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Increasingly, scientific uncertainty is being accounted for in fisheries management by implementing an uncertainty buffer, i.e. a
difference between the limit catch level given perfect information and the set catch. An approach based on simulation is out-
lined, which can be used to evaluate the impact of different buffers on short- and long-term catches, discounted revenue, the
probability of overfishing (i.e. the catch exceeding the true, but unknown, limit catch), and the stock becoming overfished (i.e.
for crab, mature male biomass, MMB, dropping below one-half of the MMB corresponding to maximum sustainable yield). This
approach can be applied when only a fraction of the uncertainty related to estimating the limit catch level is quantified through
stock assessments. The approach is applied for illustrative purposes to the fishery for red king crab, Paralithodes camtschaticus, in
Bristol Bay, AK.

Keywords: acceptable biological catch, buffer, harvest control rule, length-based stock assessment, management strategy evaluation,
overfishing, uncertainty.

Introduction
There is an increasing trend worldwide for fisheries management
decisions to be made using harvest control rules which aim to
avoid fishing mortality rates exceeding limit values, to move
stocks to a target level of biomass, and to avoid dropping stock
sizes below limit reference points (e.g. Ministry of Fisheries, 2008;
Smith et al., 2008, 2009). A related trend is for the catch limits to
be reduced in data-poor situations and, in particular, when the out-
comes from harvest control rules are uncertain. For example, the
potential biological removals method (Wade, 1998) used to identify
the levels of removals of marine mammal populations consistent
with the US Marine Mammal Act bases catch limits on the lower
20th percentile of the sampling distribution for the most recent es-
timate of abundance, whereas the harvest control rule developed
by the International Whaling Commission reduces harvests when

data are uncertain (Punt and Donovan, 2007). Within Australia,
“discount factors” are applied when calculating recommended
biological catches given the results from harvest control rules to
account for scientific uncertainty (Smith et al., 2009).

Within the United States, the 2006 reauthorization of the US
Magnuson–Stevens Fishery Conservation and Management Act
(MSA; US Public Law 104–297) impacted how fisheries manage-
ment advice is provided and decisions made for US Federally
managed fisheries. In particular, the overfishing level (OFL) for
a stock is defined as the level of annual harvest which, if exceeded,
would constitute overfishing under the MSA, generally interpreted
as F . FMSY. The OFL includes landings, as well as all discards, and
can be considered to be the maximum possible catch for a stock
given perfect information. The acceptable biological catch (ABC)
is an annual level of harvest that accounts for scientific uncertainty
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in the estimate of the OFL and is hence equal to or lower than the
OFL given the need for risk averse management.

The requirement to set OFLs (or similar fishery controls) has
been a standard component of fisheries management advice in
the United States for several years. US Regional Fisheries
Management Councils (RFMCs) have generally adopted Tier
systems to which stocks are assigned. The Tiers depend on data
availability and differ in terms of the OFL control rule [e.g.
North Pacific Fishery Management Council (NPFMC), 2008].
However, the requirement to adjust OFLs to account for scientific
uncertainty has proved challenging, and several approaches have
been developed to implement this requirement. This paper out-
lines an approach developed for crab fisheries in the Bering Sea
and Aleutian Islands (BSAI) region of the United States under
the aegis of the NPFMC, but which has general applicability in
the United States and more broadly.

The crab fishery in the BSAI consists of a number of species and
stocks. Some stocks are managed solely by the State of Alaska,
while ten other stocks are managed under a cooperative regime
that defers the setting of certain management controls to the
State of Alaska with Federal oversight. Under this framework,
the setting of OFLs and ABCs is a Federal responsibility. State reg-
ulations are constrained by the provisions of a Fishery
Management Plan, including its goals and objectives, the MSA na-
tional standards, and other applicable Federal laws (ADF&G,
2008). Therefore, for these ten stocks, the total allowable catch
(TAC) is set by the State of Alaska subject to the constraint that
the TAC cannot be higher than the ABC set by the NPFMC.

The ten stocks under cooperative management are of five
species (four stocks of red king crab Paralithodes camtschaticus;
one stock of snow crab Chionoecetes opilio, one stock of Tanner
crab C. bairdi, two stocks of blue king crab P. platypus, and two
stocks of golden (or brown) king crab Lithodes aequispinus). The
fisheries for four of these stocks (Pribilof Islands red, blue, and
golden king crab and Adak red king crab) are currently closed.
The remaining stocks are currently fished, with the bulk of the
revenue arising from Bristol Bay red king crab, from now on re-
ferred to as “red king crab”, eastern Bering Sea snow crab, and
Aleutian Islands golden king crab (Bowers et al., 2010).

Red king crab is widely distributed throughout the BSAI, Gulf
of Alaska, Sea of Okhotsk, and along the Kamchatka shelf. The
fishery in Bristol Bay, AK, is by far the largest in US waters. This
fishery was started by the Japanese in the 1930s using primarily
tanglenets. The Japanese tanglenet fishery operated until 1974,
with a hiatus from 1940 to 1952. A tanglenet fishery for red king
crab was operated by USSR vessels from 1959 to 1971. Although
US vessels first fished red king crab as early as 1947, it was only
during the late 1960s that the domestic pot fishery expanded sub-
stantially (Bowers et al., 2008).

