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Target identification remains a challenge for acoustic surveys of marine fauna. Antarctic krill, Euphausia superba, are typically identified through a
combination of expert scrutiny of echograms and analysis of differences in mean volume backscattering strengths (SV; dB re 1 m21) measured at
two or more echosounder frequencies. For commonly used frequencies, however, the differences for krill are similar to those for many co-occurring
fish species that do not possess swimbladders. At South Georgia, South Atlantic, one species in particular, mackerel icefish, Champsocephalus
gunnari, forms pelagic aggregations, which can be difficult to distinguish acoustically from large krill layers. Mackerel icefish are currently surveyed
using bottom-trawls, but the resultant estimates of abundance may be biased because of the species’ semi-pelagic distribution. An acoustic esti-
mate of the pelagic component of the population could indicate the magnitude of this bias, but first a reliable target identification method is
required. To address this, random forests (RFs) were generated using acoustic and net sample data collected during surveys. The final RF classified
as krill, icefish, and mixed aggregations of weak scattering fish species with an overall estimated accuracy of 95%. Minimum SV, mean aggregation
depth (m), mean distance from the seabed (m), and geographic positional data were most important to the accuracy of the RF. Time-of-day and the
difference between SV at 120 kHz (SV 120) and that at 38 kHz (SV 38) were also important. The RF classification resulted in significantly higher
estimates of backscatter apportioned to krill when compared with widely applied identification methods based on fixed and variable ranges of
SV 120 –SV 38. These results suggest that krill density is underestimated when those SV-differencing methods are used for target identification.
RFs are an objective means for target identification and could enhance the utility of incidentally collected acoustic data.
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Introduction
Mackerel icefish, Champsocephalus gunnari, hereafter “icefish”, is a
semi-pelagic finfish occurring across shelf areas in the Southern
Ocean (Kock, 2005a). The population at South Georgia, South
Atlantic, is the target of a commercial pelagic trawl fishery con-
strained by quotas of 1000–5000 tonnes per season in recent years
(Barnes et al., 2011; CCAMLR, 2014). Icefish are assessed using
bottom trawl surveys which may yield biased estimates of abun-
dance as a result of limited availability to the sampling method
due to pelagic feeding migrations undertaken by the species (Hill
et al., 2005, 2012; Fallon et al., 2015). Adaptive acoustic-trawl
surveys (Everson et al., 1996), or other implementations of com-
bined acoustic-trawl survey (Mcquinn et al., 2005; Kotwicki et al.,
2013), have the potential to address this issue.

The hypothesis that bias in icefish abundance estimates results
from their vertical distribution can be explored using data from
an echosounder. Acoustic data can be collected concurrently with
bottom trawling (Bez et al., 2007) to estimate the density of fish,
which are unavailable to the trawl (e.g. Aglen et al., 1999).
However, to incorporate acoustic estimates into the assessment of
the population, backscatter from icefish must first be identified
(Horne, 2000). When attributing acoustic data to species, a
number of spatial scales can be considered (e.g. that of the school;
the elementary distance sampling unit, EDSU; or the region of inter-
est; Reid et al., 2000). Distinguishing between groups of objects with
different scattering properties (e.g. fish or plankton with or without
gas inclusions) is often achievable using data processing on an EDSU
or regional scale (Madureira et al., 1993; Korneliussen et al., 2009).
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This typically involves resampling acoustic data across some range
of depth and distance or time, followed by classification according
to assumptions regarding scattering properties of the group or
groups of interest (Madureira et al., 1993; Hewitt et al., 2004).
Assumptions are based on the backscatter vs. frequency, the fre-
quency response, of the target organism. This is a function of its
orientation relative to the incident sound wave, the incidence
angle, as well as its size and composition (Korneliussen and Ona,
2003). Classification may also depend on the target location and
depth, associated seabed type, or other distributional co-variates
(Reid et al., 2000). However, organism aggregations are often geo-
metrically complex, and resampling methods can degrade identify-
ing characteristics (Reid and Simmonds, 1993). A school-level
analysis preserves finer spatial-scale information, which could
improve classification accuracy and avoid any problems which
might arise from several different target types occurring in a single
EDSU.

