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Indices of abundance are important for estimating population trends in stock assessment and ideally should be based on fishery-independ-
ent surveys to avoid problems associated with the hyperstability of the commercial catch per unit effort (cpue) data. However, recent
studies indicate that the efficiency of the survey bottom trawl (BT) for some species can be density-dependent, which could affect the
reliability of survey-derived indices of abundance. A function qe�f (u), where qe is the BT efficiency and u the catch rate, was derived
using experimentally derived acoustic dead-zone correction and BT efficiency parameters obtained from combining a subset of BT
catch data with synchronously collected acoustic data from walleye pollock (Theragra chalcogramma) in the eastern Bering Sea (EBS).
We found that qe decreased with increasing BT catches resulting in hyperstability of the index of abundance derived from BT survey.
Density-dependent qe resulted in spatially and temporarily variable bias in survey cpue and biased population age structure derived
from survey data. We used the relationship qe�f (u) to correct the EBS trawl survey index of abundance for density-dependence. We
also obtained a variance–covariance matrix for a new index that accounted for sampling variability and the uncertainty associated
with the qe. We found that incorporating estimates of the new index of abundance changed outputs from the walleye pollock stock as-
sessment model. Although changes were minor, we advocate incorporating estimates of density-dependent qe into the walleye pollock
stock assessment as a precautionary measure that should be undertaken to avoid negative consequences of the density-dependent qe.
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Introduction
Indices of abundance are important for estimating population
trends in stock assessment and hence fishery management. Ideally,
abundance indices should be based on fishery-independent data
collection methods such as design-based surveys (Maunder and
Punt, 2004). Indices based on commercial fishery catch per unit
effort (cpue) should be avoided, since they are unlikely to be propor-
tional to actual abundance (Beverton and Holt, 1957; Peterman and
Steer, 1981; Swain and Sinclair, 1994; Harley et al., 2001; Maunder
and Punt, 2004) and may fail to reflect changes in abundance due
to “hyperstability” or “hyperdepletion” (Hilborn and Walters,
1992). Hyperstability represents situation when cpue stays high as
abundance drops, whereas for hyperdepletion, cpue drops much
faster than abundance. Stock assessments relying on such data

may fail to track population changes and could lead to fishery col-
lapse or underutilization (Hutchings, 1996; Walters and Maguire,
1996; Erisman et al., 2011). Fishery-independent bottom-trawl
(BT) surveys, which are assumed to be proportional to abundance,
have been widely used to provide indices of abundance to avoid pro-
blems associated with the hyperstability or hyperdepletion of the
commercial cpue data (Godø, 1994; Ianelli et al., 2012). However,
density-dependent effects in survey BT operations may also result
in hyperstable indices of abundance (Kotwicki et al., 2013) similar
to those observed with commercial cpue data.

Density-dependent effects of the BT have been identified as
factors that may affect the reliability of abundance estimates from
BT surveys (Godø et al., 1990; Godø and Wespestad, 1993; Godø,
1994; Aglen et al., 1997; Kotwicki et al., 2013). For example,
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survey trawl capture efficiency for Atlantic cod (Gadus morhua) and
haddock (Melanogrammus aeglefinus) increases with fish density
(Godø et al., 1999). The opposite effect was observed for capelin
(Mallotus villosus; O’Driscoll et al., 2002), Atlantic croakers
(Micropogonias undulatus), white perch (Morone americana;
Hoffman et al., 2009), and walleye pollock (Theragra chalcogramma;
Kotwicki et al., 2013). Despite these findings, evaluations of the
spatial and temporal variability in density-dependent BT survey
efficiency are lacking, and methods which correct time-series of
survey abundance indices are unavailable.

The derivation of a relative index of abundance from a
fishery-independent survey is based on the relationship u ¼ qD,
where u is the catch rate (fish density) detected by the BT, D the
true density, and q a proportionality constant, usually referred to
as catchability (Punt and Hilborn, 1997). Catchability is often
decomposed into two components q ¼ qaqe, (Godø, 1994), where
qa is the availability to the BT [i.e. the proportion of fish in the
water column present between the bottom and effective fishing
height (EFH) of the BT; hereafter, it is referred to as BT zone
(BTZ)] and qe the BT efficiency (the proportion of fish in the
BTZ caught by the trawl). Catchability is unknown for most
fishery-independent surveys, but it is often assumed to be stationary
in time and space (Kimura and Somerton, 2006). This assumption
can be critical for stock assessments, spatial dynamics studies, and
ecological modelling (Kotwicki et al., 2013). Estimates of abundance
trends may be misleading if either qe or qa of the BT is affected by
density (Godø, 1994). Consequently, methods for estimating qe

and correcting survey-derived indices of abundance for density-
dependence are needed.