The sets of specifications for how the results of stock assessments
are used to compute ABCs are referred to as ABC control rules.
Several approaches, including decision analysis [G. Thompson,
National Marine Fisheries Service (NMFS), pers. comm.], were pro-
posed as potential ABC control rules for BSAI crab. The approach
selected by the NPFMC, and the one on which this paper is
based, involved establishing an ABC (which is an estimated quantity
and hence a random variable), using a function of the estimated
uncertainty of the OFL and the probability that the ABC from the
ABC control rule exceeds the true OFL, P*, i.e.:

P(ABC(OF̂L) . OFL) = P∗ (1)

Figure 1 summarizes the relationship between the OFL and the ABC
for the case in which the OFL is lognormally distributed with the
standard error of the log given by s. The “buffer” (denoted V in
this paper) is the difference between the ABC and the OFL and is
larger for lower values of P* (reflecting additional precaution)
and higher values for s (reflecting additional uncertainty).

The selected approach therefore conceptually follows several
methods suggested previously to address scientific uncertainty
regarding reference points and the outputs from control rules
(Caddy and McGarvey, 1996; Prager et al., 2003; Shertzer et al.,
2008; Prager and Shertzer, 2010), i.e. that to prevent the OFL
being exceeded, the catch limit should be less than the OFL,
with the size of the buffer depending on the extent of uncertainty.
The key scientific question associated with the application of
Equation (1) is how to quantify scientific uncertainty (i.e. the
size of s in Figure 1), and the key policy variable is the value for
P* which is required by MSA to be ,0.5. Quantifying scientific
uncertainty (and hence how to define the probability distribution
for the OFL) is a technical consideration, and under the MSA must
be based on the “best available science”. However, the choice of a
value for P* is a policy decision involving the trade-off between
short-term fishery benefits, and the probability of undesirable
impacts to the managed stock, among other things.

This paper uses Equation (1) to compute an ABC for red king
crab based on data up to 2008 (i.e. the 2009 ABC), then evaluates
alternative choices for P* (uncertainty buffers) in terms of
expected biological outcomes, including the probability of over-
fishing occurring (the catch exceeding the true, but unknown,
OFL) and the stock becoming overfished (the MMB dropping
below the minimum stock size threshold) and the impact on
revenue from fishing. The biological performance measures are
equivalent to fishing mortality exceeding FLIM and biomass drop-
ping below BLIM in the ICES management environment. The un-
certainty associated with the estimate of the OFL can be divided
into sources which can be quantified (such as sampling error)
and those which cannot (such as the validity of proxy estimates
of FMSY). This paper therefore defines the uncertainty accounted
for by the buffer as the sum of the uncertainty which can be quan-
tified using the stock assessment and the unquantifiable uncer-
tainty which is specified based largely on expert opinion and
comparisons with other stocks.

Figure 1. Relationship between the buffer (one less the ratio of the
ABC to the OFL) and the probability of overfishing for different
choices for s when the OFL is assumed to be lognormally
distributed.
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Material and methods
Stock assessment and OFL determination for
red king crab
The population dynamics model on which management advice is
based (Supplementary material) is a sex-, length-, and shell
condition-structured model [Equation (S1)]. It considers 20
length classes for males and 16 for females, each of 5 mm carapace
length (CL) from 65 mm CL. The model distinguishes three major
fisheries (the directed fishery, primarily using pots; the fishery for
groundfish which takes red king crab as bycatch; and the pot
fishery for Tanner crab which also takes red king crab as
bycatch). It includes the years from 1968 onwards, primarily
because the surveys conducted by the US NMFS started in that
year. The 238 free parameters of this model are the annual recruit-
ments by sex, the fully selected annual fishing mortality rates by
sex, the parameters which determine fishery and survey selectivity
as a function of length, survey catchability, the parameters that de-
termine the probability of moulting for males (all females are
assumed to moult each year), and the parameters that determine
the length classes to which recruits are assigned. The data used
to fit the model include fishery catch mass data (discarded and
retained for the pot fishery, discarded for the Tanner and ground-
fish trawl fisheries), the length compositions for the fishery
catches, estimates of biomass from the NMFS trawl survey
(1968—present) and from the Bering Sea Fisheries Research
Foundation surveys in 2007 and 2008, and the length-composition
data from the NMFS trawl survey. A number of penalties are
placed on the parameters of the model (e.g. that the numbers of
recruits by sex each year are approximately equal, Zheng and
Siddeek, 2009).

