset included
278 species in 2007 and 296 in 2008.

In 2008, the ten main species (72% of the total value) landed by
bottom trawls in the North Sea region were, in decreasing import-
ance, Nephrops (NEP), sandeels (SAN), saithe (POK), Atlantic cod
(COD), monkfish (MON), European plaice (PLE), haddock
(HAD), herring (HER), whiting (WHG), and mackerel (MAC).
However, these species were not equally spread across all LEs,
because they were present in, respectively, 47, 3, 22, 42, 27, 46,
30, 4, 32, and 11% of all LEs. This means that some species are
more heavily fished in dedicated métiers, often associated with
specific countries, illustrating the need to collate data at a supra-
national level.

Methodology
The comparison of methods for the characterization and classifi-
cation of landings profiles was performed through a number of se-
quential steps, as follows (Figure 1):

Step 1: identification of the important species out of all species
recorded, and the reduction in the dataset to these key species
only;

Step 2: investigation of the added value of initially running a
PCA on the dataset to build preliminary groups of species;

Step 3: running a selection of clustering methods and settings,
and characterizing the species-based level 7 classifications
obtained;

Step 4: relating the species-based level 7 classifications to the
corresponding DCF level 5 classification;

Step 5: predicting the classification of any new LE into the
defined métiers.

Each step is described below.

Step 1: identification of main species
Let us denote D0 the initial dataset, D0 = (D0

i,j)i=1,...,n;j=1,...,m,
where n refers to the number of LEs, m the number of species,
and D0

i,j the landings in value of species j during the ith LE.
Several approaches were suggested for identifying key species
out of the large dataset D0. An objective method was to use an
HAC on the species observations, i.e. on the transposed dataset
(all species × LE). More subjectively, main species could also
be defined as the ranked list of species accumulating to a given
percentage of the total catches (the perTotal method), or as the
species representing at least a given percentage of at least one
LE, i.e. species likely to represent a true target for part of the
fishery (the perLogevent method). The three methods were
thus implemented and compared.

In the HAC method, groups of species were identified by itera-
tive pairwise agglomeration of elements based on the Ward
minimum variance criterion (Ward, 1963). The analysis was
carried out on landings proportion by LE (landings profile)
rather than on absolute values, to be independent of the LE total
value. We used a Scree test (Cattell, 1966) to select the cut
height of the dendrogram. The Scree test cuts the dendrogram at
the successive largest gain in the clustering variance ratio (variance
between clusters/total variance of the dataset). This first run iso-
lated a number of principal species and pooled the remaining
species of lesser importance in a group of residual species. As
this step generally isolated only few main species, similar HACs
were subsequently run through a loop on the residual group,
and each new species isolated by a monospecific cluster was

Figure 1. Workflow of the analyses for the definition of métiers
using landings profiles and the definition of the allocation rules of an
LE to a métier. Symbols are explained in the text.
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added to the list. The loop stopped when all clusters contained
more than one species. In the perTotal method, the percentage
threshold was increased in steps of 5% from 5 to 100%, and the
ranked species summing up to this value was recorded. In the
perLogevent method (working on landings profiles), the percent-
age threshold was decremented in steps of 5% from 100 to 5%, and
all species representing at least this value in at least one LE were
recorded.

This approach allowed the exploration of the variability and the
sensitivity of the definition of key species to differences in
concepts and thresholds, and the derivation of a robust list of
species using a combination of outcomes from the three
methods. Subsequently, the initial dataset (landings by LE × all
species) was transformed into landings profiles and reduced to
the principal species only (LE × principal species), defined by

D1 = (D1
i,j)i=1,...,n;j=1,...,p, where p is the number of principal

species (p ≤ m) and D1
i,j = D0

i,j/
∑m

j=1 D0
i,j.

After that step and based on this conveniently reduced number
of species, national differences observed in the coding of unsorted
mixed groups of cuttlefish, squid, monkfish, and skates and rays
were made consistent to avoid the potential bias in the results.

Step 2: PCA transformation
Many of the studies cited above made use of a PCA before the
actual clustering, and it was therefore decided to investigate the
relevance of this choice. There are two reasons for applying a
PCA. First, it helps to reduce the multidimensional catch matrix
to a smaller number of informative components represented by
the first n axes of the PCA transformation. Second, it is inform-
ative about the interactions among species across LEs.

When running a PCA, it is necessary to specify the number of
axes to be retained. Two possible criteria were implemented
(Hartigan, 1975): (i) using a second-order Cattell Scree test
looking for the significant marginal increases of explained inertia,
and (ii) selecting all axes accumulating 70% of the explained
inertia. The resulting dataset is the matrix of new LEs coordinates
using the retained axes of the PCA, D2 = (D2

i,j)i=1,...,n;j=1,...,k,
where k is the number of retained axes (k ≤ p) and D2

i,j is the coord-
inate of the ith LE on the jth axis of the PCA.

