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A comprehensive evaluation of the uncertainty of acoustic-trawl survey estimates is needed to appropriately include them in stock assessments.
However, this evaluation is not straightforward because various data types (acoustic backscatter, length, weight, and age composition) are com-
bined to produce estimates of abundance- and biomass-at-age. Uncertainties associated with each data type and those from functional relation-
ships among variables need to be evaluated and combined. Uncertainty due to spatial sampling is evaluated using geostatistical conditional (co-)
simulations. Multiple realizations of acoustic backscatter were produced using transformed Gaussian simulations with a Gibbs sampler to handle
zeros. Multiple realizations of length frequency distributions were produced using transformed multivariate Gaussian co-simulations derived from
quantiles of the empirical length distributions. Uncertainty due to errors in functional relationships was evaluated using bootstrap for the target
strength-at-length and the weight-at-length relationships and for age–length keys. The contribution of each of these major sources of uncertainty
was assessed for acoustic-trawl surveys of walleye pollock in the eastern Bering Sea in 2006–2010. This simulation framework allows a general com-
putation for estimating abundance- and biomass-at-age variance–covariance matrices. Such estimates suggest that the covariance structure
assumed in fitting stock assessment models differs substantially from what careful analysis of survey data actually indicate.
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Introduction
A critical feature of all modern stock assessment approaches is char-
acterization of uncertainty (Prager et al., 2003; Shertzer et al., 2008;
Hanselman, 2009). Basic to this is reliable estimation of survey uncer-
tainty. The acoustic-trawl (AT) survey estimates of total numbers (age
2 and older) are assumed to have a coefficient of variation (CV) of
20% in assessment models currently in use for eastern Bering Sea
(EBS) walleye pollock (Gadus chalcogrammus) despite variance esti-
mates (e.g. Williamson and Traynor, 1996; Honkalehto et al., 2012)
from one-dimensional geostatistical transitive analyses (Petitgas,
1993; Bez, 2002) that suggest sampling CVs between 3.9 and 8.8%
over 2006–2010. Further, somewhat arbitrarily, an effective sample

size for the age-composition data is specified to be proportional to
the number of trawl-hauls conducted each year, and it is assumed
that the age-composition data follow a multinomial distribution
(Ianelli et al., 2011). However, a careful analysis of uncertainty in
the abundance- and biomass-at-age estimates derived from the
acoustic survey is possible and could be included in assessment
models.

A comprehensive analysis of uncertainty is not straightforward
for ATsurveys, because a variety of data types, including the acoustic
backscatter recorded by the echosounder along the vessel track and
biological information such as fish length, weight and age obtained
from trawl samples, need to be combined to estimate abundance- or
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biomass-at-age (Simmonds and MacLennan, 2005). Indeed,
whereas sampling only takes place at some spatial locations (acous-
tic transects and trawl stations), abundance- or biomass-at-age
estimates are obtained by integrating predicted values for all cells
of a grid covering the survey area. Consequently, uncertainty
related to spatial sampling error (i.e. error made when predicting
values between sample locations), measurement error (i.e. error
made when measuring values at sample locations, i.e. the nugget
effect) and error on the functional links needs to be evaluated and
accounted for. Earlier works have focused either on the measure-
ment error assuming statistical distributions for acoustic para-
meters generated using Monte-Carlo simulations (e.g. Rose et al.,
2000; Demer, 2004; O’Driscoll, 2004), or on spatial sampling and
measurement errors estimated using spline-based generalized addi-
tive models (Zwolinski et al., 2009), bootstrap (Simmonds et al.,
2009) or geostatistical simulations (Gimona and Fernandes 2003;
Walline 2007; Simmonds et al., 2009; Woillez et al., 2009) to
combine trawl and acoustic data. To our knowledge, only one
attempt has been made to address both measurements, spatial sam-
pling, and functional links error; classic bootstrap was used to evalu-
ate errors on the functional links and measures, while block and
circular bootstraps were used to characterize spatial sampling
errors (Løland et al., 2007).