The OFL for red king crab is based on the Tier 3 harvest control
rule (NPFMC, 2008). The Tier 3 harvest control rule is used to cal-
culate the fishing mortality on which the OFL is based, FOFL, for
stocks for which reliable estimates of the stock–recruitment rela-
tionship are not available, but proxies for fishing mortality and
biomass corresponding to maximum sustainable yield (FMSY and
BMSY) can be estimated. The default proxy for FMSY is F35%, the
fishing mortality rate for the directed (pot) fishery, Fdir, which
reduces MMB-per-recruit (MMB/R) to 35% of its unfished
value. When calculating MMB/R, the full-selection fishing mortal-
ity for the trawl fishery and that for the Tanner crab fishery are set to
averages over the most recent 5 years, while the full-selection fishing
mortality for the bycatch of males and females in the directed pot
fishery [Equation (S5)] is set to Fdir

∑2008
t=2004 Fdisc,s

t /
∑2008

2004 Fdir
t .

These assumptions are all reasonable in particular, because (relative
to the catch of males in the directed fishery) the catches in the trawl
and Tanner fisheries and of females are small. The proxy for BMSY is
the MMB/R corresponding to F35% multiplied by the average
recruitment from 1995 to 2008, a period of years selected by
the NPFMC Crab Plan Team and the NPFMC Scientific and
Statistical Committee as being when recruitment was higher
compared with 1985–1994 and because there was a potential
regime shift in 1989 (Overland et al., 1999). The resulting Tier 3
control rule is:

FOFL = max 0, F35% min 1,
Bcurrent − aB35%( )
(1 − a)B35%

[ ]{ }
, (2)

where Bcurrent is the MMB at the time of mating after the OFL is
removed, and a is the proportion of B35% at which the OFL is

zero. As Bcurrent is a function of FOFL, Equation (2) has to be
solved numerically.

The catch numbers by length and sex on which the OFL is
based are calculated using Equations (S4), (S6), and (S7), where
the full-selection directed pot fishing mortality equals FOFL, and
the full-selection fishing mortalities for the trawl fishery, for the
Tanner crab, and for the bycatch of males and females in the direc-
ted pot fishery are set as when calculating MMB/R. The OFL in
mass is calculated by multiplying the catch numbers by sex and
length by weight by sex and length.

Developing an OFL distribution
The uncertainty of the OFL due to the estimation error can be
computed using a variety of methods. However, for the purposes
of this paper, this source of uncertainty was quantified using
Bayesian methods. This involved specifying prior distributions
for all parameters of the model (all uniform) and applying the
Metropolis–Hastings version of the Markov chain Monte Carlo
(MCMC) algorithm (Hastings, 1970), as implemented in the AD
Model Builder package (http://admb-foundation.org/) to
sample 800 equally likely sets of parameter vectors from the pos-
terior distribution. The application of the MCMC algorithm was
based on 10 000 000 cycles, of which the first 5 000 000 were
ignored as a “burn-in” and remaining chain thinned so that the
final posterior sample was based on 800 points. A variety of diag-
nostic statistics and plots were examined to assess lack of conver-
gence to the posterior distribution.

The samples from the posterior distribution for the OFL reflect
the uncertainty associated with fitting the model to the data
assuming that the model is correct and that FMSY¼ F35%.
However, several potentially important sources of uncertainty
are ignored in the MCMC sampling procedure and this is reflected
inter alia by the very narrow (unrealistically narrow) posterior
intervals for the model outputs, including the OFL (see below).
Specifically, some of the key parameters of the population dynam-
ics model (including the relationship between the growth incre-
ment and length, and the value for survey catchability) are
prespecified rather than being estimated, and the extent to
which F35% and B35% (even if they could be estimated accurately
and precisely) are actually equal to FMSY and BMSY is unknown
(and unquantifiable at present). The unquantifiable uncertainty
associated with the OFL can be considered to be “additional” un-
certainty (sensu Ralston et al., 2011). Therefore, a Monte Carlo dis-
tribution for the OFL is generated by sampling values for the
model parameters from their joint posterior distribution and
accounting for an extra level of uncertainty by adding a lognormal
deviation to the numbers-at-length, i.e.:

Ñ
s

l,t = Ns
l,te

1−s2
b
/2 and Õ

s

l,t = Os
l,te

1−s2
b
/2, 1 � N(0;s2

b), (3)

where Ns
l,t is the estimate of the number of new shell crab of sex s in

length class l at the start of year t, Os
l,t the estimate of the number of

old shell crab of sex s in length class l at the start of year t, Ñ
s

l,t and
Õ

s

l,t the estimates of numbers-at-length after accounting for add-
itional uncertainty, and sb the extent of additional uncertainty.
Therefore, the uncertainty associated with the OFL is that based
on estimation uncertainty conditioned on the assumed model
and the Tier system and that associated with other (essentially un-
quantifiable) sources of uncertainty. Note that 1 is perfectly corre-
lated among sexes, time, and length classes.
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Evaluating buffer levels and choices for P*
For the purposes of this paper, the annual process of determining
a TAC for red king crab involves (a) conducting a stock assess-
ment based on the length-, sex-, and shell condition-structured
model, (b) computing an OFL based on Equation (2), and (c) ap-
plying an ABC control rule to calculate an ABC and setting the
TAC to the landed portion of ABC. This process is conceptually
similar to the application of a “management procedure”
(Butterworth, 2007; Punt, 2006), although the exact specifications
for the assessment are not fixed, but can change annually depend-
ing on availability of new data and analyses. Nevertheless, it
should be possible to use management strategy evaluation
(Butterworth and Punt, 1999; Punt, 2006; Rademeyer et al.,
2007; Smith et al., 2008) to evaluate the performance of the
process of setting annual TACs for red king crab using the
scheme outlined above.

