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A trawl survey provides information on number and biomass of introduced king crab (Paralithodes camtschaticus) to the management
of a fishery off the coast of Northern Norway; the annual catch quotas are largely set as a percentage of the survey estimate. A specially
built sledge trawl was designed for the survey. It needs only small areas of trawlable bottom, performs well on a wide range of bottoms,
and appears to have good catchability for benthic organisms. Many survey hauls catch no crabs and the non-zero catches have a highly
skewed distribution. Data were therefore analysed with a compound model, in which separate predictors were fitted for the propor-
tion of zero catches and for the catch size of the non-zero catches. The compound model was fitted by Bayesian methods using
WinBUGS. The distribution of non-zero catches fitted well to a generalized gamma distribution, but with parameter values that
made it approximate a lognormal distribution. Numbers of fishable crabs peaked in 2003, and total numbers in 2010 were about
two-fifths of the 2003 maximum.
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Introduction
The king crab (Paralithodes camtschaticus) is an introduced species

in the Barents Sea. Crabs were released into the eastern Barents Sea

in the 1960s and the species’ abundance has since increased to

where it can support a coastal fishery off Northern Norway;

close to 2000 tons of crabs were taken in 2008. The size and con-

dition of the stock are monitored by survey, and within a restricted

area the fishery is managed by catch control; annual allowable

catches are set as a percentage of the overall survey biomass esti-

mates. Similar types of harvest-rate based harvest-control rules

have been used for stocks of this species in the Bering Sea (Otto,

1986; Zheng et al., 1997) Other biological information, e.g. stock

demographics (recruitment, sex- and length-distribution), migra-

tion patterns, and interaction with other species, is also considered

in the stock assessments, but estimates of numbers and biomass

obtained from the annual surveys are central to the current

management framework.
The trawl surveys face two major challenges: (i) rough bottoms,

which hinder trawling operations in many areas inhabited by

crabs, and (ii) analysing the data, which include a large proportion
of empty hauls. The methods chosen to accommodate these
challenges may affect the precision and bias of the estimates of
stock abundance, and thus the management of the fishery.

Owing to the rough bottoms often found within the range of
the Red King Crab in the Norwegian Barents Sea, standard
(otter) trawling gears, as used for crab surveys in Alaska (Otto,
1986) and Russia (Berenboim and Pinchukov, 2005), were not
considered suitable. Using such gear would significantly reduce
survey coverage, impose unknown biases on stock-size estimates,
and make them sensitive to changes in distribution if crabs
moved between trawlable and non-trawlable areas. A special
“crab trawl” was constructed and is now used in the survey. We de-
scribe the design of the trawling gear and how the Norwegian king
crab survey is conducted.

A prevalent feature of the Red King Crab survey data is “hauls
without catch”. These “zeros” appear in most fish stock survey
data—if not always at the level of total catch then at least when
the data are treated at finer demographic resolutions (age, length
or stage groups). It is a common problem (e.g. Maunder and
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Punt, 2004; Fletcher et al., 2005; Martin et al., 2005), and data such
as this—highly skewed, and not drawn from a standard distribu-
tion—pose problems in analysis, in particular with respect to
the calculation of confidence distributions, even for the estimate
of a simple statistic such as total numbers.

The following methods for analysing data containing zeros have
been used, or recommended, from time to time: (i) Aggregate data
over areas and/or stock demography until zeros disappear, make
the estimates and then segregate the result according to the mea-
sured average demographic structure. This may entail assuming,
e.g., that the spatial distribution of different life-stages is similar,
which is not necessarily the case. (ii) Log-transform the data:
add a positive constant to get rid of the zeros; log-transform
these “new” data, average and sum, then back-transform the
summary statistics by exponentiating and subtracting the con-
stant—as described in popular statistical textbooks (e.g. Sokal
and Rohlf, 1995, p. 421). This method has been supported by
the observation that, if data are really drawn from a lognormal dis-
tribution, log-transforming, analysing and then back-transforming
can improve estimates of population parameters. However, the
authors and others (e.g. McArdle and Anderson, 2004; Fletcher
et al., 2005; Martin et al., 2005) do not recommend this method.
The back-transformation of the summary statistics usually involves
approximations, if not downright errors, and the results obtained
depend on the constant chosen and the scaling of the data (e.g.
scaling hauls to m2, km2 or other before the calculations are
performed); this procedure can lead to large errors. (iii) Simply
ignore the zeros: this will lead to bias and to a large underestimation
of the uncertainty surrounding the result.