Although the acoustic-scattering properties of icefish need
further study, information can be inferred from physical character-
istics, which will aid in the identification of candidate echoes. Icefish
lack swimbladders, so the frequency response could be similar to
that of mackerel (Korneliussen, 2010): dominated by a flesh compo-
nent at lower frequencies (e.g. 38 kHz) and by a bone component at
higher frequencies [e.g. 120 kHz; see Gorska et al. (2007)]. The flesh
component should be relatively frequency independent across the
typical operating frequencies (38–200 kHz) and may vary accord-
ing to factors such as temperature and individual condition. The
bone component would be characterized by a rising frequency re-
sponse, peaking at �200 kHz, varying with fish orientation
(Gorska et al., 2005; Korneliussen, 2010). The frequency response
of icefish schools may therefore be low and flat at lower echosounder
frequencies (38–100 kHz) relative to 120 and 200 kHz (Gorska
et al., 2007). Krill (Euphausia superba), icefish, and much of the
South Georgia groundfish assemblage have similar frequency
responses across commonly used frequencies (i.e. 38, 120, and
200 kHz), and therefore, may be indistinguishable on an echosoun-
der display (Kock and Kellermann, 1991; Kock, 2005a; Lavery et al.,
2007; Collins et al., 2008). When such similarities exist, non-
acoustic characteristics may be more important to accurate classifi-
cation (Reid and Simmonds, 1993). Therefore, the data processing
and analysis should incorporate all available variables.

Ideally, an objective target identification method should be
applied due to the extensive training required for an operator to con-
sistently and objectively identify a given species (Horne, 2000;
Fernandes, 2009). In the Southern Ocean, Antarctic krill density
and distribution are routinely estimated using the difference in
volume backscattering strength (SV; dB re 1 m21) measured at mul-
tiple frequencies (Madureira et al., 1993; CCAMLR, 2010). Initially,
a constant range of SV measured at 120 kHz (SV 120) minus SV mea-
sured at 38 kHz (SV 38) was used (Madureira et al., 1993; Hewitt
et al., 2004). This has changed to include variable ranges of differ-
ences between SV 38, SV 120, and SV 200 (Reiss et al., 2008; Fielding
et al., 2014). However, these methods are typically applied at the
EDSU level and may not differentiate well between species at the
school level (Lawson et al., 2008). The latter may require additional
classification rules regarding target location, depth, or time of day.
Woodd-Walker et al. (2003) compared an SV-difference method
with school-level classification of plankton using discriminant func-
tion analysis (DFA) and artificial neural networks (ANN). Although
reasonable classification results were attained for krill, classifica-
tions for other groups in the analysis had higher error rates.

In addition, the DFA required some transformation of variables to
account for non-normality, and a simplified ANN had to be used
because only a small training dataset was available. Tree-based
methods (e.g. classification trees, bagged trees, and random
forests, RFs; Breiman, 2001; Hastie et al., 2009) have also been
explored as a means for acoustic target identification and have
yielded promising results though in a small number of case
studies (Fernandes, 2009; D’Elia et al., 2014).

The objective of this study is to explore and develop an RF
method for discrimination betweenweak acoustic-scattering organ-
isms at South Georgia. Given the many varied properties of trawl-
verified echoes collected during fish surveys, an RF approach is
employed to distinguish between three classes of echoes (krill,
mackerel icefish, and mixed groundfish). Tree-based classification
methods do not require variables to be linear and can be used to
process large, high-dimensional datasets efficiently. In addition,
RF classification accuracy is not affected by correlations or interac-
tions between variables (James et al., 2013). Further to the devel-
opment of the method, the RF algorithm is tested against fixed
and variable SV-difference approaches (Madureira et al., 1993;
Fielding et al., 2014) to compare outcomes. The intention of this
comparison is to explore whether the alternative methods may over-
estimate the amount of backscatter attributable to krill due to the in-
clusion of backscatter from all weak scatterers, including icefish.