Equation (1) is equivalent to a constant buffer between the
ABC and the OFL, i.e. ABC = (1 −V)OFL under the assumption
that the level of uncertainty for the OFL does not change over time.
Under this assumption, therefore, there is a 1:1 relationship
between V (the uncertainty buffer) and P*. The medium- and
long-term implications of different choices for V or P* are evalu-
ated by projecting the population dynamics model for red king
crab ahead 30 years (30–year period is sufficiently long that the
resource equilibrates close to the proxy for BMSY underdeterminis-
tic conditions) given catches based on steps (a)–(c) above.

The medium-term implications are evaluated using the results
of projections for the first 6 years of the projection period, while
the long-term implications consider the entire 30-year projection
period. The projections account for uncertainty related to: (i) the
values for the parameters of the model used to represent the stock
dynamics, (ii) the recruitment to the modelled population for
each future year, (iii) the form of the stock–recruitment relation-
ship (Ricker or Beverton–Holt for the application of this paper),
and (iv) other (unquantified) sources of uncertainty. These

sources of uncertainty reflect much of the scientific uncertainty
intended to be accounted for by the buffer between the OFL
and the ABC.

The algorithm used is as follows (see also Figure 2).

(i) Fit the stock assessment model to the actual data to obtain
the “best estimates” of parameters of the model.

(ii) Apply the MCMC method to obtain a set of 800 equally likely
sets of parameter vectors from the posterior distribution for
these parameters. This step quantifies the uncertainty related
to source (i) outlined above.

(iii) For each draw from the posterior distribution:

(a) Calculate F35%, and set FMSY to F35%.

(b) Find the value for the steepness of the stock–recruitment
relationship (the fraction of unfished recruitment at 20%
of the unfished MMB) so that MSY occurs at FMSY.

(c) Set R0 (the virgin recruitment) so that BMSY occurs at
B35% when full-selection fishing mortality in the directed
fishery equals FMSY.

(d) Calculate the extent of variability (quantified using a
standard deviation, i.e. sR) between the actual recruit-
ment estimates and the values predicted by the stock–
recruitment relationship for the years corresponding
to BMSY.

(iv) Set the value for FOFL used when setting the OFL to the
median of the values for F35% across the draws from the pos-
terior (i.e. the projections are undertaken under the assump-
tion that the proxy for FMSY is correct on average when
setting OFLs).

(v) Set the value for sR used when generating future recruitment
to the median of the values for sR across the draws from the
posterior [source (ii) above].

Figure 2. Flowchart of the algorithm used to evaluate the medium- and long-term implications of the alternative choices for the buffer.
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(vi) For each draw from the posterior distribution and choice of a
buffer:

(a) Generate an assessment bias, k, from N(0; s2
b) which is

constant over time—this bias represents the “additional”
uncertainty, which would not be captured by sampling
from a posterior distribution [source (iv) above].

(b) For each year of the 30-year projection period:

1. Compute the true OFL (the OFL based on the
parameters generated from the posterior
distribution).

2. Generate the data on which the TAC will be based
by generating a random variable 1y from N(0; s2

w)
which represents the annual deviation in the as-
sessment result from the true value then multiply-
ing all the population-related information
needed to set the ABC (MMB at mating,
numbers-at-length) by ek+1y−s2

b
/2−s2

w/2 to generate
the information used when setting the ABC. The
value for sw is set to the standard deviation of
the logarithm of the estimate of MMB at mating
in the last year of the assessment (0.05 for red
king crab) across the draws from the posterior.
The numbers by length used to calculate the
OFL relate to the true numbers at length are there-
fore generated according to the equation:

Ns,GEN
l,y = Ns,TRUE

l,y ek+1y−s2
b
/2−s2

w/2. (4)

3. Compute the OFL based on the data generated at
the previous step and multiply it by the (1 2 V)
to compute the ABC.

4. Set the TAC to the landed component of the ABC.

5. Project the population ahead one year and gener-
ate the recruitment for the next year based on the
stock–recruitment relationship, with the level of
variation in recruitment set to the value for sR.

The calculations of this paper are based on the assumption that
the FMSY and BMSY proxies are correct (i.e. FMSY¼ F35%, BMSY¼

B35%). Equation (4) includes two sources of uncertainty: one
that is random from one year to the next and one that is the
same for all years in a projection. The latter allows for sources of
uncertainty which are likely to persist over time such as incorrect
specifications for model parameters such as natural mortality and
survey catchability, and the impact of assumptions such as that the
assessed area is homogeneous with respect to population length
and sex structure. The assumption of perfect correlation over 30
years is an extreme assumption, which could be relaxed to
reflect that future research would reduce these sources of uncer-
tainty. However, this latter complication has been ignored in the
absence of what the major sources of error are, and the rate at
which they would be mitigated by future research.

The projections are not based on simulating the application of
the actual stock assessment as is common when applying manage-
ment strategy evaluation (e.g. A’mar et al., 2008). This is primarily
because the impacts of many of the sources of “additional”

uncertainty cannot be easily simulated. Equation (4) is therefore
a pragmatic yet realistic way to represent assessment uncertainty.