Other methods providing a statistically more rigorous treat-
ment of survey data including zeros have been developed (e.g.
Maunder and Punt, 2004; Fletcher et al., 2005; Martin et al.,
2005, Shono et al., 2008, Zuur et al., 2009). The basic “delta”

method comprises the fitting of two separate models, one for
occurrence (zeros and non-zeros) and a second for the distribu-
tion of densities at sites with non-zero catches, either a lognormal
or a gamma distribution (Pennington, 1983, 1996; Myers and
Pepin, 1990). Stefánsson (1996) suggests using a multi-year
GLM within the delta approach, and this combination has the
advantage that by analysing an entire series, instead of just one
year at a time, the spatial pattern of stock density can be modelled
by including area variables. Further structuring—e.g. environmen-
tal—variables can also be added to account for components of the
residual variation other than a year effect. Such a GLM structure
can also accommodate missing data, typically originating from
incomplete surveys.

We present here a Bayesian version of a GLM within the delta
model, and generate probability density distributions of the
annual survey estimates in the units of the raw data. It has been
possible to analyse the non-zero data without assuming that it ne-
cessarily has either a lognormal or a standard gamma distribution.

Method
Survey gear and design
Since 2000 standardized bottom-trawl surveys have provided
annual indices of abundance, distribution and biological informa-
tion for the stock of king crab inhabiting waters off Northern
Norway. The survey area comprises four large fjords in the north
coast (Figure 1), each considered as a stratum. The area strata
are further divided in three depth strata: 0–90 m, 90–330 m
and .330 m. Most of the survey area is less than 330 m deep,
but about 7% of the Varanger fjord stratum, the easternmost, is
deeper than 330 m (Table 1). The survey uses a fixed-station
design in which the same locations are trawled each year.
Stations were selected to provide coverage of all areas and

Figure 1. King Crab in northern Norway: survey area consisting of the four fjords Varanger, Tana, Lakse and Porsanger. Dots indicate the
location of hauls.
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depths. From 2000 to 2006 the area surveyed expanded in keeping
with the development and distribution of the crab stock (Hjelset
et al., 2009). The number of hauls increased from 87 in 2000 to
165 in 2006, but has averaged only 123 in 2008–2010.

The gear used is a specially constructed version of a sledge
(Agassiz-type) trawl without doors or wings. The mouth of the
“crab trawl” is shaped by a rectangular steel frame 6 m wide and
1 m high; a 15 m long net is mounted behind. Each side of the
heavy frame is supported by 20 cm wide steel runners to prevent
it from sinking into soft mud. The frame is buoyed by 50 trawl
buoys, each with a buoyancy of 8.5 kg. The lower part (bottom
panel) of the trawl is made of double Polar Gollw 5 mm twine
with a mesh size of 135 mm, while the upper part (roof panel)
consists of PE-netw with a mesh size of 40 mm. In the cod-end
PE-netw is used as an inner net covered by Polar Gollw. Four
trawl buoys with a buoyancy of 4 kg each are mounted along
each side of the cod-end to lift it off the bottom and reduce
damage. The trawl is towed by four wires, two attached to the
frame at each side.

The survey is conducted in August and September when the
crabs are not aggregated for mating but instead are more evenly dis-
tributed. The trawl is towed at 1.5 knots for 30 min from the time
the trawl contacts the bottom until the start of haul-back. The
area swept by a standard haul is reckoned to be 8334 m2. Crabs
caught in the trawl are measured and sexed. The statistic of greatest
interest is the number of crabs over 137 mm CL (carapax length), as
it is this size class that supports the fishery, and for that reason the
analysis presented here is concerned with this size class.

Distribution of the data
The data are considerably skewed (skewness 8.65) and include
more zeros than can be fitted by standard distributions (Figure
2). The many zeros reflect the typical patchy distribution of this
species, but also the extent of its spatial distribution within the
surveyed areas. Overall stock size is a conflation of the extent of
its distribution (the fraction of non-zeros) and the average
density at occupied sites (the non-zeros); we modelled these two
processes separately.

The probabilities of zero catch were modelled by a binomial
distribution. The non-zero part of the data is also positively
skewed (skewness ¼7.04). The gamma or lognormal distributions
are typically used to model such data (Myers and Pepin, 1990;
Stefánson, 1996; Pennington, 1996), and discussions on which of
the two to use have been frequent (Syrjala, 2000; Dick, 2004).
However, several other distributions might also be candidates.
We tested different distributions using goodness of fit statistics
(Kolmogorov-Smirnov, Anderson-Darling, chi-squared) and
visual inspections of probability plots across the data matrix to
provide some guidance as to which to prefer.