Methods
Data sources
Data were from South Georgia groundfish surveys, conducted
during the Austral summers of 2004–2006, and the Austral winter
of 2007 aboard the Fisheries Patrol/Research Vessel (FPRV)
Dorada (Figure 1). The surveys followed a stratified design across
five areas (Mitchell et al., 2010), in which icefish density
(kg km22) is estimated for two depth strata, 50–200 m and
.200 m (generally ,300 m) using demersal trawl data (FP-120
trawlnet; Pilling and Parkes, 1995). At the end of each of these
surveys, a small number of pelagic hauls (International Young
Gadoid Pelagic Trawl) targeted krill swarms and pelagic aggrega-
tions of icefish. During these surveys, echosounders (Simrad
EK500) collected SV 38 and SV 120 following synchronized 1.0-ms
pulse transmissions every 2.170 s. The echosounders were calibrated
using a standard 38.1-mm diameter tungsten carbide sphere (Foote
et al., 1987), during each survey, at Husvik, Stromness Bay. In the
Austral summers of 2010–2013, krill abundance was surveyed on
the South Georgia shelf aboard the Royal Research Ship (RRS)
James Clark Ross (JCR). During these surveys, SV 38, SV 120, and SV

200 (Simrad EK60) were collected following 1.024-ms pulse trans-
missions every 2 s. The scatterers of interest were sampled using a

Figure 1. Locations of trawl-verified echoes used in the training dataset
for generating random forests.
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Rectangular Midwater Trawl (RMT8; Fielding et al., 2014). The
echosounders were calibrated using copper spheres (Foote et al.,
1987), during each survey, at Stromness Harbour [see Fielding
et al. (2014) and Supplementary Table S1 for more details].

Post-processing of echosounder data
The echosounder data were post-processed using the commercial
software (Echoview, Sonardata; Higginbottom et al., 2000).
Aboard FPRV Dorada, the transmit power for the 120-kHz pulses
was 1000 W instead of the recommended 250 W (Korneliussen
et al., 2008), which likely caused non-linear distortion in the col-
lected data. A non-linearity correction factor was thus applied to
the SV 120 data to compensate for non-linear distortion. The correc-
tion factor was derived as the simulated ratio of SV corrected for
non-linear attenuation to measured SV, where finite amplitude
effects were assumed to be influential during both echosounder cali-
bration and survey data collection due to high transmit power [see
Pedersen (2006) and Lunde and Pedersen (2012) for further details].
A multifrequency threshold [similar to that used in Fernandes
(2009)] was applied to the SV data as a series of virtual echograms
(Higginbottom et al., 2000) to remove data outside of animal aggre-
gations from the analysis for the sole purpose of improving on the
single-frequency threshold normally required for “school” detec-
tion using the Shapes algorithm (Coetzee, 2000). Single-frequency
SV data, thresholded at 270 dB, were summed across all available
frequencies (ICES, 2015). Thresholds for these virtual echograms,
determined empirically to retain schools and eliminate non-school
echoes, were 2135 dB for SV 38 + SV 120 and 2240 dB for SV 38 +
SV 120 + SV 200. A 5 × 5 median convolution kernel, giving each
pixel in the acoustic data matrix the median value of the surround-
ing set of 5 × 5 pixels, was then applied to remove single target
observations and noise spikes (Fielding et al., 2014). A 7 × 7 dilation
convolution kernel (giving the maximum value in each 7 × 7 set of
pixels) was then applied to the summed SV data to mitigate any
removal of data within schools by the other filtering steps. Finally,
a bitmap was used to mask the SV data, removing data outside of
schools from the analysis and retaining data assumed to originate
in aggregations of organisms.