Performance metrics
The medium- and long-term implications of the different buffers
(and choices for P*) are quantified in terms of their impact on
stock status (measured in terms of MMB at the time of mating
relative to B35%), the probability of overfishing (i.e. total catch
. true OFL), and the probability of the stock becoming overfished
(Bcurrent , 0.5 B35%), as well as on projected catches and total
present value (TPV) of discounted first-wholesale revenues (i.e.
“discounted revenues”). The results of the medium- and long-
term projections are also shown in the form of (pointwise) distri-
butions for time-trajectories of each performance metric.

The economic impacts of the choices for V are evaluated in
terms of the impact on projected TPV over the 30-year projection
period:

TPV =
∑

y

Vy

(1 + r)y+1 (5)

where r is the economic discount rate, and Vy is the revenue for
year y. These revenues are defined by:

Vy = Cy[�K + x1SK ] [�Py + x2S�Py
] (6)

where Cy is the landings of male crab (in weight) in the directed
(pot) fishery during year y, �K and SK the mean and standard
error of the product recovery rate, �Py and S�Py

the mean and stand-
ard deviation of the price forecast for the first wholesale price
during year y (see NPFMC, 2010, for the details on how the
price forecasts were made), and x1 and x2 are randomly distributed
�N[0,1]. To estimate economic metrics that reflect the uncer-
tainty in price and catch projections, distributions for Vy and
TPV are generated using independent random draws from the x1

and x2 distributions for each of the 800 Cy trajectories for each
buffer, and median and 90% intervals calculated. Discount rates
of 0.027 and 0.070 were employed following US Office and
Management and Budget Guidance (OMB, 2009) and reflect the
economic effect of time preference on the evaluation of catch pro-
jections over the medium and long term. Product recovery rates
are used to convert the landings into estimated finished product
to calculate gross first wholesale revenue (which captures total
direct revenue in the harvesting and processing sectors of the
fishery). Since finished crab products from the BSAI crab fisheries
are sold into the international market and represent a relatively
small fraction of total supply (Greenberg et al., 1995), price-taking
behaviour by Alaskan red king crab producers is assumed (such
that Py is independent of the amount of landings). All price and
revenue values are presented as real 2008 US dollars, the final
year in the time-series used to develop the price forecasting
model. Historical monetary time-series were converted to real
2008 dollars using the US Bureau of Labor Statistics producer
price index for processed and unprocessed fish commodities
(PPI code 0223; BLS, 2010).

Results
OFL distributions for red king crab
The MMB at the time of mating is estimated to have recovered to
above the proxy for BMSY (B35%) in the 2000s following good
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recruitment in the late 1990s and lower catches in the recent past
(Figure 3a). However, recruitment since 2007 is estimated to have
been weak (Figure 3b). Given that the stock is estimated to be
above B35%, the fishing mortality for the directed fishery used to
compute the OFL is F35% (the proxy for FMSY). The posterior
median estimate for the OFL for 2009 is 10 774 t of which 9559 t
pertains to landings and the remainder to discards in the directed
fishery and bycatch in other fisheries. The extent of uncertainty
associated with the current biomass is, however, unrealistically
low (Figure 3a), which leads to a very tight posterior distribution
for the OFL if additional uncertainty is ignored (Figure 4a).

There is a linear relationship between the ABC and the buffer
(Figure 4b), with the ABC set equal to the OFL when there is
no buffer (V ¼ 0) and the ABC being 10% of the OFL when the

buffer is set to 90% (V ¼ 0.9). The relationship between the
buffer and P* is, however, not simple linear proportionality
(Figure 4c). Moreover, the impact of the (assumed) extent of add-
itional uncertainty is substantial given that the uncertainty of the
OFL estimated from the assessment is low. Specifically, the buffer
gets larger (and hence the ABC decreases) for the same value for P*
as the value for sb is increased. For example, the buffer for a P* of
0.4 is 1% if there is no uncertainty that is not captured by the stock
assessment, but is 6, 16, and 28% if sb is 0.2, 0.4, and 0.6
(Figure 4c).

Medium- and long-term implications of buffer choices
The values for the proxies for FMSY and BMSY are independent of
the choice of the stock–recruitment relationship. The fits of the

Figure 3. Posterior distributions (medians and 90% posterior intervals) for MMB at mating relative to the proxy for BMSY (a) and annual
recruitment to the model (b).

Figure 4. Posterior distribution for the OFL when no allowance is made for “additional uncertainty” (a), the relationship between the buffer (V)
and the resulting ABC (b), and the relationship between the buffer and P* for different values for the extent of “additional uncertainty” (c).

Evaluating the impact of buffers to account for scientific uncertainty when setting TACs 629

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/69/4/624/636410 by guest on 10 April 2024



two stock–recruitment relationships are relatively poor, as indi-
cated by high (generally .1) values for sR, the extent of unex-
plained variation about the stock–recruitment relationship. The
results for a Ricker stock–recruitment relationship are qualitatively
(and quantitatively) identical to those for the Beverton–Holt stock–
recruitment relationship (results not shown). Consequently, the
remaining analyses of this paper are based on the Beverton–Holt
form of this relationship.