Step 3: clustering
Let us denote D3 the input dataset of the clustering step of the ana-
lysis. D3 = D2 if a PCA was previously used, otherwise D3 = D1.
Three clustering methods were selected and implemented to be
applied on D3: HAC (Hartigan, 1975). K-means (Hartigan and
Wong, 1979), and CLARA (Kaufman and Rousseeuw, 1990). All
methods lead to a classification of all individual LEs, but they
are based on different approaches and algorithms.

The HAC method initially assigns each LE to its own cluster,
then the algorithm proceeds iteratively, at each stage joining the
two most similar clusters, until there is just a single cluster. The
similarity is computed using a distance function (default set to
the Euclidean distance) and a clustering method (default set to
the Ward criterion). The number of clusters is determined there-
after, once all combinations have been calculated, using a Scree
test, which can return successive thresholds for increasing
number of clusters.

The two other methods assume that the final number of clus-
ters is known a priori and set at K. In contrast to the HAC, these
methods select first K LEs, then assign them to their own clusters
(kernels), and subsequently assign each LE of the dataset to the

closest cluster, according to a similarity criteria (default set to
the Euclidean distance).

With the K-means method, each cluster is characterized by its
gravity centre (i.e. an average virtual LE) and the method is applied
to the whole LE dataset (no sampling). For each new observation,
the gravity centre of the cluster and the distances to the next LE are
recalculated. The procedure is repeated with increasing values of
K, and the most appropriate number of clusters can be selected
by detecting the largest marginal losses of inertia between two con-
secutive numbers of clusters, similar to the HAC Scree test.

The CLARA method was developed to cope with large datasets.
Subsets of the data, of user-defined number and size, are sampled
and clustered using the PAM (Kaufman and Rousseeuw, 1990)
algorithm. With this approach, the centre of the cluster is
defined as the medoid, i.e. the most central LE that shows the smal-
lest dissimilarity with other LEs within the cluster. Identifying the
medoid requires computing all dissimilarities within the cluster
and comparing it with the sum of dissimilarities if any other LE
in the cluster had been the medoid. The medoid is then adjusted
accordingly, until convergence of the procedure. As in K-means,
the procedure is run with increasing values of K, and the most ap-
propriate number of clusters is detected using the local maximum
values of the silhouette of the classification. The silhouette provides
an average comparison of the distance between an LE and the other
LEs from its cluster, and between the same LE and the other LEs of
the nearest cluster. Subsequently, all remaining LEs are assigned to
their nearest medoid using a user-defined method for calculating
distances (default set to the Euclidean distance).

Regardless of the clustering method used, step 3 leads to a new
matrix D4,métiers

ClusteringMethod = (D4,métiers
ClusteringMethodi,j

)i=1,...,n;j=1,...,m+1 equal
to D0, with an additional column containing the result of the clas-
sification as an identifier of the cluster associated with each LE.

To perform a rigorous comparison of the performance and
outcomes of the three clustering methods, an objective analysis
plan was established. First, because the HAC method initially
proved to be fairly computer-demanding and not straightfor-
ward to implement in R for the whole dataset, the approach
was modified along the principles of the CLARA procedure,
i.e. the HAC was performed on a sample of randomly selected
LEs representing a given percentage of all initial LEs. The
remaining LEs were subsequently allocated to the defined clus-
ters using linear discriminant analysis. As for CLARA, to avoid
issues linked to the random sampling of LEs, the procedure
was set to be repeated a number of times, and the best classifi-
cation with regard to maximizing the clustering variance ratio
was retained for the final outputs.

The comparison between HAC and CLARA was made based on
five samples within each method and with sample size set at 1, 5,
10, or 30% of the whole dataset. As the sampling algorithm is per-
formed internally within each method, the sampled datasets may
differ in both methods, but because both methods proceed with
multiple samples, they should ideally be robust to the sampling
bias. Monitoring this robustness is exactly the purpose of the
second test we performed as described below.