The SHAPESschooldetectionalgorithm (Barange, 1994) was then
applied to the virtual echograms arising from the image analysis steps
described above. The SHAPES parameters were: minimum total
school length¼ 5 m; minimum school height ¼ 1 m; mini-
mum candidate length¼ 5 m, minimum candidate height¼ 1 m,
maximum vertical-linking distance¼ 5 m, and maximum horizon-
tal linking distance ¼ 20 m. The school polygons defined by the algo-
rithm were then used to compile variables associated with each school
and to serve as a training dataset for the purpose of classification.
Echoes were assigned one of the following categories according to
trawl composition data, assuming that the composition of echoes is
represented by the complementary evidence collected by trawl:
“Krill” schools, or swarms, were 100% Euphausia spp., almost exclu-
sively E. superba; “Mackerel Icefish” schools were .85% C. gunnari;
and “Mix” were mixed aggregations of groundfish without swimblad-
ders, consisting of ,85% of any single fish species. Aggregations in-
cluding fish possessing swimbladders (e.g. myctophid species such as
Electrona carlsbergi) were excluded from the analysis. The inclusion of
“Mix” was necessary to represent the wide assemblage of weak scatter-
ing species present in the area, toavoid misclassification of backscatter
as “Mackerel Icefish”, which occupies an overlapping location-depth
niche.

The random forest algorithm
All the variables exported from the acoustic data were evaluated for
collinearity, to identify superfluous variables that might be dis-
carded. The final vector of variables (p) consisted of: mean SV 120,
maximum SV 120, minimum SV 120, standard deviation of SV 120,
SV 120 skewness, mean height of school (m), mean aggregation
depth (m), mean distance from seabed (m), latitude at the centre
of school, longitude at the centre of school, corrected school
length (m), corrected school thickness (m), corrected school perim-
eter (m), corrected school area (m), attack angle (8; Diner, 2001),
image compactness (a ratio of the perimeter to the area of a
school), corrected mean amplitude (m2 m3), horizontal roughness
coefficient (Nero and Magnuson, 1989), SV 120 –SV 38, time of day,
and estimated school volume assuming a cylindrical shape (m3).
An RF was then generated using this training dataset (Breiman,
2001). Each tree within an RF was generated by recursive partition-
ing of the data, using the best splitting variable from a vector m ran-
domly selected from p to partition the data at each node on the bth
tree (Tb), where m was of length 2 ×√

p. Vectors (m) of length
√

p
and

√
p/2 were also tested, but resulted in higher error rates. Nodes

were split until they reached a specified minimum number of echoes
(nmin) of n ¼ 1. The RF was then used to make predictions accord-
ing to the following equation:

ĈB
rf (x) = mode{ Ĉb(x)}B

1 (1)

where Ĉb(x) is the classification prediction of the bth tree in the en-
semble of B ¼ 1 × 104 trees, and ĈB

rf (x) is the prediction of the RF.
Out-of-bag (OOB) error estimates were inspected as a means of
cross-validation of prediction accuracy (Breiman, 2001; Hastie
et al., 2009). In addition to the RF generated using all available vari-
ables, RFs were generated using acoustically derived variables only
(to explore how well the method might be generalized to other
regions in the Southern Ocean) and using variables from schools
around the main South Georgia shelf only (i.e. excluding Shag
Rocks where krill data were not collected).

Confusion matrices were generated from OOB classifications,
providing both overall and class-specific estimates of generalization
error. The kappa statistic (k; Cohen, 1960) was used to measure clas-
sification performance by indicating the proportion of classification
agreement beyond that expected to occur by chance. Variable im-
portance was examined to assess the ranked importance of each vari-
able to classification accuracy. The two typical measures of variable
importance were calculated for the RF: mean decrease in accuracy
and the mean decrease in Gini Importance Index (GII; left and
right panels, respectively, in Supplementary Figure S1; Breiman,
2001). The first gives a measure of the decrease in prediction accur-
acy when the best node splitting variable is randomly permuted for
all variables in p. The mean decrease in accuracy across all trees gives
a measure of variable importance (Breiman, 2001). Second, the Gini
Impurity Criterion (GIC) is a measure of the rate of misclassification
of randomly chosen elements of a given node when classified
according to the distribution of classes in its daughter node. The
sum of decreases in the GIC for each variable across all trees
results in a GII. As these two measures may be biased by correlated
variables (Strobl et al., 2008), a third measure of conditional variable
importance was calculated to verify their validity (Figure 2). The RF
analyses were implemented in the R software environment using the
“randomForest” and “party” packages (Liaw and Wiener, 2002;
Strobl et al., 2009; R Development Core Team, 2015).