Developing an estimator for qe is difficult because this requires
independent measures of fish density in the BTZ (Somerton et al.,
1999). Past studies estimating qe for semi-pelagic species have used
independent estimates of abundance in front of the BT derived
from acoustic backscatter data within the BTZ (O’Driscoll et al.,
2002; Hoffman et al., 2009; Doray et al., 2010). To avoid biases,
these data need to be relatively free from contamination by other
species and need to have an estimate of the acoustic dead-zone cor-
rection (Ona and Mitson, 1996; Kotwicki et al., 2013). The
methods are difficult to apply because most time-series of the
BT survey data lack acoustic measurements. In addition, backscat-
ter data from many survey tows are often contaminated by other
organisms even if acoustic data are available. Consequently, BT
efficiency is usually estimated in an experimental manner
outside of standard survey operations (O’Driscoll et al., 2002) or
alternatively for a subset of tows where contamination (in the
backscatter) from other species can be assumed negligible
(Hoffman et al., 2009). If estimates of qe were provided for all
tows within the survey time-series, a more reliable index of abun-
dance could be available for stock assessments and ultimately
fishery management.

The purpose of this investigation is to produce a more reliable BT
survey index for walleye pollock (hereafter referred to as “pollock”)
in the eastern Bering Sea (EBS) by extending on Hoffman et al.
(2009) and O’Driscoll et al. (2002) to incorporate experimentally
derived acoustic dead-zone corrections and BT efficiency para-
meters derived from combining acoustic and BT survey data
(Kotwicki et al., 2013). Our method incorporates uncertainty asso-
ciated with the estimation of the acoustic dead-zone correction and
BT efficiency parameters. We also obtain estimates of qe for all tows
in the survey time-series by modelling the relationship between
survey cpue and qe. We postulate that qe,i ¼ f(ui), where i indicates
a survey tow when qe is density-dependent. From this relationship,

we estimate qe,i for all tows in a survey time-series and hence new
estimates of total BT survey abundance. The secondary goal of this
paper is to assess if density-dependent qe for pollock in the EBS
leads to a hyperstable index of abundance by assessing the relation-
ship between mean survey catching efficiency and corrected index of
abundance. Pollock was chosen for this investigation because it is a
key species in Subarctic Pacific ecosystems and supports a substan-
tial fishery that accounts for �5% of global fish harvest, with annual
harvests ranging from 4 to 7 million tonnes (Bailey et al., 1999). It
ranked second in the world among marine species in capture
production in 2008 (FAO, 2010).

Methods
Data
The EBS BTsurvey has been conducted annually over a standard grid
of stations since 1982 (Lauth and Nichol, 2013). Most of the 376
survey stations were located at the centres of a 20 × 20 nautical
mile grid (Figure 1). Stations at the corners of the grids were also
sampled in two regions (near St Matthew Island and the Pribilof
Islands). The surveys are conducted annually in June and July
using a standardized sampling gear (the 83–112 Eastern otter
trawl). The survey stations are visited beginning with those in the
northeastern corner (Bristol Bay) of the area then proceeding west-
ward. The standard tow duration is 30 min on bottom, and the tow
speed is 1.54 m s– 1 (3 knots; see Lauth and Nichol, 2013, for
details). During 2005–2009, acoustic backscatter data were col-
lected annually for all BT hauls. A detailed description of acoustic
data processing is given in Kotwicki et al. (2013).

Abundance indices
Total population estimates from the EBS BT survey (hereafter
referred to as the status quo index of abundance) were derived
using methods detailed in Wakabayashi et al. (1985). In brief, the
catch rates are calculated as ui ¼ ni/Ei, where ni is the number of
pollock caught in tow i and Ei the corresponding fishing effort.
Haul effort was based on area-swept estimates (Godø and Engås,
1989), defined as the product of tow distance and average net
width measured with acoustic sensors (Kotwicki et al., 2011).
Mean stratum catch rates (in no. hectare– 1) weighted by the
stratum area were combined to estimate the total abundance.
Variances and coefficients of variation (CVs) around abundance
estimates were calculated assuming stratified random sampling to
assure consistency with the currently used methods for variance
estimation in pollock EBS surveys (for details, see Wakabayashi
et al. 1985).