Different approaches were now open, e.g.: (i) Run all models
(each with its different assumptions about the distribution of

the data) one by one and pick the “true” one judged by a relevant
score of best fit statistics. (ii) Run all models simultaneously and
average the results in order to include all the different hypotheses
of data distribution. Option (i) seemed a bit restrictive and would
likely trap us in the old lognormal vs. gamma discussion. While
option (ii) was closer to ideal by including model uncertainty,
the problem of how to weigh the different models in the averaging
process still needed to be resolved, and the accompanied increase
in model running time due to the increased complexity made this
approach impractical. As a pragmatic solution we decided to use a
generalized gamma distribution as the model for the positive data.
It has the great advantage of being a three-parameter distribution,
and therefore offers at least the possibility of being able to fit mean,
variance and skewness with some measure of independence. The
generalized gamma includes a number of standard non-negative,
positively skewed distributions as special cases (e.g. the lognormal,
gamma, exponential, Weibull etc.) . Loglogistic and inverse
Gaussian distributions are not included among them and were
therefore not investigated further, although the initial analyses
had identified them as possible candidates. We also fitted a
lognormal model and, further, compared these results with those
obtained by simply taking an arithmetic mean of all stations in
each sampling unit (a “sampling unit” is one depth class, in one
fjord, in one year).

The generalized gamma distribution
The generalized gamma distribution provides a general approach
to the problem of fitting a distribution to skewed data. Its prob-
ability density function in the form commonly used (Stacy,
1962; Stacy and Mihram, 1965) is:

f (x) = b

G(k)u
x

u

( )kb−1

exp − x

u

( )b( )

where u (.0) is a scale parameter, b ( . 0) and k ( . 0) are shape
parameters and G(k) is the gamma function of k. Moments of the
distribution are given by:

Figure 2. King Crab in northern Norway: distribution of number of
crabs larger than 137mm CL in individual survey hauls.

Table 1. King crabs in Northern Norway: trawl survey area (km2)
by fjord and depth class

Depth Varangerfjord Tanafjord Laksefjord Porsangerfjord Total

, 90 m 617 228 418 473 1 736
90–

330 m
2 053 535 801 859 4 248

. 330 m 198 0 0 0 198
Total 2 868 763 1 219 1 332 6 182
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for its CV.
In this form the distribution has a long-standing reputation for

being difficult to fit: the parameters do not represent recognizable
properties of the distribution, so it is difficult to provide starting
values for fitting methods, and they are strongly related so that
convergence can be difficult to achieve.

Prentice (1974), working with the logarithm of the argument
of the generalized gamma, mapped the lognormal limiting
distribution, as k tends to 1, to the origin (l ¼ 0) using the

transformation l = 1/
��
k

√
and gave a limiting expression for the

variance of the transformed variable (approximately the CV2 of

the parent) as s2 = 1/b2k.

The logarithm of the mean is approximately

m = ln u( ) + ln G k+ 1

b

( )( )
− ln G k( )( )

which for b not small can be approximated by

m = ln u( ) + 1

b
ln k( )

Prentice (loc. cit.) also demonstrated that the logged distribution,
with transformed parameters and parameter space extended to
include negative l (so that the centre of the parameter space was
occupied by a symmetrical normal distribution), was somewhat
easier to fit by maximum likelihood (ML) methods than the
standard form of the generalized gamma distribution.

A main effects model for a survey-based stock size index
The distribution of the number of individuals (y) in a haul may be
approximated by a mixed probability function consisting of a
binary discrete distribution for zero/non-zero and a continuous
distribution, g(y), for the non-zero values:

f y
( )

= 1 − p y = 0
p · g(y) y . 0

{

where p is the probability of a positive haul and
1

.0

g(y)dy = 1.The
expectation of y, i.e. E(y), equal to p�g, i.e. the probability of getting
a positive haul times the mean catch in the positive hauls, is the
survey index of mean number for which an estimate is sought;

using Bayesian methods for fitting the model made confidence
intervals for these indices more accessible. Two separate General
Linear Models (GLMs) can then be constructed to predict, respect-
ively, p and g(y) and define the overall distribution of the data. In
this example we use area (the four fjords, Figure 1) and depth
(three ranges: ,90m, 90–330m, .330m) as explanatory variables
taking spatial structure into account, and a time effect (year) as
surveys are conducted on an annual basis.

The GLM model for the occurrence of non-zero hauls
Of ndat hauls taken in depth range d in area a in the year t, mdat

catch crabs. The variable mdat is considered to have a binomial
distribution with probability parameter pdat:

mdat � Binomial ndat,pdat( ).

Using a logit link function to scale probabilities to effects, the
probability p was described as having components:

logit pdat( ) = a1,ta + a2,d

where a1,at was an effect for area a in year t and a2,d was the effect
of depth stratum d. The invasion of Northern Norway waters by
crabs was progressive, from the east, so each year-area combin-
ation had to be modelled as a separate effect; but within each
area the different depths were considered to be invaded synchron-
ously, so depth was modelled as completely crossed with year-area
combinations.