A simulation framework based on geostatistical simulations and
bootstrap techniques is proposed here to more fully quantify sources
of uncertainty in EBS walleye pollock AT surveys. This work builds
on geostatistical simulations developed for EBS walleye pollock
(Walline, 2007). Transformed Gaussian geostatistical simulations
are used to capture the uncertainty associated with the acoustic
backscatter (Woillez, 2007; Woillez et al., 2009), while uncertainty
associated with the age data is taken into account through simula-
tion of the spatial distribution of fish lengths, combined with boot-
strap sampling of the age–length data. Earlier studies (e.g. Rivoirard
et al., 2000; Gimona and Fernandes, 2003; Walline, 2007; Woillez
et al., 2009) used only a single summary statistic (i.e. mean length
or root mean squared length) to represent the length frequency dis-
tribution. Age data were not considered, and only uncertainty of
total abundance or biomass were provided, except for Woillez
et al. (2009), who partitioned the estimate of total abundance to
fish age by simulating proportions-at-age as an additional set of rea-
lizations. Use of a single statistic to describe a length frequency dis-
tribution is only appropriate when distributions are narrow and
unimodal. This might be the case for some small pelagic fish such
as herring (Woillez et al., 2009), but not for EBS walleye pollock
(Honkalehto et al., 2012). Here, we outline a more general set of
summary statistics, quantiles of length data, to develop a multivari-
ate geostatistical model. Uncertainties are accounted for due to vari-
ability in the relationships between target strength and length,
weight and length, and age and length. Additionally, spatial sam-
pling error associated with acoustic and length frequency data is
evaluated. Finally, the uncertainty for the total abundance and
biomass and for abundance- and biomass-at-age is evaluated by
combining errors from all sources. The relative contribution of
each source of uncertainty is evaluated as well as consequences for
stock assessment outcomes.

Material and methods
Data
Summer AT surveys of walleye pollock in the EBS have been con-
ducted by the Alaska Fisheries Science Center of the National

Oceanographic and Atmospheric Administration (NOAA) since
1979. The present study used data collected over 5 years aboard
the NOAA ships Miller Freeman (2006) and Oscar Dyson (2007–
2010). The survey’s primary objective was to collect acoustic and
trawl information to estimate midwater walleye pollock abundance
and distribution (Honkalehto et al., 2012). Data from these surveys
are used to estimate the parameters of a population dynamics model
for EBS walleye pollock to determine total biomass, total abun-
dance, abundance- and biomass-at-age (Ianelli et al., 2011).

The survey design involves systematic parallel transects oriented
in a generally north–south direction, and spaced 20 miles apart,
with a random starting point. Sampling is conducted over a
2-month period in summer, and covers the EBS shelf. The southern
end of each transect is either nearshore (Alaska Peninsula or
Aleutian Islands) or beyond the shelf break in water 500–1000 m
deep. The northern ends of transects are fixed based on historical
pollock distributions, in water 50–85 m deep, but are extended if
pollock are observed. Only pollock distributed in US waters are con-
sidered in this study. Calibrated acoustic backscatter data are
recorded using a Simrad ER60 echosounder operating at 38 kHz.
Nautical area backscattering coefficient (sA, following the notation
of MacLennan et al., 2002) visually attributed to walleye pollock is
calculated for each 0.5 nautical mile length segment and averaged
over 2.5 nautical miles to reduce the skewness and the percentage
of zeros in the acoustic backscatter variable (Figure 1a). The follow-
ing evaluation of uncertainty (e.g. estimation variance) is only rele-
vant at the physical area associated to the individual acoustic data
values. Then, regular trawl haul samples are used to identify acoustic
targets in addition to biological samples from which length and age
data are collected (Figure 1b). These methods follow procedures
detailed generally in Simmonds and MacLennan (2005) and specif-
ically in Honkalehto et al. (2012).