Population-at-age estimates were derived using methods
described by Wakabayashi et al. (1985) and Kimura (1989). In
brief, length frequencies were weighted by cpue for each tow and
combined across tows to estimate population at length. Yearly
age–length keys (combined over entire survey area) were then
applied to compute numbers by age and length class by strata.
Finally, these data were summed over strata to estimate total
survey area population at age.

Estimating BT efficiency using acoustic data
Catch rates are corrected for density-dependence using:

u̇i =
ui

qe,i
(1)

where u̇i is a BT survey catch rate for tow i corrected for density-
dependence. An estimate of qe,i is needed for each tow to apply
Equation (1) to the ui data. It has been shown previously that
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estimates of qe can be obtained using acoustic backscatter data
within the BTZ (O’Driscoll et al., 2002; Hoffman et al., 2009;
Doray et al., 2010). However, we had only 355 of �11 000 survey
tows with reliable acoustic backscatter data that could be attributed
mostly to pollock (see Kotwicki et al., 2013, for details). We consider
the 355 tows to be representative of typical survey tows as they came
from a 5-year period (2005–2009) and were spread out over the
entire survey area. The function qe,i ¼ f(ui) is needed because the
only available density estimate for each BT survey tow was ui.
We, therefore, used acoustic backscatter data to estimate Bayesian
posterior distributions of qe,i for the 355 tows and used those to
extrapolate qe,i to tows without acoustic data, as explained later.

Estimates of pollock density in the BTZ were obtained from
acoustic data collected during trawls coupled with a model which
combines BT and acoustic data (Model D of Kotwicki et al., 2013):

sA,BTi
= 1

rq(d1i
+ d2i

) +
1

a

( )−1

e1,

d1i
=

∑EFH

0.5

sAi
,

d2i
= ebXi

∑h

0.5

sAi
+ ecXi , (2)

where sA,BTi
is an equivalent of ui in units (m2 nautical mile22; for

details, see Kotwicki et al., 2013) of acoustic backscatter sA, rq the catch-
ability ratio between the BT and acoustics which accounts for differ-
ences in catchability between the two methods, EFH the effective
fishing height of the trawl, e1 the lognormally distributed error,
(d1i

+ d2i
) the fish density in backscatter units in the BTZ, where d1i

is the acoustic backscatter in the BTZ above the acoustic dead zone and
d2i

is the estimate of acoustic backscatter in the acoustic dead zone
(hereafter referred to as the ADZ correction). The parameter h deter-
mines the height of the near-bottom acoustic layer, which is used to
estimate the ADZ correction. Environmental variables that have
been shown to affect pollock density in ADZ (bottom depth, surface
temperature, sediment size, current speed, bottom light level;
Kotwicki et al., 2013) and mean fish length were included in the
model as the linear covariates bXi and cXi, where b and c are vectors
of parameters and Xi a matrix of the predictor variables. The parameter
a quantified the extent of density-dependence of qe within the BTZ.

To estimate qe, Equation (2) needs to be transformed to the
following form:

sA,BTi
= qe,isA,BTZi

, (3)

where sAi,BTi
is the BT cpue expressed in units of sA, and sAi,BTZi

is an
estimate of actual fish abundance in the BTZ. From Equation (2), we
note that sA,BTZi

= d1 + d2 and after algebraic transformation,

Figure 1. Location of the EBS bottom-trawl survey stations.
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Equation (2) becomes:

sA,BTi
= arqsA,BTZi

a + rqsA,BTZi

, (4)

so that

qe,i =
arq

a + rqsA,BTZi

. (5)

The highest posterior density estimate (HPD) of the vector qe was
found by minimizing the negative log-likelihood (NLL) function:

NLL = 0.5NT log(2ps2)
∑NT

i=1 (log(sA,BTi
) − log( ̂sA,BTi

))2

2ps2
, (6)

over the parameters from Equation (2) using ADMB (Fournier et al.,
2012). NT is the number of tows, s the error variance, and ̂sA,BTi

the
model prediction. Markov chain Monte Carlo (MCMC) sampling
was used to develop a posterior distribution of vector qe, resulting
in a thinned set of 1000 vectors. Priors for all parameters for the
MCMC analysis were chosen to be uniform in the plausible param-
eter range.