The GLM model for the abundance of crabs
in non-zero hauls
The density, yitad, in the haul i taken at depth d in area a in the year
t with positive catch was modelled by a generalized gamma distri-
bution. This model was kept simple by assuming that the distribu-
tion of densities had the same shape in all sampling units, i.e. that
the CV of density and its skewness were the same, regardless of the
mean. In marine resource surveys, it is common to find that the
CV of density is the same in sampling units of very different
mean density. Furthermore, of the 68 sampling units with any
non-zero catches, 25% only had one catch, so no information
on CV, and 40% one or two, so no information on skewness. It
was impracticable to fit CV and skewness separately to each
sampling unit. This permitted fitting common values of kappa
and beta, but different values for the mean density, to the
year-area-depth combinations, so:

yitad � gen.gamma(k, uitad,b).

Using a log link the predicted logarithm of mean density is:

mitad = g1,ta + g2,d

where g1,ta is an effect of area a in year t, and g2,d is the effect of
depth stratum d; as for the model for occurrence of non-zero
hauls, and for the same reason, year-area combinations were con-
sidered separately but crossed with depth effects.

In applying Bayes’ equation to the present problem, the poster-
ior probability distribution of the survey indices was derived by
Monte-Carlo-Markov-Chain (MCMC) sampling methods (see
e.g. Congdon, 2001). The programming framework WinBUGS
1.4 provided a means of specifying and analysing a Bayesian
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model, including selection and implementation of appropriate
algorithms (Spiegelhalter et al., 2004).

Lacking prior knowledge on the density or prevalence of the
species, we used uninformative prior distributions for the model
parameters. The year-area and depth effects, for both presence
and density, were given uniform priors (in log space) between
– 10 and 10, a range much wider than that of the observed dens-
ities. The (approximate) CV of the generalized gamma distribu-
tion, s, was given a uniform prior between 0.5 and 4. The shape
parameter, l, was given a distribution uniform in log space
between – 4 and the logarithm of the reciprocal of s. This
upper limit was chosen to ensure that the distribution of
non-zero densities was not modelled as J-shaped, while the
lower limit avoided computational difficulties that occurred in
sampling from the generalized gamma distribution with large
values of k (which is the reciprocal of l2).

While the generalized-gamma model was flexibly able to fit
distributions ranging from lognormal to gamma under an

assumption of uniform CV in all sampling units, its complex
parameterization made it cumbersome to fit with variable CVs.
Examination of the data showed that in these surveys, the CV
of density in non-empty hauls was close to proportional to
the sampling-unit mean (Figure 3), but we were unable to
parameterize the generalized gamma model to fit such data.
Therefore, we also fitted a lognormal distribution defined by
log(yitad) � N(mtad, s2

tad) where the mean of the lognormal,
exp(mtad + s2

tad/2) = exp(mtad) and mtad = g1,ta + g2,d . The rela-
tionship between CV and mean density was then modelled by
settingstad = hd · exp(mtad). TA year–area means g1, D-1 depth
effects g2, and D coefficients h were then fitted for the relationship
between CV and mean. The year–area means and the depth effects,
parameters in log space, were given prior distributions uniform
from –10 to 10 (as when fitting the generalized gamma), and
the coefficients h were given priors uniform in log space
between –3 and 3.

The survey indices
For each year–area–depth combination the proportion of the area
occupied by crabs was estimated by reversing the logit scaling:

Pta,d = exp(a1,ta + a2,d)
1 + exp(a1,ta + a2,d)

and the mean density of crabs in the occupied area was estimated
by

Mta,d = exp g1,ta + g2,d

( )

so the mean density of crabs in the area–depth combination ad in
year t was Pta,d.Mta,d, the number was Aa,d.Pta,d.Mta,d and the total
number in area a was

∑
d

Aa,dPta,dMta,d

where Aa,d was the extent of area ad.

Results
Model fit and diagnostics
The MCMC process of the generalized gamma–binomial model
converged orderly, and the model fitted the data well. All priors
are strongly updated (Figure 4) and generally not constrained by
limits on prior distributions; the exception was the limit of – 4
on the distribution of log(l) in fitting the generalized gamma,

Figure 3. King Crab in northern Norway: sampling-unit CV of
density in non-empty hauls vs mean density.

Figure 4. King Crabs in northern Norway: prior and posterior cumulative probability density distributions of the parameters s and l of the
generalised gamma model (A and B) and for the parameter a which relates the mean and CV of the lognormal model (C).
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which obviously also bounded the posterior distribution
(Figure 4). We inferred that the data from the non-empty hauls
were even more skewed than could be exactly fitted by the general-
ized gamma distribution with this limit on l, and fitted lognormal
distributions as a check on the results.