The acoustic backscattering from juvenile pollock was differen-
tiated from that of adults in some years. The separation was based
on 2D morphology and the depth of the pollock aggregations as
seen on the echograms. Data for juveniles and adults were analysed
separately here because the trawl hauls used to characterize the
length frequency distribution of juveniles and adults differ, and
because both groups can occur at the same location, but in different
depth layers, with juvenile aggregations often found closer to the sea
surface, and adult aggregations closer to the seabed.

Evaluating the various sources of uncertainty
A simulation framework was developed to evaluate the uncertainty
associated with the trawl and acoustics data. The uncertainty arising
from spatial sampling was evaluated for the acoustic backscatter and
for the trawl length frequency using Gaussian geostatistical condi-
tional (co-) simulations. Both variables were assumed independent,
and simulated independently with Gaussian simulations, taking
into account spatial correlation in the univariate case of the acoustic
backscatter, and the spatial cross-correlation in the multivariate case
of the length frequency. The uncertainties arising from errors in the
functional relationship between target strength and length, age and
length, and weight and length were evaluated for each year separately
using bootstrapping, except for target strength-at-length, for which
bootstrap sampling from the same relationship was used in all years.
Thus, the age–length and weight-length relationships were assumed
to change among years but not the target strength-at-length rela-
tionship. To help the understanding, a flow diagram of the simula-
tion framework is presented in Figure 2, and the derivation of some
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supporting equations is provided in Annexes. The various steps of
the simulation procedure are detailed hereafter.

Geostatistical conditional simulation of the acoustic backscatter
An important step for this procedure is to simulate values of acoustic
backscatter with realistic spatial variability (i.e. that inferred from
the sampled locations) for all cells of a grid covering the whole sur-
veyed region, conditional on the values observed at the sampled
locations from the acoustic survey (Figure 2). To do so, transformed
Gaussian geostatistical simulation with a Gibbs sampler to handle
the zero values was used to create multiple realizations of acoustic
backscatter (Woillez et al., 2009).

In this approach, the idea is to find a hidden Gaussian random
field Y(x) (x denoting a point in two-dimensional), from which is
a transformation of the original acoustic backscatter spatial
random field Z(x). This means that multiple realizations of Z(x)
can be obtained through back-transforming a set of realizations of
Y(x). However, many zeros values are observed in the acoustic

backscatter, meaning that the Z(x) process has a positive probability
of producing a zero value (unlike a Gaussian distribution, which is
continuous), and this must be taken into account in the simulation
procedure.

Practically, the simulation procedure follows these steps. First, a
normal score transformation of the acoustic backscatter data Z(xi),
i ¼ 1, . . ., n indexing the sample locations, is performed. However,
because of the high proportion of zeros, the resulting variable is a
lower-cut Gaussian Y+(xi). This variable corresponds to a truncated
Gaussian distribution but with an additional spike at yc, where yc is
determined from the proportion of zeros. The inverse transform-
ation between Z(x) and Y(x) (also named a Gaussian anamorphosis
function) relates the acoustic backscatter spatial random field Z(x)
and the Gaussian random field Y(x). The fitted model for Y(x) cor-
responds to 0 for values below yc, and to a simple piece-wise linear
interpolation function for values above yc (i.e. where acoustic values
are not zero). Then, a Gibbs sampler was applied to Y+(xi) to simu-
late the values for Y(x) where the sampled value was less than yc