N. G. Fallon et al.2000
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Comparison of methods
Other methods for krill identification were also used to apportion
backscatter to weak scatterers, i.e. krill, icefish, and other fish
species without swimbladders (Madureira et al., 1993). Acoustic
data collected during the course of the 2006 South Georgia ground-
fish survey were resampled to mean values within 5-m vertical by
100-m horizontal data bins (Demer, 2004; Fielding et al., 2014). It
was then assumed that resampled values of SV 120 –SV 38 which fell
within the range of 2–12 dB represented bins in which weak scatter-
ing targets which might be classified as krill would be found [as
applied in Woodd-Walker et al. (2003) and Fielding et al. (2014)].
This method was also applied using a wider range, 2–16 dB
(Watkins and Brierley, 2002). A third range, 0.37–12 dB, was also
tested based on the values used in the application of the variable
window method (Fielding et al., 2014), although the accuracy of
this approach would likely be improved with the availability of add-
itional frequencies. Data were then integrated from 12 m below the
transducer to 0.5 m above the echosounder-detected seabed to give
nautical area scattering coefficient (sA; m2 nautical mile22) values
per 1-nautical mile EDSU. The derived sA would be classified as
krill within the integration volume, according to Madureira et al.
(1993) and Fielding et al. (2014), but that energy could have been
reflected by many weak scatterers. The 2006 survey data were also
classified using the above RF method. Integration over each
region defined by the SHAPES algorithm gave sA apportioned to
each RF classification group for each EDSU. As SV 200 data were
not available in all datasets, it was not considered in this part of
the analysis.

Results
Trawl-verified echoes across the three classification categories
exhibited a range of variability in morphological, spatial (both ver-
tical and horizontal), and acoustic properties. Krill echoes are the
most highly studied of the three classes and are known to exhibit
temporal and spatial variability across a number of descriptors, in-
cluding estimated density and echo morphology (Tarling et al.,

2009; Klevjer et al., 2010). Krill echoes verified in the trawl data
were broadly similar to those described elsewhere. Krill were most
often found in discrete, dense swarms, which were relatively easily
visually identifiable, given some experience (Figure 3a). However,
more dynamic and patchy echoes were also observed, which could
be mistakenly associated with other weakly scattering organisms
(Figure 3b). This ambiguity is exemplified by a trawl-verified echo
from the 2006 groundfish survey (Figure 3c), where a monospecific
catch of icefish was obtained from the scatterers rising as much as
100 m above the seabed. Krill was caught during a separate haul tar-
geting the relatively small dense scatterer aggregations ,50 m below
the surface. The fish and krill echoes in this example are difficult to
visually distinguish with certainty (e.g. Figure 3b). Mixed ground-
fish typically formed more diffuse aggregations extending ,20 m
from the seabed (Figure 3d), but were also observed to form
denser, more extensive echoes in some cases.

A value of k ¼ 0.92, 95% confidence interval+ 0.04, was calcu-
lated from the RF confusion matrix (Table 1), where values of
k . 0.75 are considered as an indication of an excellent classifier
(Fielding and Bell, 1997). The total OOB estimate of error rate
(i.e. the ratio of the sum of misclassified echoes from each category
to the total number of samples) gave an estimate of overall predic-
tion accuracy for the full RF of 95.08%. The top seven variables in
order of importance for both indices were identical although the
order was different (Supplementary Figure S2 shows an alternative
means of visualizing the contribution of each variable to classifica-
tion; Welling et al., 2015). The most important variable using each
metric was the minimum SV 120 (dB). The next four most important
variables were those pertaining to position, depth, and time of day.
The remaining variables related to measures of the acoustic and geo-
metric properties of echoes whose order of importance varied in
each case. The order of importance suggests that the use of acoustic
descriptors alone is not a comprehensive basis for target identifica-
tion. It is noteworthy that the distributions of SV 120 –SV 38 values
exhibited substantial overlap across all three groups (Figure 4) al-
though Kolmogorov–Smirnov tests detected significant differences
between them (p , 0.05). Crucially, the fixed 2–12 dB range, which
designates backscatter as krill in the Madureira et al. (1993) method,
only accounted for �61% of the trawl-verified krill echoes. The RF
models using only acoustically derived variables and South Georgia
shelf data proved similarly effective, with estimated generalization
accuracies of 88 and 97%, and k values of 0.84+ 0.05 and
0.94+ 0.04, respectively (see also Supplementary Tables S2 and S3).