The second test follows from the observation that combining
national logbook data resulted in a stratified dataset with rows in-
trinsically grouped by country and season, which affected the row
sampling of HAC and CLARA. For this reason, the robustness and
the stability of the three methods were tested by applying them to
three permutations of the whole dataset, where the LE lines were
randomly shuffled before the analyses.
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Third, the three methods build on finding best performance of
given criteria across the consecutive number of clusters, but several
thresholds can be observed when increasing the number of clus-
ters. A first threshold is expected to distinguish the most well-
defined fisheries (e.g. sandeel, northern prawn) from the bulk of
more mixed operations, and a second threshold is expected to
return a more accurate description of these mixed fisheries.
Therefore, two classifications were investigated for each method,
returning both the first and the second threshold encountered
with increasing numbers of clusters (an initial threshold could
sometimes be observed for small numbers of clusters but was dis-
regarded), corresponding to the second and third Scree test
minima for HAC, the first and second largest inertia losses for
K-means, and the first and second silhouette maxima for
CLARA, respectively.

Ultimately, the most appropriate approach was selected based
on multiple considerations, i.e. (i) the computational cost and
data limitations (on a Linux server), (ii) the clustering variance
ratio, (iii) the stability of results across different permutations of
the initial dataset (shuffles), (iv) the projections of LEs by
cluster on first factorial axes, with clusters expected to be well dis-
tinguished by axes and LEs to be well grouped together, (v) some
characteristics of outcomes (a) the final number of clusters, (b) the
number of LEs by cluster, and (c) the list of characteristic species
by cluster, representing both the main species in value and the
most representative species caught in the cluster—empirical
rules were defined, so characteristic species should appear in the
ranked list accumulating 75% of the average value of the cluster
and be characterized by a test value (a statistical metric comparing
the proportion of that species in the landings of the cluster with
the average proportion of the same species in the whole dataset;
Lebart et al., 1995) .50% and should appear in at least 30% of
LEs in the cluster, and (vi) the meaning and the relevance of clus-
ters. The last criterion is based mainly on expert knowledge.
Experts played an important role in judging the validity of some
métier definitions, e.g. if a cluster gathered two important
species known for not being caught together, if small but very spe-
cific fisheries could be identified, or if two clusters seemed
redundant.

At the end of this step, a single clustering approach was selected,
with D4,level 7−métiers denoting the resulting outcome. Each métier at
level 7 was named using the combination of gear used and the list
of characteristic species.

Step 4: linkage with DCF level 5
The DCF (EC, 2008) currently uses the métier definition at level 5,
based on species assemblage. For the OTB gear in the North Sea
region, the DCF recognizes in principle the existence of the
mixed-assemblage crustaceans–DEF (MCD) and cephalopods–
DEF (MCF). However, it is also specified that “The target assem-
blage that comes up at the first position should be considered as
the target assemblage to be reported in the matrix” (EC, 2008),
which in practice would imply that only one type is defined, not
a mix. The notion of first position assemblage can be interpreted
in different ways, and in the absence of clear quantitative guide-
lines, different national fisheries laboratories may have implemen-
ted different sets of simple empirical rules (referred to as
ordination rules), e.g. a first species method, identifying the
single most abundant species in the LE and allocating the LE to
the corresponding level 5 assemblage of this species, and a first
group method, summing the catch of the LE within the respective

species types and allocating the LE to the most important level 5
assemblage of the LE.

Assuming that level 7 is a more accurate representation of
fishing activities, we used this as a baseline to assess the validity
of these ordination rules, by calculating the extent of correspond-
ence between both. The two ordination rules were first applied dir-
ectly to each LE of the initial dataset D0 on its own catch profile,
then the list of characteristic species, as defined above, of each
LE at its level 7 cluster was considered using D4,level 7−métiers and
related to their corresponding assemblage, allowing the appear-
ance of mixed assemblages at level 5. Finally, the contingency of
both classifications was measured in terms of the number of LEs
in each level 5. Obviously, for the clusters dominated by a single
species, both classifications would be in broad agreement, but
this may be less clear for clusters defined by more than one
main species.

Step 5: prediction of the métier of a new LE
Métiers are not only used to characterize a fishery from historical
data, but also to improve sampling monitoring and fishing mortal-
ity estimates. Some quantitative rules are therefore necessary to
identify the most representative métier of any new LE (e.g.
during the current year, before all annual data have been collected
and new analyses run). Discriminant analysis is an efficient tech-
nique for deriving such quantitative allocation rules. It allows
the classification of a set of observations into predefined clusters,
fitting a multichoice model using one function for each cluster.
This model is expected to predict the cluster of an LE based on
a set of predictors, here the landings per species: given a new LE,
all K discriminant functions (K being the number of clusters)
are evaluated and the observation assigned to class i if the ith dis-
criminant function has the highest value. This analysis is per-
formed using the matrix D4,level 7−métiers corresponding to a set of
observations for which the clusters are known.

Results
The detailed comparison of methods was performed on the largest
and most recent dataset, i.e. 2008. Subsequently, the selected
method was applied to the 2007 dataset on which the discriminant
analysis was also fitted. Finally, the results for 2008 were compared
with the predicted métiers using such allocation rules.