A preliminary analysis of the HPD estimates of qe suggested that
the relationship between qe,i and cpuei had an exponential form
because the rate of decline in qe decreased exponentially with an
increase in cpue. The following three models were fitted to the
posterior means for qe,i:

qe,i = exp(−b1sA,BTi
), (7a)

qe,i = exp(−(b1sA,BTi
+ b2)), (7b)

qe,i = b0 + exp(−(b1sA,BTi
+ b2)), (7c)

whereb is a vector of parameters to be estimated. Model (7a) repre-
sents a function where qe decreases exponentially with increasing
fish density starting from 1 at very low densities and asymptotically
declining to 0 at extremely high densities. Model (7b) includes
parameter b2, which allows the BT efficiency to differ from 1 at
zero abundance, and model (7c) is an extension of model (7b),
which allows the BT efficiency at extremely high abundance to
differ from zero. The parameters of models (7a)–(7c) were esti-
mated using the non-linear least-squares (nls) function in R
(R Core Team, 2012), and the fits were evaluated using residual ana-
lysis. The fits of the three models were compared using the likelihood
ratio test (a ¼ 0.05; Hilborn and Mangel 1997). The best of models
(7a)–(7c) was then fitted to each sample from the posterior of qe and
used to estimate 1000 vectors of parameters (b). Each parameter
vector was then used to estimate a vector of BT efficiency for each
tow of the entire time-series of BT survey data (qe,survey). These
estimates were then used in subsequent analyses to estimate new
abundance indices and spatial and temporal variability in the BT
efficiency.

New abundance estimates
The posterior draws for qe,survey were each used to recompute the
individual tow-specific catch rates (ui). Each set was then used to
recompute abundance estimates resulting in a set of 1000 popula-
tion abundance (total and by age) estimates. There are two
sources of uncertainty associated with new abundance indices:
within-stratum sampling variability in cpue and the “additional
variability” associated with qe. The need to account for this add-
itional variability in the indices of abundance has been recognized

by other researchers (Punt and Butterworth, 2003; Maunder and
Punt, 2004). The variance of the new abundance estimates was esti-
mated using a two-stage resampling process. First, a sample was
drawn from the MCMC-derived qe,survey vectors, which was used
to derive the vector of u̇i values. A stratified (by year and survey
stratum) bootstrap resample was then drawn with replacement from
u̇i, and the total abundance was estimated as outlined above. This
procedure was repeated 1000 times. Because the abundance esti-
mates are not independent, an among-years variance–covariance
matrix (

∑
u) was estimated using:

∑
u

= (yj − my)(yj − my)T, (8)

where yj is year-specific abundance for bootstrap replicate j and my

the year-specific mean abundance across all bootstrap replicates.
Since mean abundance replicates represent a corrected distribu-

tion of the survey process, the mean and variance provide an alter-
native index of abundance (hereafter referred to as the new index of
abundance) to use within the stock assessment model (Ianelli et al.,
2012). To determine if the status quo index was hyperstable, the new
index was contrasted with the status quo BTsurvey index. The hyper-
stable index detects changes in the population abundance that
are smaller than actual changes in the population abundance
(Hilborn and Walters, 1992). To determine if the status quo index
was hyperstable, mean BT survey catching efficiency (i.e. the ratio
of the status quo index over the new index) was plotted against the
status quo index because the negative slope of this relationship
would indicate the hyperstability of the status quo index.

Estimation of the population age structure of a new index
of abundance
We explored the impact of the variability in qe among tows and the
tendency of pollock to form dense schools by age class on the esti-
mated survey proportions-at-age by year. This was done by sam-
pling u̇i vectors, and applying the methodology described above
to estimate mean qe by age for each survey year and the means of
the distributions of the proportions-at-age.