The spatial distributions of sA classified as krill by each method
were in broad agreement (Figures 5 and 6a). Variability in the
spatial distribution of sA was similar in both cases, with relatively
larger values occurring to the northwest and east of the South
Georgia shelf, as well as to the west of Shag Rocks. Due to the school-
based nature of the RF method, only aggregations above some back-
ground density were detected; so, there are several EDSUs associated
with this method where no krill was detected. The corresponding
EDSUs from the other methods often contained low densities.
Overall, however, the sA per EDSU attributed to krill using the RF
method was significantly higher than those resulting from both
the fixed 2–12 dB range (Wilcoxon signed-rank test, V ¼
1 815 149, p , 0.05) and the variable 0.37–12 dB range
(Wilcoxon signed-rank test, V ¼ 1 833 645, p , 0.05). The fixed
2–16 dB range resulted in significantly higher sA per EDSU than
the RF (Wilcoxon signed-rank test, V ¼ 1 944 337, p , 0.05).
Relatively small amounts of sA were attributed to icefish using the
RF, mainly to the northwest of the South Georgia shelf and the

Figure 2. Conditional variable importance plot for the random forest
using the full training dataset.
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east of Shag Rocks (Figure 6b). These correspond to areas where the
commercial fishery mainly operates, as well as where the highest
densities of icefish are typically recorded during groundfish
surveys (Main et al., 2008). sA attributed to mixed groundfish aggre-
gations by the RF method was fairly uniformly distributed across the
South Georgia shelf, with some small amounts at Shag Rocks
(Figure 6c). This pattern is again in agreement with groundfish
survey observations of the benthic assemblage. Of the RF-assigned

backscatter, 93% of icefish sA and 62% of mixed groundfish sA

were above the 6-m mean headline height of the bottom trawl
(Parkes, 1991).

Discussion
RF models classify echoes based on their empirically observable
attributes while making few assumptions after the data have been
collected. RF models may be improved with the addition of new
data to the training dataset, and selection of variables according to
the particular attributes of the species being classified (Genuer
et al., 2010). Expert knowledge can thus be incorporated via case-
specific variable selection. Relative to other methods, RF models
are also simple to implement and accept variables with diverse stat-
istical properties (Hastie et al., 2009). For identifying icefish in the
water column, the RF in this study had an estimated 94% accuracy
and an overall prediction accuracy higher than other methods
(Woodd-Walker et al., 2003; D’Elia et al., 2014). Accepting the
need to develop reliable target strength models for icefish, the
method presented here could be used in the quantification of any
bottom trawl sampling bias and may be integrated into survey ana-
lyses that inform the icefish assessment. The RF method was

Figure 3. (a) Krill (E. superba) echo from the JR245 research cruise. Echoes such as this, discrete dense backscatter formations in a relatively shallow
position in the water column, are typically easy to distinguish as krill. (b) Krill (E. superba) echo from the JR245 research cruise. Large, dynamic echoes
were less typical of krill and more difficult to visually distinguish from pelagic icefish echoes. (c) Echo from the 2006 South Georgia groundfish survey.
Pelagic trawl catches targeting dynamic echoes extending up to �150 m from the seabed included only mackerel icefish. Krill was caught when the
dense echoes ,50 m below the surface were targeted during a separate trawling event. (d) Echo from the 2006 South Georgia groundfish survey.
Relatively weak backscattering close to the seabed, such as this, was typical of mixed groundfish trawls, although more extensive and dynamic
aggregations were observed in a minority of cases. Targeting this aggregation with a demersal trawl yielded a catch made up of mostly humped
rockcod (Gobionotothen gibberifrons), blackfin icefish (Chaenocephalus aceratus), and South Georgia icefish (Pseudochaenichthys georgianus). All
echoes were generated from 120 kHz SV data thresholded at 270 dB.