Step 1
The HAC method retained 31 main species of the 296 of the initial
dataset (Figure 2). The perTotal method was more selective: given
the strong dominance of few species in the total value of the
dataset, the incremental slope was very low, and 26 species repre-
sented 95% of the total value. The perLogevent method returned
the largest range of species, with 60 species representing 100% of
the value of at least one LE. Combining these three sets of
species and harmonizing a few national codes led to a reduced
dataset of 58 main species, 99.1% of the total value (Table 1).

Step 2
The PCA showed some species clustering over the first axes
(Figure 3), but little information was conveyed by each axis, and
it was necessary to retain 36 axes to reach the threshold of 70%
inertia. The Scree test was considered to retain too little informa-
tion, because it retained just nine axes cumulating 24.4% of the
inertia. Therefore, subsequent analyses were performed on the
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36 principal components, decreasing by 40% the number of
columns used for clustering.

Step 3
The comparative analysis underlined large differences in the per-
formance of the various methods and settings used (Table 2).

The K-means method was the fastest to compute, did not return
any dataset size limitations, and had greater variance ratios.
However, its outcomes seemed largely unreliable and difficult to in-
terpret. The number and characterization of clusters was unstable
across the three shuffles, and the method seemed to emphasize
minor clusters (e.g. edible crab, Sebastes sp.) while pooling together
most of the important species. On this basis, the K-means method
was not considered appropriate and was not analysed further.

After implementation of the sampling procedure, the HAC
method computed smoothly, even with a large sample size. At
30%, the method consistently returned eight clusters, with a vari-
ance ratio �20%, at first threshold classification. However, these
were not completely consistent across the three shuffled datasets,
with small differences observed in the characteristic species.
More problematically, the method did not reach consistency atTable 1. Species name, FAO code, and the corresponding DCF

level 5 for the main species retained in 2008 (DEF, demersal fish;
CRU, crustacean; CEP, cephalopod; SPF, small pelagic fish).

FAO
code Scientific name English name

DCF
level 5

BIB Trisopterus luscus Bib DEF
BRB Spondyliosoma

cantharus
Black sea bream DEF

BSS Dicentrarchus labrax European sea bass DEF
COD Gadus morhua Atlantic cod DEF
CSH Crangon crangon Common shrimp CRU
CTC Sepia officinalis Common cuttlefish CEP
GUU Chelidonichthys lucerna Tub gurnard DEF
HAD Melanogrammus

aeglefinus
Haddock DEF

HER Clupea harengus Atlantic herring SPF
HKE Merluccius merluccius European hake DEF
LEM Microstomus kitt Lemon sole DEF
MAC Scomber scombrus Atlantic mackerel SPF
MEG Lepidorhombus

whiffiagonis
Megrim DEF

MON Lophius piscatorius Monkfish DEF
MUR Mullus surmuletus Surmullet DEF
NEP Nephrops norvegicus Norway lobster CRU
NOP Trisopterus esmarkii Norway pout DEF
PLE Pleuronectes platessa European plaice DEF
POK Pollachius virens Saithe DEF
POL Pollachius pollachius Pollack DEF
PRA Pandalus borealis Northern prawn CRU
RAJ Rajidae Rays and skates nei DEF
SAN Ammodytes spp. Sandeels nei DEF
SDV Mustelus spp. Smooth-hounds nei DEF
SOL Solea solea Common sole DEF
SPR Sprattus sprattus European sprat SPF
SQU Loliginidae,

Ommastrephidae
Various squids nei CEP

SYC Scyliorhinus canicula Small-spotted
catshark

DEF

TUR Psetta maxima Turbot DEF
WHG Merlangius merlangus Whiting DEF
WIT Glyptocephalus

cynoglossus
Witch flounder DEF

Only 31 of the 58 retained species named in text are displayed.

Figure 3. PCA projection of the species on axes 1 and 2 (top) and 2
and 3 (bottom). The percentage numbers on the axes are the
percentages of inertia explained by that axis.

Figure 2. The number of main species selected depending on the
method and threshold chosen.
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the second threshold, returning 9–12 clusters for the different
shuffles.

The CLARA method turned out to be slowest to compute even
with a smaller sample size and could not run with a 30% sample
size. However, six consistent clusters were obtained across shuffles
at a 10% sample size at the first threshold. At the second threshold,
different numbers of clusters were also returned, explaining �30%
of the inertia. These clusters were meaningful and broadly consist-
ent in terms of characteristic species, the additional clusters
obtained being characterized by fisheries with few LEs such as
Norway pout or herring (usually a little caught with OTB), and
which could therefore have been missed by the sampling.