Effect of the new BT index on stock assessment model
output
The effect of replacing the status quo BT index of abundance with the
new BT index in the stock assessment was investigated for the three
BT survey data inputs: abundance, age structure, and the variance–
covariance matrix. The assessment was run three times, replacing
model inputs to explore the impact of each component. In the
first run, we replaced only the total abundance estimates; in the
second run, we replaced total abundance estimates and age struc-
ture; and in the third, we replaced all three inputs. The outputs
from the runs of the assessment were compared in terms of the
estimates of spawning-stock biomass (SSB) and the CVs of three
estimates.

Results
BT efficiency
Likelihood ratio tests (p-value ¼ 0.0031) and a lack of a trend in the
residuals (Figure 2) indicated that the three-parameter model (7c)
was the best of the models considered [see Table 1 for mean para-
meter b values and their s.d. for model (7c)]. The qe, which is
close to 1 for very low catches decreases exponentially with catch
(Figure 3) and asymptotically approaches 0.44 at extremely large
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catches. The parameter qe varied spatially within the range of 0.50–
0.98 (Figure 4) and temporally within similar range (results not
shown). Examples presented on Figure 4 show that qe in 1999 and
2012 varied spatially; however, spatial distribution of qe was differ-
ent between years, indicating temporal variability in qe across years.
Furthermore, qe varied with pollock age and was generally lowest for
ages between 3 and 8, with large interannual variability (Figure 5).

New abundance estimates
The new index of total abundance was consistently larger in absolute
terms than the status quo index (Figure 6a), but the trends in relative
abundance were very similar (Figure 6b). With the respect to the
mean, the new index tended to be higher than the status quo index
when the latter was high and lower when it was low, indicating
evidence of hyperstability in the status quo index (Figure 6b). The
hyperstability was confirmed by a negative trend in the relationship
between mean survey efficiency and population abundance
(Figure 7). Year-specific CVs for the status quo index and from the
diagonal of the

∑
u matrix indicated that the uncertainty around

the new index increased by 55% on average (Figure 6c). This increase
was highly variable and ranged from 30% in 2009 to 102% in 1997.

The population age structure, represented by proportions-at-
age, differed markedly between the status quo and new series
(Figure 8). Abundance at age for ages 3–8 for the new index was
generally larger, whereas the abundance at age for the other ages
was generally smaller.

Effect of the new index on stock assessment model output
As expected, the replacement of the status quo index with the new
index of abundance indicates that the BT index is hyperstable.
However, the consequences of the extent of hyperstability appear
to be small in the pollock stock assessment because the differences
in SSB estimates were less than 3% (Figure 9a). The replacement
of the status quo abundance estimates with the new index resulted
in increased SSB estimates during the early part of the time-series
(when abundance was highest) and decreased estimates of SSB for
the years after 1990 (Figure 9a; line 1). The addition of the new

proportions-at-age had little effect on the SSB (Figure 9a; line 2).
Finally, the replacement of all three new components of the index
(abundance, age structure, and variance–covariance matrix)
resulted in changes similar to those observed in line 1 up to year
2004, but estimates of SSB after 2004 were higher. The CV for SSB
decreased for almost all years when the abundance and propor-
tion-at-age time-series were replaced (Figure 9b; lines 1 and 2).
However, the inclusion of a variance–covariance matrix led to
higher CVs for both the early and most recent years and lower
CVs between 1992 and 2000 (Figure 9b; line 3).

Discussion
Density-dependence of the BT survey catchability is a potential
source of concern because it causes a systematic bias in BT cpue
that could lead to bias in the assessment results and subsequent
management advice. This bias increases with increasing fish
density for pollock in the EBS resulting in a non-linear negative re-
lationship between qe and fish density. This relationship violates a
major assumption that BT survey cpue is proportional to fish
density and that q does not change in space or in time (Wilberg
et al., 2010). The consequences of this could be serious for a wide
range of products derived from BT survey data because the effect

Figure 2. Standardized residuals against fitted values for models (7a), (7b), and (7c).

Table 1. Posterior mean parameter values and posterior standard
deviations for parameters in model (7c).