The depth range 90–330 m dominated the survey area with
69% of its extent ; 28% of the extent was up to 90 m deep and
only 3% deeper than 330 m (Table 1). 81% of all the stations,
and 89% of the stations where crabs were caught, were in 90–
330 m depths, which therefore dominated the estimation of
year–area means both for presence–absence and for density
when present, as they also dominated the consequent calculation
of the total numbers of crabs in the survey area. The year–area
and depth effects were fitted without weighting the data, which
implied assuming that the density of stations was nearly the
same in all sampling units. The relatively simple presence–
absence model fitted very well to the observations for depth
class 2, less well to depth classes 1 and 3.

The proportion of occupied sites (non-empty hauls) in the
three depth strata follow a consistent pattern over time. Between
fjords, however, the time trends differ (Figure 5). In Varanger
and Tana fjords, the proportion of occupied sites peaked in 2002
and 2003 respectively, and decreased thereafter (Figure 5). In

Lakse fjord it increased until 2006, remained stable until 2009,
and then decreased; in Porsanger fjord it decreased after 2006.
In general, the proportion of occupied sites are lowest in depths
,90 m – about one-third of the probabilities found in the two
other depth strata (90–330 m and .330 m).

The more complex model for density in occupied areas fitted
common values for the two shape parameters to all the sampling
units, the scale parameter being fitted with two crossed sets of
main effects. This more complex model was more difficult to
evaluate. The density data had moderate variance—the overall
CV was 1.77 and the skewness 7.04; within sampling units the cal-
culated CVs ranged up to 2.28, but skewness only to 4.63; for depth
class 2, skewness and CV of observed density had a correlation of
85.6%. The median estimate of the CV of the generalized gamma
distribution fitted to the data was 1.03 with relative inter-quartile
range (IR) 6%, but the distribution was highly skewed—using an
approximation appropriate to a lognormal distribution, the
median estimate of the skewness of the fitted distribution was
4.4 (IR ¼ 9%). An ordered cumulation of probabilities that
observed station densities would exceed the corresponding fitted
values showed a deficit of very small values of observed density,
probably due to a one-crab minimum catch, a surplus of moder-
ately small values, and at the high end a surplus of very high values

Figure 5. King Crabs in northern Norway: observed and predicted proportion of non-empty hauls by year and fjord for depth class 2
(90-330 m). Error bars are inter-quartile range. Points are labelled with the number of stations trawled.
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(Figure 6). The model generally predicted smaller mean densities
than those observed in sampling units with high CVs of density,
and vice versa (Figure 7).

The lognormal model with sampling-unit CV related to mean
density fitted better than the generalized gamma with assumed

uniform CV (Table 2, Figure 7). (A simpler version with a
common ratio of CV to mean had the same deviance as the
version with depth-specific coefficients, and two fewer parameters,
so was preferred.) It had a much smaller mean deviance and also
estimated that it was effectively fitting four fewer parameters. The
drawback to such a model is that the estimated CVs exercise a
reverse influence on the sampling-unit means through the fitted
relationship. In other words, fitting a model in which CV of
density is related to its mean causes the estimated mean for a sam-
pling unit to depend not only on the central tendency of the values
observed, but also on their scatter; and vice versa the estimate of
variance depends not only on the scatter of the observations, but
also on their central tendency.

In spite of the differences in model diagnostics the generalized
gamma and the lognormal models gave similar results. The overall
mean densities of crabs ≥137 mm CL in the four fjords estimated
by the model ranged from 14 km22 to about 330 km22 (Figure 8).
The median CV of these annual estimates was 33%, with a range
from 15% to 181%. The density estimates for the Varanger fjord
were the most precise, with CVs from 15 to 31%, as they were
based on more observations than those for the other fjords.

The estimated density indices for the four fjords have different
time trends, although in Varanger, Tana and Lakse fjords a peak
was apparently reached in 2003 or 2004. In Varanger fjord, dens-
ities increased from around 160 km22 in 2001 to a plateau near
230 km22 in 2002–2004 (Figure 8). Since then densities have
progressively decreased to reach about 100 km22 in 2010.

Figure 6. King Crabs in northern Norway: cumulative probability
density distributions of probabilities that observed densities in
non-empty hauls exceed corresponding values predicted by the
generalised gamma– and lognormal models.

Figure 7. King Crabs in northern Norway: observed and predicted mean density in non-empty hauls by depth strata for the generalised
gamma model (top row) and the lognormal model with CV proportional to the mean (bottom row). Points are labelled with the CV of the
observed station density, points without CV (only one haul) are labelled with “x”.
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In Tana fjord densities increased rapidly after 2000 to peak
in 2003 near 300 km22, but then progressively declined to
about 110 km22 in 2007. The estimates for 2009 and 2010
are lower again, but there was a higher, although uncertain,
estimate in 2008.