(Lantuéjoul, 2002; Woillez, 2007). This is an iterative process on the
set of samples to be modified, where the Gaussian value at a given
point is simulated conditionally to the Gaussian values at all other
data points using the variogram model of Y(x) (see Annex1).
However, the experimental variogram of Y(x) is not available,
because of the zeros in the original variable Z(x). Hence, the variogram
model of Y(x) must be fitted indirectly using the experimental vario-
gram of the lower-cut Gaussian Y+(xi). As developed in Annex 2, there
an explicit link between the covariance function (i.e. the variogram) of
Y(x) and the covariance function of Y+(x). Thus, the idea is to find the
variogram model parameters of Y(x) so that the variogram model of
Y+(x) fits the experimental variogram of Y+(xi). Once the variogram
model of Y(x) is indirectly fitted, the Gibbs sampler is performed, and
classical conditional simulation is performed using the values of Y(xi)
for conditioning. This amounts to simulating Gaussian values at the
unsampled cell locations over the whole surveyed area, so that it
reflects the spatial variability (i.e. that inferred from the sampled loca-
tions) that must exist between all the unsampled cell locations and it
honours the data values known at the sample locations (Chilès and
Delfiner, 1999). The conditioning is straightforward in the Gaussian
case and involves adding a spatially independent simulated kriging
error to the kriging estimator (Chilès and Delfiner, 1999). This
means that, conditionally to the data, the mean of the conditional
simulations is equal to the kriging:

E[YCS(x)|Y(xi), i = 1, . . . , n] = YK (x) (1)

and the variance of the conditional simulations equals the variance of
the non-conditional simulated kriging error, also equals the kriging
variance:

var[YCS(x)|Y(xi),
i = 1, . . . , n] = var(YNCS(x) − YK

NCS(x)) = s2
K (x).

(2)

Multiple realizations of Y(x) were produced and back-transformed
using the anamorphosis model (see above) to obtain a set of simula-
tions of the original acoustic spatial random field Z(x).

Geostatistical conditional co-simulation of the length frequency
distribution
The aim is to simulate length frequency distributions with realistic
spatial variability for all cells of a grid covering the whole surveyed

Figure 1. Spatial distribution of (a) acoustic backscatter (m2.nautical
mile22) attributed to walleye pollock and (b) walleye pollock length
frequencies in summer 2006. Length classes range from 11 to 79 cm.
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region, conditional on the length frequency distributions observed
at the sampled locations from the trawl hauls made during the
survey (Figure 2).

The simulation approach considered the length data as discrete
spatial random field variables. Quantiles from length frequency dis-
tributions were considered as co-regionalized variables monitored at
some sampling locations (those of the trawl hauls). The spatial un-
certainty associated with the values of the co-regionalization (the
fact that values of the quantiles vary in space in between sample loca-
tions) can be assessed over the survey area using geostatistical
co-simulation (Lantuéjoul, 2002; Emery, 2008), which provides rea-
lizations that reproduce the spatial variability of each variable as well
as the relationships among the variables. The Gaussian random fields
model, whose finite-dimensional distributions are multivariate
normal, is especially well suited for conditional co-simulation
(Chilès and Lantuéjoul, 2005), i.e. geostatistical co-simulation that
honours multivariate data values known at data locations. Indeed,
conditioning a simulation by adding a spatially-independent simu-
lated kriging error to the kriging estimator holds in the multivariate
case, except that co-kriging must be used instead of kriging (Emery,
2008).

However, most of the time, the Gaussian assumption is onlyaccept-
able after the original variables are transformed (cf. Gaussian anamor-
phosis). Therefore, conditional co-simulation of the length quantiles is
made on transformed Gaussian variables, which are then back-
transformed to obtain co-simulation of the original variables.

A structural model needs to be inferred from the multivariate
data to perform the co-simulation. A common structural tool for
multivariate analysis is the cross-variogram:

gij(h) =
1

2
E{[Yi(x + h) − Yi(x)][Yj(x + h) − Yj(x)]} (3)

which describes the spatial interaction for a given distance h between
two transformed length quantiles i and j. Here a linear model of
co-regionalization was assumed (Wackernagel, 1995; Chilès and
Delfiner, 1999), meaning that all regionalized variables are thought
to be generated by a set of biological processes acting additively at
various spatial scales. Consequently, all simple- and cross-variograms
gij(h) are linear combinations of the same basic structural compo-
nents gk(h) of unit variance:

gij(h) =
∑

k

bk
ijg

k(h), (4)

where bk
ij is the i– j component of the variance–covariance matrix.