A closer comparison of the HAC and CLARA results obtained
with the second shuffle indicated some degree of consistency
(Table 3, Figure 4). At the first threshold, six meaningful clusters
were identified in common by both methods, three largely domi-
nated by a single species (sandeel, Nephrops, sole) and three of
mixed nature (gadoid–monkfish, squid–mullet–cuttlefish–
whiting, and plaice–lemon sole). In addition, HAC, unlike
CLARA, identified two additional single-species fisheries,
common shrimp and northern prawn. Both classifications
appeared relevant, although the additional HAC clusters were pre-
ferred. At the second threshold, some large clusters were cut into
smaller ones, providing a finer description of the mixed groups.
There was again a high degree of similarity between outcomes of
both methods, but whereas most clusters appeared meaningful,
HAC also returned some inconsistent results, pooling Norway
pout and herring as characteristic of the same cluster when these
two species are not caught routinely together.

All considered, it did not appear obvious that one method per-
formed significantly better than the other. Results were robust at

the first threshold, but neither of the two methods proved infallible
and fully robust to sampling size and row-shuffling when investi-
gating more precise definitions at the second threshold. At that
threshold, however, the results provided by HAC seemed slightly
less consistent; the variance ratio was lower and the clusters
more overlapping on the first factorial axes (Figure 4).
Therefore, we chose to pursue the analyses with the results
obtained with CLARA, with a 10% sample size and at the
second threshold, as the baseline classification for illustration
(Figure 5).

Step 4
The results above were used as the basis for evaluating the accuracy
of simple ordination rules allowing the allocation of an LE to DCF
level 5 (Table 4).

The simple métiers (DEF, CRU) were generally well captured by
the rules (�95% of overlap), but these simple approaches obvi-
ously could not capture clusters with mixed target type. For
example, our clusters 3 and 7 were both dominated by a different
combination of cephalopods and DEF (MCF), with species being
very characteristic of the cluster (high test value) and a large degree
of co-occurrence (observed in .80% of the LE of the cluster).
However, LEs in these clusters were split into two distinct level 5
categories with the ordination rules depending on the dominating
species; 43% of them being considered as DEF and 52% as CEP
with the first species method, and 59 and 38%, respectively, with
the first group method.

Both ordination methods were generally in broad agreement
with each other. However, the first group method tended to
favour the DEF métier, because of the large number of species
belonging to this group. As a consequence, some LEs would be

Table 2. Performance and outcomes of the three clustering methods for two levels of classification, three shuffled datasets, and four
sample sizes (HAC and CLARA methods only), with the average computing time (min), the resulting number of clusters, and the clustering
variance ratio (%).

Criterion Method

Sample size

1% 5% 10% 30%

First threshold HAC Computing time 1.2 1.6 2.7 12.5
Shuffle 1 7 (18.9) 8 (20.6) 8 (21.2) 8 (20.6)
Shuffle 2 7 (18.8) 8 (21.0) 7 (18.7) 8 (20.8)
Shuffle 3 6 (15.4) 9 (23.1) 8 (21.4) 8 (20.6)

CLARA Computing time 1.22 11.74 31.62
Shuffle 1 7 (19.2) 8 (21.5) 6 (16.7)
Shuffle 2 7 (19.0) 7 (19.0) 6 (16.6)
Shuffle 3 6 (16.6) 6 (16.1) 6 (16.1)

K-means Computing time 4.73
Shuffle 1 9 (23.9)
Shuffle 2 12 (28.5)
Shuffle 3 10 (25.9)

Second threshold HAC Computing time 1.3 1.7 2.7 11.9
Shuffle 1 10 (25.5) 9 (23.0) 10 (24) 12 (28.3)
Shuffle 2 9 (22.4) 9 (23.6) 9 (23.6) 11 (27.1)
Shuffle 3 8 (19.5) 11 (25.6) 12 (28.0) 9 (23.3)

CLARA Computing time 1.79 35.35 194
Shuffle 1 7 (18.6) 14 (32.5) 13 (30.2)
Shuffle 2 15 (33.7) 14 (32.5) 14 (32.6)
Shuffle 3 10 (24.4) 13 (30.2) 16 (36.1)

K-means Computing time 4.8
Shuffle 1 11 (27.2)
Shuffle 2 14 (32.3)
Shuffle 3 12 (29.3)
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Table 3. Identification of the métiers at level 7 and the corresponding level 5 and comparison of the corresponding clusters obtained with
HAC and CLARA at both first and second thresholds, indicating for each cluster which are the characteristic species; for each of these, the
average proportion of the species in the total value of each LE in the cluster, as well as the proportion of LE in the cluster where the
species is recorded, are indicated in brackets (expressed as a percentage).