No crabs were detected before 2002 in Lakse fjord, but mean
densities increased to about 130 km22 by 2004 and stayed

relatively stable near that level through 2009, to decrease markedly
in 2010. However, all estimates had large uncertainties. In
Porsanger fjord large crabs were first recorded in 2006 with a
density near 150 km22. The estimates of the following three
years have been consecutively lower and Porsanger fjord currently
has the lowest densities of the four.

While the crab stock gradually expanded its distribution west-
ward the total number also increased (Figure 9). However after
2003 stock size has been progressively decreasing, by 2010 to
about 36% of its 2003 maximum. Median annual estimates from
the generalized gamma and lognormal models ranged from 0.4
to 1.1 million, with CVs of 12–24%.

Discussion
The surveys for king crab off Northern Norway use a modified
Agassiz trawl as the primary sampling gear. The advantages of
this gear over an ordinary (otter) trawl are that it is easy to
operate, needs only small areas of trawlable bottom and is thus
better suited to the rough bottom conditions found in the king

Table 2. King crabs in Northern Norway: fits of distributions to a
two-way GLM–delta model, sampling unit (i.e. year and fjord)
crossed with depth.

Mean Deviance pD DIC

Gamma, uniform CV 3 975.70 76.937 4 052.64
Gamma, with CV/ mean 3 858.71 74.733 3 933.44
Generalized gamma, uniform CVa 3 758.48 77.501 3 835.98
Lognormal, uniform CV 3 752.67 77.316 3 829.99
Lognormal with CV/ mean 3 662.00 73.758 3 735.76
aThe generalized gamma was constrained by computational difficulties and
was not a completely free fit.

Figure 8. King Crabs in northern Norway: overall estimates of densities of crabs .137mm CL in each of four fjords, 2000–2010 from a)the
generalised gamma model, b)the lognormal model with CV related to mean and c)calculated from simple means in sampling units. The greyed
area shows the inter-quartile range as estimated from the lognormal model. The dots indicate medians of the estimate of the means.

Analysis of surveys of king crab abundance off Northern Norway 1423

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/69/8/1416/702937 by guest on 10 April 2024



crab habitats off Northern Norway. The use of the Agassiz trawl
facilitates almost complete survey coverage of the king crab distri-
bution and thereby reduces unknown biases on stock-size esti-
mates. Such bias could originate from incomplete coverage, e.g.
imposed by use of less adapted trawling gears (otter trawls), and
crab migration between trawlable and non-trawlable areas. The
Agassiz trawl is also effective in catching organisms in, on and
very close to the bottom. Underwater video has shown that on
soft bottoms the trawl catches benthos inhabiting the upper
5–10 cm of the sediment, and this is confirmed by finding
in-benthic bivalve molluscs such as Clinocardium ciliatum and
Arctica islandica, as well as several species of sedentary polychaete
in the catches.

The data collected by these surveys are distributed with a long
positive tail and include zeros in excess of what may be fitted by
standard distributions. Such data are typical in fish stock surveys
and may be modelled in a coherent way as a mix of two (or
more) distributions. For the data from trawl surveys of king
crab in waters off Northern Norway this was accomplished using
a mixture of two general linear models—one for occurrence
(zeros and non-zeros) and a second for non-zero catches—and
Bayesian inference.

In previous analyses of this kind, the distribution of the positive
data has often been taken as either lognormal or gamma (Syrjala,
2000; Dick, 2004). Lognormal and gamma models (or models as-
suming other distributions) give different results as also seen in
this study (Figure 9) and there has been some debate over which
of the two to prefer (Myers and Pepin, 1990; Pennington, 1996;
Syrjala, 2000; Dick, 2004). The generalized gamma distribution
has an extra parameter to regulate skewness and allows a model
to fit within a spectrum of distributions that includes both the log-
normal and the gamma. The gamma distribution has skewness
equal to twice the CV; the lognormal has skewness equal to

three times the CV plus its cube. The generalized gamma can fit
within this gap in the spectrum of skewness. In these analyses,
the regulating parameter was given an uninformative prior, and
the model was allowed to find the best fitting distribution. We
find this approach useful when analysing such data: In the cases
where neither the lognormal or gamma (or other) is a clear best
fit, the generalized gamma distribution might provide an inter-
mediate solution; if on the other hand the results of a first run
using the generalized gamma distribution point to a specific
standard two-parameter distribution as the better one it provides
direction and statistical basis for simplifying the model.