Each matrix bk must be positive definite, implying the following in-
equality:

bk
ij ≤

�����
bk

iib
k
jj

√
. (5)

Figure 2. Flowchart showing how uncertainties are combined and propagated to final estimates.
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Thus, the basic structures comprising the cross-variograms are those
already in the simple variograms. The basic structures are first iden-
tified and subsequently used to model the cross-variograms. Fitting
of the (cross-) variogram models is conducted using the procedure
developed by Goulard and Voltz (1992) that allows the parameters
of the matrix model of co-regionalization bk to be estimated using
an iterative least-squares like technique.

At each trawl location, the empirical quantile function, i.e. the
inverse cumulative distribution function, of the sampled length fre-
quency distribution is modelled by a piece-wise linear interpolation
to estimate the quantiles of the length for the probabilities {0.025,
0.05, 0.1, 0.15, 0.2, 0.3, . . . , 0.9}. The quantiles of the length for prob-
abilities 0 and 1 are set, respectively, to the minimum and the
maximum length values recorded at each trawl station. The length
quantiles are transformed by Gaussian anamorphosis as they are
far from Gaussian. A linear model of co-regionalization is used to
fit all simple- and cross-variograms of the transformed length quan-
tiles then the inferred model is used in a multivariate Gaussian con-
ditional simulation. Realizations of transformed length quantiles
are produced and back transformed to realizations of raw length
quantiles using appropriate anamorphosis models. At each grid
node, simulated length distributions are built from the simulated
length quantiles, and the order among length quantiles honoured.
The reconstruction has two steps: first, the order among simulated
length quantiles is checked, then the length classes are predicted
using a model (i.e. a piece-wise linear interpolation function)
from the simulated length quantiles. The check is performed first
in the ascending order of simulated length quantiles; if the simulated
length quantile of the higher order is below the current simulated
length quantile, then the simulated length quantile of the higher
order is set to the current simulated length quantile. Then, the
check is performed in the descending order. What is kept for the pre-
diction step of the length frequency distribution reconstruction, is
the average value between the two checking process.

Fitting the linear model of co-regionalization and (co-)simulating
the acoustic backscatter and the length quantiles were performed
using the R library RGeostats (Renard et al., 2010).

Bootstrapping target strength-at-length and weight-at-length
relationships
Regressions relating target strength-at-length and weight-at-length
are used when variables are combined to estimate abundance or
biomass (Figure 2). The first relationship quantifies the acoustic re-
flectivity of a fish of length L, measured in terms of target strength
(TS) as follows:

TS = b + m log(L), (6)

where b and m are species-specific coefficients, assumed to be known
from experimental evidence. For walleye pollock b has been empir-
ically estimated as 266 and m is set to 20 (Foote and Traynor, 1988;
Traynor, 1996). The second relationship relates weight to length
according to

W = cLd (7)

with c and d the regression model parameters.
The uncertainty arising from these two regressions is evaluated

separately by bootstrapping respectively the data from Traynor
(1996) and weight and length data collected in a given survey year.

Resampling residuals are the approach considered here. First, a re-
gression model is fitted to the data, say (xi, yi), i ¼ {1, . . . n},
where xi is the ith independent variable, yi is the ith the dependent
variable, ŷi is the ith fitted value and êi = yi − ŷi is the ith residual.
A randomly resampled residual êj is added to the response variable
ŷi for each pair, (xi, yi), i.e. a synthetic response variable y∗i = ŷi + êj

is created where j is selected randomly from (1, . . . n) for every i. The
regression model is then refitted using the new response variable y∗i ,
and the quantities of interest retained, in our case, the parameter b
for the TS-L relationship (m was set equal to 20) and the parameters c
and d for the W-L relationship. For the latter, the process preserved
the correlation between the pairs of parameters c and d. Finally, the
steps of creating a synthetic response variable and of refitting is
repeated many times to construct a probability density function
for the quantities of interest.