Figure 5 contrasts time-trajectories of MMB relative to the
proxy for BMSY and the landings in the directed fishery for no
buffer (i.e. ABC ¼ OFL), a buffer of 0.3 (i.e. ABC ¼ 0.7 OFL),
and a buffer of 0.6 (i.e. ABC ¼ 0.4 OFL) for the case in which
sb = 0.2 (the value selected by the NPFMC Crab Plan Team as
being appropriate to red king crab; NPFMC, 2010). The MMB is
currently estimated to be well above BMSY (Figure 5a).
Consequently, the OFL (and ABC) are larger than long-term
average catches for the first 5 years of the projection period.
However, owing to the sequence of below-average recruitments
(Figure 3b), the stock drops to BMSY (or lower) before recovering
in response to lower catches. The Tier 3 harvest control rule is
based on MMB only, so it does not react proactively to the
sequence of poor incoming recruitments.

There are differences in long-term MMB/BMSY among the no
buffer, buffer ¼ 0.3, and buffer ¼ 0.6 alternatives, with larger
buffers leading to larger stock sizes (Figure 5a). The long-term

catches under a buffer of 0.3 are very similar to those for no
buffer in the long term, although there are marked differences in
catches during the early years of the projection period. This
arises because no buffer and a buffer of 0.3 correspond to equilib-
rium points of the yield curve with similar yields, but different
biomass levels (i.e. no buffer and a buffer of 0.3 both lead to
“pretty good yield”—Hilborn, 2010). The extent of interannual
variation in biomass is lowest for the no buffer alternative.
However, no buffer corresponds to the greatest variation in
catches.

The time-trajectories of discounted revenue depend on the size
of the buffer and assumed discount rate (r; Figure 6). A higher dis-
count rate places greater weight on revenues in the early years of
the forecast, with the result that higher catches in the out years
of the forecast contribute less to relative present value when dis-
counted at r ¼ 0.07 than at r ¼ 0.027 (Figure 6). Therefore, al-
though the long-term catches under smaller buffers may be
similar to those under larger buffers, the higher catches in the
earliest years mean that the discounted revenue is greater for
smaller buffers.

Implications of “additional” uncertainty
BSAI crab stocks managed under the MSA are declared to be
“overfished” if they decline below the overfished threshold of
0.5 BMSY. Figure 7, which generalizes Figure 6 by considering a

Figure 5. Time-trajectories of MMB at mating relative to B35% (the proxy for BMSY) and catch (median and 90% intervals), for three choices
for the buffer between the OFL and the ABC (no buffer: solid line and filled shading; buffer ¼ 0.3: dashed lines and diagonal shading; buffer ¼
0.6: dotted lines and vertical shading) for sb = 0.2 and a Beverton–Holt stock–recruitment relationship. The lower horizontal dashed line in
the left panel indicates the overfished threshold (0.5 B35%).

Figure 6. Time-trajectories (medians and 90% intervals) of the present value of the estimated revenue normalized relative to the median
estimated revenue for the no buffer case in the first year of the projection period for three choices for the buffer between the OFL and the
ABC (no buffer: solid line and filled shading; buffer ¼ 0.3: dashed lines and diagonal shading; buffer ¼ 0.6: dotted lines and vertical shading) for
sb = 0.2, and a Beverton–Holt stock–recruitment relationship. Results are shown for a discount rate r of 0.027 (a) and 0.07 (b).
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range of values for sb, explores the relationship between the size of
the buffer, the probability of the stock being overfished (once
during the 30-year projection period and yearly), the probability
of overfishing (catch . true OFL), and the economic value of
catch levels, for different choices for sb. As expected, the annual
probability of being overfished (Figure 7b) is lower than the prob-
ability of being overfished at least once during the 30-year projec-
tion period (Figure 7a). The probabilities of being overfished are
lower for lower values for the extent of additional uncertainty,
whereas the probability of overfishing is high when there is no
buffer for all values of sb (Figure 7c). The probability of overfish-
ing is 0.466 (slightly less than the nominal 0.5 value) when there is
no buffer. This occurs because the Tier 3 OFL control rule has a
breakpoint at BMSY [Equation (2)] so an underestimate of
MMB/BMSY can lead to a greater underestimate of the OFL than
the extent to which the OFL is overestimated when MMB/BMSY

is overestimated, at least for MMB values of BMSY or lower.
The probability of overfishing decreases as the size of the buffer

is increased. However, this reduction results in substantially lower
annual catches and economic value. For example, the landings in
the directed fishery in 2009/2010 drop from 8300 to 3900 t as the
buffer is increased from 0 to 60%. The estimated long-term eco-
nomic effect (r ¼ 0.027) of a buffer of 60% relative to no buffer
is estimated to be a 35% reduction in TPV (no additional uncer-
tainty) and a 37% reduction in TPV (sb = 0.6; Figure 7d).