In the present case, the parameter estimates of the generalized
gamma model resulted in a distribution that tended strongly
towards the lognormal, and there was clear evidence that the
data fitted better to lognormal distributions than to e.g. gamma
distributions (Table 2). The difference between lognormal and
generalized gamma was negligible (Table 2). For practical
reasons the simpler model with lognormal distribution was there-
fore preferred. It was however further modified to accommodate
the CV being proportional to the mean (Figure 3). This was not
possible with the generalized gamma model. The lognormal
model fitted with CV proportional to mean density fitted better
than either of the other models (Figure 6), with a smaller deviance
(Table 2). However, for these models the resulting estimates of
crab densities were quite similar (Figures 8 and 9).

The method used here is not error-free. The conceptual model
underlying the method divides the habitat into “unoccupied”
areas—in which the density, and therefore the catch, of crabs is
everywhere zero—and “occupied” areas in which the catch has a
certain distribution, modelled as continuous. However, the catch
of crabs is in fact integer and forms a discrete distribution,
many catches comprised only one crab, and it is statistically
certain that some catches in “occupied” areas will have been
zero. These catches are indistinguishable from, and were therefore
included with, catches in “unoccupied” areas. This will especially
be so in habitat areas occupied at low mean density. As a result,
the fraction of habitat that is “occupied” will be underestimated,
but at the same time the mean density in the “occupied” habitat
will be overestimated because all the zero catches will have been
sent off to be included with those from the “unoccupied” areas.
These errors approximately cancel out: a rigorous analysis
should estimate

pocc =
N+ + N0

N
,

�O =

∑
+

C +
∑

0
C

N+ + N0

and

�D = pocc · �O =
∑

C

N

where pocc is the proportion of habitat that is occupied, N+ is the
number of non-zero catches, N0 is the number of zero catches in
occupied habitat, with SC being the corresponding sums of
catches, N is the total number of catches, �O is the estimated
mean density in occupied habitat and �D the overall mean

Figure 9. King Crabs in northern Norway: estimated total number of
king crabs .137mm CL in four fjords, 2000–2010, from a) the
generalised gamma model, b) the lognormal model with CV related
to mean, c) calculated from simple means in sampling units and d) a
model using gamma distribution with uniform CV. The greyed area
shows the inter-quartile range as estimated from the lognormal
model. The dots indicate medians of the estimate of the means.
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density in the sampling unit. The analysis described here in fact
estimates

pocc =
N+
N

and

�O =

∑
+

C

N+

but still arrives approximately at

�D = pocc · �O =
∑

C

N
.

The error incurred lies in fitting a distribution to truncated data
without taking account of the truncation, so estimates of the
parameters of the distribution, and even statements about which
distribution fits best, are not necessarily reliable.

The distribution of data
For given mean and variance, the lognormal is always skewed
at least half as much again as the gamma distribution, and
often much more. For this reason the generalized gamma,
capable of generating a spectrum of distributions of intermediate
skewness, can be useful in fitting to skewed data. However, the
expressions involved in fitting the distribution—either

ln G k+ 1

b

( )( )
− ln G k( )( ) or

��
kb

√
—can present computational

problems for large k and small b, and distributions close to log-
normal are computationally difficult of access. The parameter l

affects the skewness, but the relationship is not simple, and skew-
ness is also affected by sigma. The limit as l tends to 0 (large k and
small b) is a lognormal distribution, with skewness equal to CV3 +
3 × CV, and l ¼ s (i.e. b ¼ 1) generates an ordinary gamma dis-
tribution, with skewness equal to twice the CV. If ls ≥ 1 (i.e.
bk ≤ 1) the distribution is J-shaped. J-shaped distributions of
non-zero density were unwelcome in this analysis and l was there-
fore limited to values less than 1/s . However, it was not consid-
ered necessary to restrict distributions to those between gamma
and lognormal, so lambda would have been allowed to exceed
sigma (i.e. b . 1) although it did not want to. The negative bino-
mial, with “zero inflation”, has been considered a candidate for
fitting to data from biological surveys (e.g. Martin et al., 2005;
Minami et al., 2007; Joseph et al., 2009), but it has two limitations.
Firstly, it has only two parameters and so lacks the freedom to fit to
three properties—mean, variance and skewness—of survey data
distributions; and second, its skewness, ranging from CV to 2 ×
CV, is even less than that of the gamma distribution and cannot
reach the values often encountered in survey data.

Results were also computed using the simplest method: calcu-
lating the mean untransformed density for all stations in a sam-
pling unit, and estimating the mean density in each fjord, and
the total number of crabs in the survey area, by ordinary arithmet-
ic. Error variances and standard errors of density and of the total
numbers of crabs were also calculated by standard statistical
methods. There were large differences in some years between
results of these calculations and those from the more complex
model, especially in 2004 (Figures 7 and 8).