Cluster number Level 7 Level 5

First threshold Second threshold

HAC CLARA HAC CLARA

1 OTB Nephrops CRU NEP (85, 100) NEP (79, 91) NEP (84, 100) NEP (94, 100)

2 OTB Nephrops–
monkfish

MCD NEP (61, 94)
MON (12, 77)

14 OTB Northern
prawn

CRU PRA (50, 59) PRA (88, 100) PRA (89, 100)

8 OTB shrimp CRU CSH (100, 100) CSH (100, 100) CSH (100, 100)

5 OTB cod–
haddock

DEF COD (21, 79)
MON (21, 66)

MON (20, 69)
COD (19, 77)

COD (25, 82)
POK (19, 69)

COD (39, 88)
HAD (24, 71)

9 OTB saithe– hake DEF
POK (16, 67)
HAD (12, 70)

POK (13, 65)
HAD (11, 69)

HAD (14, 67)
MON (13, 57) POK (39, 90)

HKE (8, 63)

6 OTB monkfish –
megrim

DEF MON (53, 98)
MEG (13, 73)

MON (48, 98)
MEG (9, 60)

3 OTB squid–
whiting

MCF SQU (22, 69)
WHG (13, 66)
MUR (9, 62)
BSS (8, 52)

SQU (24, 74)
WHG (15, 69)
MUR (10, 67)
BSS (9, 55)

SQU (35, 71)
WHG (22, 73)
MAC (8, 52)

SQU (39, 83)
WHG (23, 79)
MUR (6, 60)
MAC (6, 55)

13 OTB sea bass DEF
CTC (7, 47)
BIB (2, 60)

CTC (7, 50)
BIB (2, 64)
GUU (2, 60)

BSS (15, 65)
MUR (14, 74)
CTC (13, 65)
BRB (5, 57)
BIB (3, 70)

BSS (24, 78)
BRB (10, 75)
RAJ (9, 75)
SDV (5, 67)
SYC (3, 78)

7 OTB cuttlefish –
surmullet

MCF
GUU (2, 68)

CTC (31, 86)
MUR (27, 90)
GUU (4, 73)

4 OTB plaice –
lemon sole

DEF PLE (49, 95)
LEM (13, 51)
TUR (10, 55)

PLE (53, 96)
LEM (14, 52)
TUR (9, 51)

PLE (49, 95)
LEM (13, 51)
TUR (10, 55)

PLE (54, 97)
LEM (14, 52)
TUR (9, 52)

11 OTB sole DEF SOL (75, 99) SOL (66, 94) SOL (75, 99) SOL (68, 95)

10 OTB sandeel DEF SAN (99, 100) SAN (99, 100) SAN (99, 100) SAN (99, 100)

12 OTB Norway
pout

DEF NOP (29, 32)
HER (17, 58)

NOP (95, 100)

Results were obtained with the shuffle 2 dataset, using a 10% sample size for CLARA and a 30% sample size for HAC. The horizontal lines indicate how the
clusters overlap with each other across the four classifications. Cluster numbers are the arbitrary ranking of classification outputs and are only retained for
the description of Figures 4 and 5.
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classified as DEF, despite their primary species in value being from
a type other than DEF.

Step 5
The same series of steps was applied to the LE of 2007, on a single
shuffle. In all, 12 clusters were identified, which were mostly
similar to those of 2008 (Table 5), except the Norway pout
cluster, which did not appear because the fishery for that species
was closed in 2007. The discriminant analysis was conditioned
on the 2007 results and applied to the 2008 LEs. The

correspondence between the predicted and estimated level 7 cate-
gorizations for 2008 was generally high, with systematically .80%
of LEs being correctly predicted by the allocation rules.

Discussion
In summary, we suggest a full sequence to analyse historical catch
data and assign them to métier category, synthesized below for
clearer understanding.

Figure 4. (Top) Projection of LEs in the subspace of the two first axes for the clustering methods HAC and CLARA and at two threshold levels.
Each identified cluster is coloured. (Bottom) The number of LEs by level 7 obtained with HAC and CLARA at both first and second thresholds.
The horizontal lines indicate how the clusters overlap with each other across the four classifications. The results were obtained with the shuffle
2 dataset, using a 10% sample size for CLARA and a 30% sample size for HAC. In parenthesis are the cluster numbers in the order they appear
in the output (see also Table 3, Figure 5).
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(i) Select the main species to be retained (step 1) and run a PCA
(step 2).