Parameter b0 b1 b2

Mean 0.447 0.00046 0.645
Standard deviation 0.035 0.00014 0.059

Figure 3. MCMC-derived vectors of BT efficiency vs. BT catch. Black
and grey points, respectively, represent the mean and all estimates of BT
efficiency (qe) from the MCMC samples. The black line represents the fit
of model (7c) to the means, and dashed lines represent 95% confidence
bounds around model predictions of qe.
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of variable qe impacts cpue estimates at an individual station level.
These include, but are not limited to, stock assessments that use
abundance estimates at age and their variances (Godø et al., 1999;
Ianelli et al., 2012), studies of density-dependent effects on distribu-
tion (Spencer, 2008; Kotwicki and Lauth, 2013), density-dependent
mortality (Myers and Cadigan, 1993), recruitment (Myers, 2001),
and ecological studies on density-dependent interactions between
species (Ressler et al., 2012). Below, we will review some major
implications of our findings for two types of users: those who use
the BT survey data as an index of abundance over the entire
survey area and those who use spatially explicit cpue data as a
measure of fish density at particular sampling locations.

Survey-wide index of abundance
Survey-wide indices of abundance are used for management
purposes in stock assessments. Our results indicate that density-
dependence in qe can impact stock assessments in three ways by

Figure 4. Examples of distribution of EBS survey BT efficiency (qe) from years 1999 and 2012.

Figure 5. BT survey efficiency by year and age.

Figure 6. (a) Time-series of new vs. status quo total abundance
estimates, (b) change relative to the mean abundance across the
time-series, and (c) new vs. status quo CV.
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D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/71/5/1107/645300 by guest on 25 April 2024



(i) causing an index of abundance to become hyperstable, (ii) pro-
viding biased estimates of the age structure of the population, and
(iii) causing (spatial and) temporal variability in survey catchability.
Fishery-independent surveys have been thought not to be hyper-
stable (Harley et al., 2001). However, our findings suggest that this
assumption may not always be valid. Relative to the mean, changes
in abundance between years detected by the new index were larger
than those detected by the status quo index (Figure 6b), indicating
hyperstability (Hilborn and Walters, 1992). Besides problems with
detecting the correct magnitude of the change in abundance from
year to year, a hyperstable BT survey-based index of abundance
could also infer false trends. For example, a hyperstable index
would increase if mean fish densities were the same between 2
years, but fish were more aggregated in the first year and more dis-
persed in the second because mean trawl efficiency would be higher
during the more dispersed year. The changes in the SSB estimates
that we observed in the pollock assessment suggest that the status
quo BT index is hyperstable, although the magnitude of the effect
seems to be relatively minor (,3%). Nevertheless, ignoring density-
dependence of the survey BT qe would be imprudent. Abundance
indices corrected for density-dependence in the presence of a nega-
tive correlation between qe and fish density provide a better chance

for detecting changes in stock size and hence provide better advice
for management.

High variability in the mean BT survey efficiency evident in
Figure 7 indicates that density-dependence in qe may lead to situa-
tions other than hyperstability. For example, the population esti-
mate for 1983 was twice that for 1999, but mean survey efficiency
for both years was similar. This was possible because of temporal
variability in qe (Figure 4). Moreover, temporal variability in
survey qe can lead to detection of false trends in population size
among years. For example, corrected population estimates for
1985 and 1995 were approximately equal at 15 billion fish, but the
uncorrected estimates were 11.2 and 9.5 billion fish, respectively.
This temporal variability in qe implies additional uncertainty
about the index of abundance that is unaccounted for by sampling
variability. Therefore, the estimates of uncertainty should include
two sources: that from sampling variability and that from uncer-
tainty associated with the estimate of survey efficiency. The increase
in the CV of the new index ranged between 30 and 102%. This indi-
cates that ignoring the contribution of uncertainty in qe may also
lead to bias in the stock assessment models, particularly the esti-
mates of uncertainty. The need to account for the other sources of
variability in the assessment models has been shown previously by
Punt et al. (2005), where they attribute this additional variation to
fluctuations in catchability and estimate it as an additional para-
meter in the assessment. Here, we accounted for what is likely to
be the two main sources of variation, but acknowledge that other
sources may exist. For example, uncertainty may also arise from
the second component of q: qa. For semi-pelagic species such as
pollock, qa depends on variability in the proportion of fish from
the entire water column that are present in the BTZ, which
depends on factors such as light level and fish length (Kotwicki
et al., 2009). Lastly, the fact that different proportions of the resource

Figure 7. Mean survey efficiency vs. total abundance.

Figure 8. Relative change in the proportion of abundance at age (new
divided by status quo) for EBS survey time-series. Each dot represents a
survey year. Horizontal line represents no change.