There are several reasons for these differences to occur. First,
the estimation methods were different. The simple-means
method corresponds to maximum likelihood under an assump-
tion that data are normally distributed, conditions that clearly
do not hold in these data, whereas the model that we fitted by
Bayesian methods assumes a skewed distribution for the data.
The simple-means method is sensitive to outlying values, while
the fitted model expects positively skewed data and is more
robust to positive outliers. Second, the CV model was different:
the simple-means approach assumes nothing about any relation-
ship between variance and mean. Contrariwise, the fitted model
assumes a constant CV, or SD proportional to mean, and will
therefore attempt to adjust its estimates of cell mean values to fit
with cell SDs; and vice versa. Third, the model assumptions were
different. Calculating a simple mean assumes that each station,
whether or not it caught crabs, provided an unbiased estimate of
the mean density in that sampling unit alone, and that all stations
in the sampling unit had the same expectation of squared density
deviation from the mean. The simple-mean estimates are unbiased
and assumption-free, but these are their only virtues: they are not
necessarily in the neighbourhood of the most likely values. The
modelling method, with its two-way analysis, assumed that sam-
pling units shared common depth effects and common year–
area effects, both as regards the proportions of the sampling
units that were occupied and the density in occupied areas.

Thus, for these various reasons, it could be expected that differ-
ent analysis methods would give different results without necessar-
ily implying that one or the other was “wrong”, although between
the two modelling approaches, which had a common measure of
fit, the lognormal with variable CV appeared to fit better. The
simple-means method analysed the data for each sampling unit in-
dependently of the analyses for the others. The modelling method,
by contrast, fitted common depth effects over all years and areas,
and this could be expected to reduce the year-to-year variation
in estimates for the modelling method, while the simple-means
method was allowed to respond more erratically to each year’s in-
dividual results. Over the 11-year series of surveys, the log-normal
and generalized gamma models estimated lower average total
numbers than the simple-means method, but medians of distribu-
tions estimated by Bayesian methods are not unbiased estimates of
corresponding means.

Notwithstanding the above, the trajectories of estimated total
numbers in the survey area were similar, except for a large positive
excursion by the simple-means estimate in 2004 (Figures 7 and 8).
In that year, two of the three largest catches in the entire survey
series were made in depth class 2 in Varanger fjord, which accounts
for 33% of the survey area, or without Porsanger fjord, which was
not surveyed in 2004, 42%.

However, we also tried fitting an ordinary gamma distribution,
with uniform CV, in the two-way model. The trajectory of total
numbers was strikingly close to that given by the simple-means
method (Figure 9). This appears to indicate that the divergence
in the 2004 estimate is not only due to the difference between a
structured model and a one-sampling-unit-at-a-time analysis
method. Instead, it appears that models based on distributions
that are inconsistent with the way the data are distributed, with in-
adequate ability to recognize and fit to its high positive skewness,
give markedly different results from others that are more consist-
ent with the highly skewed data. There is also a difference between
estimates that intend to be unbiased and others that have other
objectives.
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The estimated crab stock
The estimated densities of the large crabs (.137 mm CL) in the
four fjords vary as the king crab expands its distribution westward
from the points of release in the eastern Barents Sea (Figure 1).
When the survey series started in 2000 the king crab was already
well established in Varanger fjord and the year-to-year variation
shown by the survey (Figure 8) can probably be attributed to
natural fluctuation and to the effect of the fishery. In Tana fjord
the first ripe female crabs were reported in 1995, and therefore
the 2000–2003 increase in density is probably the completion of
the initial population growth due to colonization. The fishery
was not fully established here until 2001. Further east, in Lakse
fjord, densities were zero before 2002 after which the crab began
to colonize this fjord as well. In 2003 a fishery had already
begun. With a further delay, this course of events was repeated
in Porsanger fjord.

The estimated large crab densities ranged up to over 300 km22,
but most values were between 100 km22 and about 250 km22. The
catchability of crab by the sled gear that was used is believed to be
close to 100%. However, as is usually the case for fisheries surveys,
hard quantitative estimates of catchability are not available, and
obtaining such estimates, if the catchability really is close to
100%, would be difficult. The survey results are considered reliable
as regards relative values over time or in different areas.

The overall CV of the survey has been as low as 13%, but in
recent years has hovered nearer to 17–20%. This is perhaps
because densities are now below their peak values and it is more
difficult to get small CVs when resources become scarcer, but
the taking of fewer hauls in recent years probably also contributes
to the increased CV. Even so, CVs in these ranges compare well
with those of most resource surveys.

The methods described provide estimates of the full probability
density distribution of the annual stock size. Thus, it is straightfor-
ward to use the results directly in management evaluations through
risk analyses to help fisheries management make decisions.
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