(ii) Perform the clustering (step 3). Depending on the precision
scale required and the size of the dataset, various classifica-
tions should be explored, as done here, to identify the most
stable and meaningful patterns. The whole analysis (steps
1–3) can either be performed yearly if the time-trends in
métier composition are to be monitored, or by pooling, for
instance, the most recent 3 years of data if a broader
overall picture is required.

(iii) Define the most characteristic species of each level 7 métier
obtained, using for example a combination of importance
in value, specificity, and broad representation across LEs.
This step includes an element of subjectivity, so the resulting
characterization of métiers should be inspected carefully.

(iv) Characterize each métier to its level 5 simply by relating each
of its characteristic species to its assemblage type (step 4).
The various level 7 métiers of similar assemblages would be
aggregated within the corresponding level 5 métiers, and
this would form the basis of the planning of the sampling
programme for the subsequent year.

(v) Perform a discriminant analysis on level 7 métiers to obtain
automatic allocation rules (step 5). Using these rules, any
new LE entered into the database will be allocated immedi-
ately to a métier (at levels 7 and 5). Using this approach,
the sampling programme over the year could be monitored
in real time.

(vi) At the end of the year, perform a complete new statistical
analysis of all new logbooks events collected to detect any
changes in métier distribution that may have arisen, and if
necessary update the sampling programme for the forthcom-
ing year.

The definition of clusters of fishing activities is the primary step
without which no further analysis can be conducted and no pro-
gress in fleet-based or mixed-fisheries management achieved.
The many previous studies addressing métier definition (cited in
the Introduction) have used different methods on different

Table 4. Percentage of correspondence between métiers defined
by the CLARA algorithm aggregated at level 5 (in columns) with
the métiers defined by the “First Species” and “First Group”
ordination methods (in rows).

Criterion

CLARA

CRU MCD MCF DEF

First species
CEP – – 52 1
CRU 100 93 – 5
DEF – 5 43 93
SPF – 2 5 1

First group
CEP – – 38 –
CRU 100 82 – 2
DEF – 16 59 97
SPF – 2 3 1

Figure 5. Percentage of the cash value per species per cluster. Only
species with values .20% within at least one cluster are displayed.
The results are obtained with the shuffle 2 dataset, using a 10%
sampling size and the CLARA method. Cluster numbers on the
horizontal axis correspond to the numbers in Table 3.

Table 5. Correspondence between the 2008 clusters defined by cluster analysis (in rows) with the 2008 clusters predicted by discriminant
analysis applied on the 2007 clusters (in columns), expressed as a percentage of the number of LEs by row, and the total number of LEs in
each cluster.

Level 7 NEP PRA CSH
COD –

HAD
MON –

POK
SQU –
WHG

BSS –
BRB

MUR –
CTC

PLE –
LEM SOL SAN

SPR –
HER

Non
alloc. Total

NEP 99.8 0.1 24 865
NEP – MON 82.3 3.9 9.5 0.3 0.3 0.6 0.4 2.4 0.2 14 252
PRA 100 1 527
CSH 100 1 513
COD – HAD 0.2 89.5 5.0 1.0 3.5 0.5 0.2 0.1 7 040
POK – HKE 4.1 0.3 11.6 83.5 0.3 5 757
MON – MEG 2.5 4.2 92.9 0.2 0.2 5 919
SQU – WHG 2.3 88.2 3.2 3.4 2.5 0.2 8 070
BSS – BRB 1.4 0.2 3.9 90.4 2.7 0.3 1.0 3 680
CTC – MUR 11.5 0.5 86.6 0.3 1.0 2 903
PLE – LEM 1.6 2.7 1.7 0.1 0.2 92.8 0.9 8 702
SOL 1.6 1.6 0.4 0.3 0.2 0.8 95.0 9 289
SAN 99.5 0.5 2 877
NOP 8.2 6.3 1.9 83.5 364
Total 37 248 1 548 1 513 8 418 12 037 7 922 3 930 2 935 8 349 9 264 2 865 685 44 96 758
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fisheries. However, none of those studies addressed quantitatively
the importance of the choice of the method itself, nor did they im-
plement prediction methods to allocate new LEs of future years
into predefined métiers. Although some studies were conducted
within the framework of the DCF, they typically failed to link ex-
plicitly their outcomes with the actual needs and levels defined by
the framework. In addition, the previous analyses did not address
the issues of national differences at a regional scale. In this regard,
we consider that the current analysis is a significant step forwards,
in that it has succeeded in (i) addressing the persistent issue of
métier identification in the most objective way, and (ii) providing
operational and generic open-source tools directly applicable to
any regional fisheries where logbook data are routinely available,
thus contributing to the practical implementation of the DCF in
Europe. In addition, key results were obtained at a regional
North Sea level by compiling, for the first time, a comprehensive
international dataset, and the results obtained were clearly differ-
ent from those obtained applying the same workflow to national
data (results not shown), although some clusters here reflect na-
tional rather than international fisheries.