There is, as expected, a trade-off between TPV and the prob-
ability that the catch exceeds the OFL yearly (Figure 8), with the

trade-off most evident if there is considerable additional uncer-
tainty (e.g. sb = 0.6). The trade-off curves in Figure 8 also indicate
that, depending on the value for sb, there are choices for the buffer
for which an incremental increase in the buffer leads to additional
losses in revenue, but no benefits in terms of stock conservation.
Specifically, for sb = 0, values for a buffer of ,0.7 lead to lower
TPV, but to essentially no reduction in the probability of overfish-
ing compared with a buffer of 0.3 (Figure 8, large dot). In contrast,

Figure 7. Relationships between the probability of being overfished (once in the 30-year projection period) (a) and on annual basis (b), the
probability of overfishing occurring on annual basis (c), and percentage change in TPV of revenue (r ¼ 0.027) (d) as a function of the extent of
additional uncertainty and the buffer between the ABC and the OFL (in %).

Figure 8. Relationship between the percentage change in TPV from
the case of no buffer and no “additional” uncertainty (and for r ¼
0.027) and the probability of overfishing yearly. The symbols denote
specific choices for the buffer (0, 0.1, etc. reading from the right of
each line).
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compared with no buffer, a relatively small increase in the buffer
leads to a large reduction in the probability of overfishing, but a
relatively small reduction in TPV. Moreover, and as expected,
lower values for sb lead to “better” outcomes as indicated by
higher TPV for the same probability of overfishing.

Discussion
Buffers and trade-offs
Imposition of a buffer between the OFL and ABC achieves the goal
of reducing the probability of overfishing. However, there is a
trade-off between reducing the probability of overfishing (and
being driven into an overfished state) and the consequential reduc-
tion in catches and hence fishery revenues. The impact of a large
buffer is partially mitigated if reduced catches in the short-term
lead to higher catches over the longer term. However, the econom-
ic benefits of these longer term catches do not fully offset the costs
of short-term reductions in revenue because of discounting.

A further result of the evaluation is the diminishing cost-
effectiveness for incremental increases in buffer sizes (Figure 8).
Unfortunately, the threshold buffer level associated with this
result depends on sb, implying that the decision-makers would
need to be advised regarding the most appropriate value for sb

to make rational decisions. While it is not possible to estimate
sb (otherwise it would not be additional uncertainty), the
NPFMC Crab Plan Team evaluated the factors likely to lead to
additional uncertainty for all 10 BSAI crab stock qualitatively,
such as whether key model parameters were prespecified. The
stocks were then ranked according to how many of the unquanti-
fied uncertainties applied to each, and each stock was assigned to a
“class” of unquantified uncertainty (represented by values for sb

of 0.2, 0.4, and 0.6). Red king crab in Bristol Bay is one of the
best studied (and assessed) of these stocks, which led the
NPFMC Crab Plan Team to recommend that management be
based on a value for sb of 0.2.

Advantages and disadvantages of the approach for
evaluating buffers
Management strategy evaluation has become the standard way to
evaluate the performance of monitoring strategies and harvest
control rules (Butterworth, 2007; Kell et al., 2007). The approach
of this paper is similar in many ways to management strategy
evaluation, but with some key differences. In particular, although
account is taken of estimation error, the annual stock assessment is
not simulated, but is rather approximated as draws of numbers-
by-length and—sex [Equation (3)]. Although it would be relative-
ly straightforward to apply the actual stock assessment method to
simulated monitoring data, this would require that the operating
model capture the “additional” uncertainty explicitly. However,
although the primary sources of “additional” uncertainty can be
listed, the magnitude of their effects cannot easily be determined
at present (and if they could be, this would be included in the
distributions for the OFL).

Within the United States, each RFMC has a different way to
account for uncertainty in the ABC control rule, with some
endorsing a P* (or P* modified by Tiers) approach, including
the Western Pacific Fishery Management Council (WPFMC),
the Pacific Management Council (PFMC), Gulf of Mexico Fishery
Management Council (GMFMC), the South Atlantic Fishery
Management Council (SAFMC) and the Mid-Atlantic
Fishery Management Council (MAFAC). Some, such as WPFMC

and MAFMC, endorse an approach in which P* is based on
various criteria such as life-history characteristics, stock status,
overfishing status and assessment type. Others have pursued
approaches more similar to the NPFMC’s in treating uncertainty
and risk as distinct entities, calculating values for total uncertainty,
and demonstrating analytically how uncertainty impacts the per-
ception of risk. The PFMC selected a P* ranging across stocks
from 0.45–0.40. However, they estimated a total uncertainty par-
ameter (which for this BSAI crab analysis was split into sw and
sb) which varies by Tier level (Ralston et al., 2011).

Unlike the other RFMCs, the NPFMC formally compared dif-
ferent buffers in terms of the trade-off between the risk of overfish-
ing or of the stock becoming overfished and expected revenue.
Compared with the other RFMCs, the approach of this paper
has the advantages of formally distinguishing between quantified
and unquantified uncertainty and taking account of both when
selecting a buffer between the OFL and ABC. The PFMC approach
is based on the assumption that unquantified uncertainty can be
captured by between-assessment variation due to changes in
assumptions regarding prespecified parameters and choices for
data types. However, there is very little between-assessment vari-
ation for most BSAI crab stocks because the same scientists
conduct the assessments for each stock over time, making this ap-
proach inappropriate for BSAI crab (the inferred sb would be close
to zero for most stocks). Moreover, the PFMC approach will not
capture uncertainties which are not represented by between-
assessment variation in assessment results such as the appropriate-
ness of proxy estimates for FMSY. The major disadvantage of the
approach of the present paper is that without careful consider-
ation, the values assumed for the extent of additional variation
may be arbitrary. For BSAI crab, this concern was reduced by
ranking multiple stocks using consistent criteria. Nevertheless,
while the concern that the values of sb are incorrect cannot be
ignored, assuming sb¼ 0, which is common when evaluating
control rules, is clearly invalid generally.