Figure 9. Ratio of SSB (upper panel) and CV of SSB (lower panel)
estimated from the the stock assessment using the new index of
abundance relative to that estimated from status quo. Line 1 represents
a ratio when only abundance estimates were replaced. Line 2 represents
a ratio when abundance estimates and age structure were replaced. Line
3 represents a ratio when abundance estimates, age structure, and
variance structure were replaced.
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may be present from year to year in the area surveyed can also result
in an overly-optimistic impression of the precision of the survey
index of abundance (Geromont and Butterworth, 2001). For
pollock, this additional variability is likely since the BT survey area
likely misses an unknown but variable fraction of the pollock popu-
lation distribution each year (Ianelli et al., 2012).

Our results provide evidence that a density-dependent qe can also
result in biased estimates of the age structure of the index of abun-
dance when different ages are encountered at different densities.
Although qe does not directly depend on age, but on density, large
changes in the index for ages 3–8 can be attributed to the tendency
of pollock of this age range to aggregate in dense schools, resulting in
lower qe according to model (7c). Younger and older pollock tend to
be more spread out, so qe is higher for these ages. This is of a concern
because most stock assessments that are used for management pur-
poses are based on age-structured population models (Punt and
Hilborn, 1997). Biases in the estimates of abundance-at-age for
pollock vary substantially within and across years and can be as
large as 45% (Figure 5). Although we did not observe large effects
on estimates of pollock SSB, biases in age structure have been
shown to affect population estimates in age-structured assessments
(Coggins and Quinn, 1998), recruitment, and total allowable catch
(Reeves, 2003) and need to be avoided or estimated (Punt et al.,
2008). It is reasonable to conclude that similar biases were present
in length frequency data reported from the survey because the
age-structure estimates are determined directly from length fre-
quency data. This indicates that density-dependent qe should be
added to other causes of error in survey length frequency data,
such as gear selectivity, or problems associated with subsampling
of a catch (Hilborn and Walters, 1992). While discussing possible
biases in population age and length structure that can be caused
by density-dependent qe, our method failed to account for the low
selectivity of the gear for pollock smaller than 20 cm (1-year-old
pollock) that can escape through the trawl meshes (Somerton
et al., 2011). This may cause our estimates of ui for these size
classes to be biased. However, the selectivity parameters estimated
within assessment (Ianelli et al., 2012) likely minimize the impact
of this source of bias for management purposes. Nevertheless, the
interaction between BTsurvey gear selectivity (and interannual vari-
ability) and abundance indices as used in assessment models should
be evaluated.

The CVs about the new BTabundance index on average were over
50% larger than CVs around the status quo BT index because of the
uncertainty associated with the estimates of qe. Surprisingly, this in-
crease did not cause much of the increase in uncertainty around SSB
estimates from the assessment. In fact, the CVof the estimates of SSB
for 8 of the 31 years was slightly lower. We attribute this result to the
fact that the new index, despite the higher CVs, is actually more
consistent with other data used when fitting the assessment model
(i.e. the acoustic-trawl survey and fishery data).

Spatially explicit cpue data
Survey-derived fish distribution data are extensively used in spatial
dynamics studies because of their widely recognized advantages
over commercial fishery data. However, little attention has been
given to the reliability of the cpue data as derived from BT survey
catches or other types of fish detection equipment. Generally,
researchers assume that cpue data represent actual fish density or
that it is proportional to fish density. This study indicates that
density-dependence in qe can cause the catching efficiency of the
BT to vary spatially (Figure 4), which can lead to large errors in

estimates of spatial distribution, because estimated variability in
spatial distribution may be driven by BT catching efficiency rather
than actual differences in fish density. For example, Swartzman
(1997) has shown that the degree of fish aggregation can be affected
by environmental variables such as temperature and bottom depth.
In this case, a systematic change in any environmental variable
affecting fish density in aggregations could introduce a false trend
in abundance time-series or spatial patterns because of the
changes in density-dependent qe. This adds to the existing evidence
that spatially varying catchability can be environmentally driven
(Godø et al., 1999; Kotwicki et al., 2009, 2013). This is a concern
because Thorson et al. (2013) showed that relative indices of abun-
dance will generally be biased measures of changes in population
abundance in presence of spatially varying catchability.