Table 1. Confusion matrix for random forest generated using the
full trawl-verified dataset, with class-specific estimates of
generalization error.

Actual

Predicted
Class generalization
error (%)Mackerel icefish Krill Mix

Mackerel Icefish 104 3 3 5.45
Krill 6 206 3 3.73
Mix 4 1 57 8.06

N. G. Fallon et al.2002
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preconditioned on schools, and so, unlike the SV-difference
methods, it did not function in the detection and classification of
backscatter below a given density, for example backscatter which
is observed in some dispersed krill layers (Watkins and Murray,
1998). However, the fact that krill sA as defined by the RF method
was still significantly higher than that from the fixed 2–12 dB
method illustrates that excluding those diffuse layers from the ana-
lysis may not substantially bias density estimates, and that most krill
biomass is contained in swarms (Fielding et al., 2014).

Although this study was motivated by the investigation of the
pelagic component of the icefish stock, there is also potential for
acoustic data collected during groundfish surveys to supplement
other analyses, such as the Western core box krill survey and ecosys-
tem modelling. To provide more accurate data on the various pelagic

scatterers detected during groundfish surveys, some effort should be
allocated to the collection of krill data around Shag Rocks. In reality,
krill is not absent from the Shag Rocks shelf, but as longitude has a
relatively strong influence in the RF the lack of training data in that
area might have biased classification. Another inherent challenge
will be in dealing with the non-systematic nature of this incidentally
collected data, which should be surmountable through the specifi-
cation of spatially explicit models. Provided the above issues are
addressed, species- or assemblage-level acoustic indices could give
valuable insights into uncertainties regarding the composition of
the pelagic ecosystem at South Georgia. For example, given that
most sA attributed to the various fish species was recorded above
the bottom trawl headline height, with a greater understanding
of bottom trawl catchability discrepancies between survey-based

Figure 4. Distributions of school-level minimum SV 120 –SV 38 (dB) values (a–c) and SV 120 (dB) values (d–f) from trawl-verified echoes for mackerel
icefish (black), krill (white), and mixed groundfish (grey).
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abundance estimates and estimated piscivore food requirements
(Hill et al., 2012) might be explained.

The methods using fixed and variable ranges of SV 120 –SV 38 may
provide inaccurate estimates of krill backscatter, but not only
because they include echoes from other zooplankton. Echoes
from fish without swimbladders may also be erroneously classified
as krill. This is because the distributions of school-level SV 120–SV 38

for krill, icefish, and mixed fish overlap (Figure 4). Conversely,

krill backscatter may be underestimated because only a portion of
the SV 120 –SV 38 values measured from krill swarms were included
in the SV-difference ranges assumed for krill. For example, some
haul-verified krill swarms had SV 120 –SV 38 values .12 dB, which
Madureira et al. (1993) defined as non-krill zooplankton.
Therefore, a 2- to 12-dB range of SV 120 –SV 38 alone is unlikely to
account for all krill backscatter and may include backscatter from
other zooplankton and fish species. Similarly, the wider 2–16 dB

Figure 5. Spatial distributions of sA (m2 nautical mile22) for krill using: (a) the 2–12 dB fixed window method, (b) the 2–16 dB fixed window
method, and (c) the variable window method.
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range may result in significantly higher sA than the RF method due to
the inclusion of non-krill echoes (Watkins and Brierley, 2002). This
exemplifies a trade-off in the EDSU-level approach; an excessively
conservative SV 120 –SV 38 range excludes both non-krill targets
and some krill echoes, whereas a wider range includes most types
of weak scatterers.