With regard to the importance of methodological choice, it has
become clear that different methods returned different classifica-
tions. Based on the accuracy and robustness of clustering, and
basic knowledge of the fisheries, there was no entirely clear basis
for choosing between the CLARA and HAC methods. The
results showed many similarities. In both cases, the clusters
obtained were mostly meaningful and well balanced in size, espe-
cially at the first threshold classification, which returned a broad
picture distinguishing major single-species fisheries from the
main mixed fisheries. The second threshold provided finer de-
scription of the mixed groups, but the results were less robust
and some inconsistencies appeared. Both methods required
subsets of the dataset, and sample size appeared to be a determin-
ant factor for improving the robustness of results. However, com-
putation time increased with sampling size. In particular, CLARA
computed fairly slowly with a large sample size, because the
method runs through a loop of increasing kernel number, which
slows the process. In comparison, the K-means method performed
poorly. Although efficient in computation, the results obtained
were largely unstable and often meaningless.

Clustering results were also compared with and without
running a PCA in step 2 (results not shown). Overall, the clusters
obtained were fairly similar in average catch composition, but
there were differences in the allocation of some of the LE located
at the edges between several clusters in terms of landings profile.
Not using a PCA resulted in comparably smaller and more accur-
ately defined clusters for some of the main species, but in a bigger
pool of less-defined groups for other species. Running a PCA
decreased significantly the computing time, by reducing the
number of explanatory variables, and results were potentially
more independent of the choice of the number of species retained
in step 1. It appears therefore that the PCA is preferable for de-
scribing global trends, but that the exact allocation of some least
characteristic individual LEs could be challenged.

It is necessary to characterize each cluster in terms of its main
species. This step is in itself not as trivial as it sounds, because it
requires defining some criteria for selecting the characteristic
species. This represented, therefore, the only part of the whole
workflow where subjective choices had to be made. The average
value has often been retained as the only criterion, but we
propose more detailed empirical rules, based on exploratory

analyses of the outcomes and common sense. The list of character-
istic species of a cluster included species not only important in
average value, but also those which were significantly more abun-
dant in the cluster than in the overall dataset, as well as those that
were much represented across LEs. These criteria and the corre-
sponding thresholds are, however, not universal, and any applica-
tion of this method needs to pay particular attention to the
definition of relevant criteria.

The results support, but also question, some aspects of the DCF
of the EU. A number of pan-European workshops (ICES, 2003;
EC, 2005, 2006) led to this hierarchical métier definition, so the
DCF design emerged from intensive (still ongoing) scientific dis-
cussions, where compromises had to be found to reach a
one-size-fits-all model covering all EU fisheries. In contrast to
DCF levels 1–4, level 5 on target assemblage remains controversial,
owing to the difficulty in defining and quantifying it accurately.
The concept of target is by its essence vague when fishers catch a
number of species in varying proportions and no information
on fisher intention before the fishing operation is collected rou-
tinely. With hindsight, the choice of aggregating species by type
does not necessarily simplify the establishment of sampling
schemes. Fishing does not operate towards a given type, but
rather towards a given valuable mix of co-occurring species, pos-
sibly of different types. The approach leads to the pooling of widely
different species caught by distinct métiers together within the
same level 5 assemblage, e.g. common shrimp and Nephrops,
and only level 6 categorization can help to distinguish them, pro-
vided mesh-size information is reported accurately in logbooks.
Ultimately, level 7 may actually be preferred to level 5, by, for
example, selecting the first threshold criterion that may not neces-
sarily return a larger number of categories than the current level 5,
but which returns categories that are more appropriate.

Conclusions
A robust and operational workflow for planning and monitoring
DCF sampling programmes at level 5 has been suggested here,
rather than empirical ordination rules, and métiers have been con-
sidered at a regional scale by analysing catch declarations from dif-
ferent Member States simultaneously. We believe that the
open-source programs developed for conducting these analyses
are extremely powerful in terms of flexibility, general applicability,
and computing speed. Despite a fair level of complexity embedded
in the computing functions, these programs remain straightfor-
ward enough to operate (see scripts and examples of use at
http://code.google.com/p/vmstools/wiki/MetiersLogbook) and
can be used with any logbook database standardized in the relevant
input format. They can also be combined with other similar tools
for the analysis of logbook and VMS data (Hintzen et al., 2011).
These tools are directly operational and useful for standardizing
métier definitions across Europe, so in our opinion can contribute
to improved fleet-based and ecosystem-based fisheries
management.
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