Our findings indicate that, similar to the index of abundance,
local (at station) cpue estimates are also hyperstable because
detected differences between cpue at different stations (or at the
same station, but at different times) are smaller than differences in
actual fish density. In other words, density-dependence of qe indi-
cates that the BT does not capture fish in proportion to their abun-
dance in the BTZ. Hyperstable cpue leads to the perception that
spatial distribution is less variable than in reality. This is of
concern especially in the studies of density-dependent effects on
spatial distribution (e.g. Petitgas, 1998; Spencer, 2008; Ressler
et al., 2012; Kotwicki and Lauth, 2013). Some density-dependent
effects can be underestimated or even missed as higher densities
can be grossly underestimated. For example, the tendency of
certain ages of pollock to form dense aggregations would be under-
estimated in the areas where qe is low (Figure 4). On the other hand,
other effects may be overestimated. For example, if predator abun-
dance was assessed using the BT (therefore underestimated due to
density-dependent qe) and prey density was assessed by the acous-
tics, per capita prey consumption at high densities of predators
may be overestimated because it would be attributed to the lesser
abundance of predators. Similar errors could be expected in estimat-
ing effects of environmental variables on fish distribution when
these variables affect fish density.

We have shown how BT efficiency estimates from a subset of
survey tows can be incorporated into stock assessments to
improve model-derived estimates of fish abundance. It, therefore,
seems essential that methods be developed to incorporate survey
qe information into spatial dynamics and ecological modelling
studies that use local cpue data. This is important because density-
dependent processes are thought to be one of the major drivers in
population dynamics (Guckenheimer et al., 1977) as well as
spatial dynamics (Ciannelli et al., 2008). Without correct density in-
formation, it may be impossible to identify which processes are
density-dependent and which are density-independent. Although
we did not attempt to study spatial dynamics of pollock in the
EBS, our estimates of u̇i, together with their posteriors (derived
from the MCMC analysis), could provide a way to test the findings
from previous studies of pollock distribution and predator–prey
interactions (Pola, 1985; Kotwicki et al., 2005; Ressler et al., 2012;
Kotwicki and Lauth, 2013). While testing the effects of our findings
on previous studies would be interesting, we recommend that
new studies use catch rate data that are corrected for density-
dependent qe.

The causes of the density-dependent qe are poorly understood
and warrant further investigation. Godø et al. (1999) indicated
that BT qe for Atlantic cod and haddock may be affected by schooling
behaviour, which could cause fish at higher densities to be herded
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more easily into path of the trawl. Johnsen and Harbitz (2013)
speculated that the synchronized behaviour of sandeel (Ammodytes
marinus) triggers a density-dependent cascading reaction among
neighbouring individuals and causes increase in qe of the survey
dredge. On the other hand, Hoffman et al. (2009) and O’Driscol
et al. (2002) indicated that qe for Atlantic croakers, white perch,
and capelin may be affected by gear avoidance behaviour or trawl
saturation. For EBS pollock, our results indicate that these latter
effects are important. However, more research is needed to under-
stand the causes of density-dependence in the qe of the survey BT.

Implications for stock assessment and studies that rely
on survey data
The precautionary approach to fishery management requires that
the preventive measures are taken first and, subsequently, relaxed
if research demonstrates convincingly that they are not necessary
(Garcia, 1994). This means that the consequences of density-
dependent qe in BT surveys should be considered for a given stock
assessment. To date, only a handful of studies have undertaken
either estimation of density-dependent qe or discussed the problems
that it can cause for stock assessment or other studies (Godø et al.,
1999; O’Driscoll et al., 2002; Hoffman et al., 2009). Our study
shows that the biases caused by density-dependent qe are important
because they can lead to errors in stock assessment and population
and spatial dynamics studies, which may lead to poor quality man-
agement advice. Although the problems with density-dependent qe

have been identified for only few species so far, evidence is lacking on
the extent of the problem. Two basic approaches to investigate po-
tential effects of density-dependent qe can be pursued. First, as pre-
sented here, it requires an independent measure of fish density in the
BTZ that can be used to estimate the relationship between fish
density and qe. A second approach could involve sensitivity analyses
to explore possible effects of density-dependent qe on stock assess-
ment outputs and management advice. This approach will allow
an evaluation of the appropriate level of precaution, given some
plausibility that qe is density-dependent.
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