Minimum SV 120 was the most important predictor variable in
the RF. A wider range of minimum SV 120 was observed across

icefish echoes than from those of mixed groundfish aggregations,
with minimum values in both categories being generally higher
than those of krill swarms. For fish schools, minimum SV 120 is
perhaps most likely to be a function of orientation, with lower
values recorded for icefish which spends more time swimming ver-
tically in the water column than other species (Kock, 2005b). Many
species included in the mixed aggregation category also have a larger
mean body size (Kock and Kellermann, 1991), which could account

Figure 6. Spatial distributions of sA (m2 nautical mile22) for: (a) krill, (b) icefish, and (c) mixed groundfish, where sA was classified using the random
forest method trained on the full dataset.

Classification of Southern Ocean krill and icefish echoes 2005

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/73/8/1998/2198397 by guest on 17 April 2024



for the generally higher minimum SV 120 values. It is apparent
(Figure 4) that a large portion of minimum SV 120 values in krill
echoes were between 295 and 2100 dB, clearly distinguishing it
from the other categories. A single 40 mm krill per m3 at a near hori-
zontal orientation has an approximate SV 120 ¼ 270 dB (Lawson
et al., 2006, 2008), and so, values of SV 120 ¼ 2100 dB would
most likely represent a discontinuity in density within the swarm
under those assumptions. At fine scales, krill within swarms have
been shown to exhibit measurable levels of uniformity in terms of
their orientation (Kubilius et al., 2015). Most typically, they
assume a near horizontal position, particularly when actively swim-
ming (Demer and Conti, 2005; Lawson et al., 2006), but are assumed
to vary in orientation across swarms. It was thus posited that these
minimum SV samples between 295 and 2100 dB could either re-
present vacuoles or variability in krill orientation within dense
swarms, but are perhaps most likely observed due to low density
regions where krill are oriented vertically, minimizing their profile
in the acoustic beam.

Including a “mixed groundfish” category was necessary, as a suf-
ficient number of trawl-verified echoes were not available to subset
the data any further. Operator intervention was thus required to
verify some RF classifications. For instance, the yellowfin notothen,
Patagonotothen guntheri, another weak scattering species, forms
dense pelagic feeding aggregations around Shag Rocks (Collins
et al., 2008). If monospecific aggregations such as this are known
to occur, then it is preferable to include a corresponding class in
the RF method. However, few trawl-verified echoes were available
for P. guntheri in this case, and so, further scrutiny was essential to
verification of some RF classifications. It is also apparent from
Table 1 that the dataset was not balanced in terms of the number
of observations on each group, which can affect the interpretation
of results. For example, if echoes designated as “krill” were to
make up �5% of observations in the confusion matrix of a binary
classifier, 95% accuracy could be achieved by labelling all schools
as “mackerel icefish” (Fielding and Bell, 1997).

The properties of echoes considered in this analysis exhibited
variability, non-linearity, interaction, and collinearity. Therefore,
classification of echoes at the level of the school is complex.
Compiling a training dataset that adequately represents the distribu-
tions of those variables of interest can be a significant hurdle to re-
liable classification (Woodd-Walker et al., 2003). This should be
considered when choosing which approach to adopt to a given
echo classification problem, and emphasizes that the choice of a
method is sometimes as dependent on the properties and quality
of the available data as it is on the question being addressed (Reid
et al., 2000). Indeed, there are situations where considering the
data at broader spatial scales (i.e. EDSU-level analysis) is more ap-
propriate (Reid et al., 2000). This can reduce or eliminate the
need for training data entirely, with the caveat that more generalized
assumptions will need to be accepted regarding the acoustic proper-
ties of the target species. To that end, EDSU-level analyses have been
developed which can provide more accurate classification than the
fixed SV-difference method applied in this study (Fielding et al.,
2014). However, the loss of fine-scale detail of individual schools
makes accurate classification beyond broad categories (e.g. weak
scatterers) challenging.

Supplementary data
Supplementary material is available at the ICESJMS online version
of the manuscript.
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