Extensions and applications beyond North Pacific crab
The analyses of this paper are based on several assumptions which
can be varied as appropriate in other applications. Some key exam-
ples include:

(i) The analyses were based on the assumption that the esti-
mated OFL is correct “on average”, and that it is primarily
the imprecision of the estimate of the OFL that means that
the estimated OFL differs from the true OFL. It would be
relatively straightforward to extend the analysis to allow for
bias (e.g. that FMSY = F35%), for example, by postulating
(e.g. using a meta-analysis) a distribution for the ratio
FMSY/F35%.

(ii) The analyses were based on the assumption that there is no
implementation error (e.g. catches actually equal TACs and
discarding of legal crab does not take place). This is generally
the case for the major BSAI crab stocks. However, the ap-
proach of this paper could be extended to account for such
error were it relevant in an actual case.

(iii) There is some evidence for serial correlation in recruitment
(in particular the sequence of poor recruitments from 2007
for red king crab). The possibility of such correlation could
be included when generating future recruitment and would
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likely lead to higher probabilities of the stock being driven
below the overfished level.

The method of this paper can be applied straightforwardly to alter-
native methods for estimating the OFL. For example, NPFMC
(2010) applied it to data-rich stocks (red king crab and EBS
snow crab) for which proxies for FMSY and BMSY exist, and to
stocks for which data on abundance from surveys are available,
but it is currently not possible to estimate F35%. The method
could be applied to the types of control rules used in Australia
to provide recommended biological catches (Smith et al., 2008).
These control rules use assessment output along with target ex-
ploitation rates for data-rich stocks and use catch curve analysis
and trends in fishery cpue for data-poor stocks.

The performance metrics considered were those presented to
the NPFMC. However, other performance metrics could have
been used to summarize performance. In particular, many man-
agement strategy evaluations have reported the extent of interann-
ual variation in catch limits.

Finally, the simulations reflect the current situation for BSAI
crab stocks that stock assessments are conducted annually and
OFLs and ABCs updated yearly. This is not, however, a common
feature of how fish and invertebrate stocks in other countries
(e.g. Australia and New Zealand) as well as other regions of the
United States are managed. Rather OFLs and ABCs are set for
several years and updated irregularly. The impact of irregular
updates to OFLs and ABCs could be explored using the approach
of this paper by modifying the frequency of changes to the ABC.
Furthermore, account could be taken of “learning” and hence re-
ducing the bias between the true and estimated biomass, effects
such as regime shifts, changes over time in growth rates, and
large-scale mortality events such as those which have been postu-
lated for red king crab (Zheng and Siddeek, 2009).

Supplementary material
Supplementary data are available at ICESJMS online.
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Rademeyer, R. A., Plagányi, É. E., and Butterworth, D. S. 2007. Tips
and tricks in designing management procedures. ICES Journal of
Marine Science, 64: 618–625.

Ralston, S., Punt, A. E., Hamel, O. S., DeVore, J., and Conser, R. J.
2011. An meta-analytic approach to quantifying scientific uncer-
tainty in stock assessments. Fishery Bulletin US, 109: 217–231.

Shertzer, C. E., Prager, M. H., and Williams, E. H. 2008. A probability-
based approach to setting annual catch levels. Fishery Bulletin US,
106: 225–232.

Smith, A. D. M., Smith, D. C., Tuck, G. N., Punt, A. E., Knuckey, I.,
Price, J., Morison, A., et al. 2008. Experience in implementing
harvest strategies in Australia’s South Eastern fisheries. Fisheries
Research, 94: 373–379.

Smith, D., Punt, A., Dowling, N., Smith, A., Tuck, G., and Knuckey, I.
2009. Reconciling approaches to the assessment and management

of data-poor species and fisheries with Australia’s harvest strategy
policy. Marine and Coastal Fisheries, 1: 244–254.

U.S. Bureau of Labor Statistics (BLS). 2010. PPI Detailed Report
(Vol. 14, No. 5): Data for May 2010. Ed. by J. Kowal, A.
Lombardozzi, and L. Borgie. U.S. Bureau of Labor Statistics,
Washington, DC.

Wade, P. R. 1998. Calculating limits to the allowable human-caused
mortality of cetaceans and pinnipeds. Marine Mammal Science,
14: 1–37.

Zheng, J., and Siddeek, M. S. M. 2009. Bristol Bay red king crab stock
assessment in fall 2009. In Stock Assessment and Fishery
Evaluation Report for the King and Tanner Crab Fisheries of the
Bering Sea and Aleutian Islands Region: 2008 Crab SAFE,
September 2008. North Pacific Fishery Management Council,
Anchorage.

Handling editor: Pierre Pepin

634 A. Punt et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/69/4/624/636410 by guest on 10 April 2024