Bootstrapping age–length keys
Age–length keys were bootstrapped to propagate the uncertainty of
the relationship used to convert estimates of abundance-at-length
or biomass-at-length into estimates of abundance-at-age or
biomass-at-age (Figure 2). Following the current method from the
Alaska Fisheries Science Center (AFSC), age–length keys were strati-
fied east and west of 1708 as pollock have been observed historically to
grow at different rates and to have different age and length composi-
tions in these areas (Honkalehto et al., 2002), and the bootstrap was
conditioned on this stratification. Thus, for each surveyed year and
geographical stratum, a set of realizations of age–length keys was gen-
erated by bootstrapping based on the observed ages-at-length in the
survey. The simulation design replicates the survey sampling design
(i.e. sample hauls and observed ages (within length classes) within a
haul). All sampling was conducted with replacement. Practically,
the bootstrap samples were constructed by sampling N hauls with re-
placement from the N sampled tows within each stratum. Then,
within each haul, age data were sampled with replacement (the
sample size being equal to the dimension of the age data present in
the bootstrapped sampled hauls). All sampled ages were pooled for
each stratum and an age–length key computed. The age-frequency
for length classes that are not sampled are set based on a long-term
historical age–length key. However, the proportion of animals that
come from the historical age–length key is very small. For year
2006, this represents only 0.4 and 0.9% in average for east and west
of 1708W, respectively.

Combining uncertainties for abundance and biomass
estimates
Estimates of total abundance, abundance-at-age, total biomass, and
biomass-at-age and their associated uncertaintyare obtained by com-
bining spatial realizations of acoustic backscatter, spatial realizations
of the length frequency distribution, and bootstrapped regression
results on target strength-at-length (TS-L) and weight-at-length
(W-L), and bootstrapped age–length keys (Figure 2). At each simu-
lation grid node, simulated acoustic backscatter (nautical area scatter-
ing coefficient, sA in m2.nautical mile22) are converted to fish density
(in nb.nautical mile22) using simulated spherical-weighted mean
backscattering cross section (in m2):

r = sA(4p× �sbs)−1, (8)

where the weighted mean backscattering cross section �sbs is the
average backscattering cross section taken over the simulated size
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distribution of the insonified fish:

�sbs =
∑

i

Pi × sbsi, (9)

where Pi is the simulated proportion of fish of length Li. The backscat-
tering cross section relates to the target strength of one fish TSi (in dB
re 1 m2), which can be expressed as a function of its length Li (in cm):

sbsi = 10TSi/10, (10)

where TSi = b + m log(Li), b is taken from bootstrapped samples
and m is set to 20.

For each grid node the simulated abundance-at-length ALi is
the product of the simulated proportion at length Pi, with the
simulated pollock density r and the cell area a (in nautical mile2).
The simulated biomass-at-length BLi is obtained by multiplying the
simulated abundance-at-length by the simulated weight-at-length,
Wi from Eqn. 8.

The simulated abundance-at-age AAj and the simulated
biomass-at-age BAj are then derived from the simulated
abundance-at-length and the simulated biomass-at-length using
Qi,j the bootstrapped proportion of fish in a given length class i
which are of age j (i.e. an age–length key):

AAj =
∑

i

Qi,j × ALi, (11)

BAj =
∑

i

Qi,j × BLi, (12)

where the bootstrapped age–length key depends on the stratum in
which the grid is located. Simulated total abundance A and simulated
total biomass B are obtained by summing over ages:

A =
∑

j

AAj, (13)

B =
∑

j

BAj, (14)

Simulated estimates over grid cells are summed over the entire survey
domain providing estimates of total abundance and biomass.
Statistics (sample mean and standard deviation) can be derived
from simulation estimates, as well as associated upper and lower
95% confidence intervals.

Decomposing the total uncertainty
The aim is to assess the contribution to uncertainty from the five
sources (the acoustic data, the length frequency distributions, the
age–length keys, and the weight-at-length and the target
strength-at-length relationships) to the whole. Because the individual
uncertainties do not add up to the total uncertainty (they combine
non-linearly, and they can actually contribute to each other in a hier-
archical sense as well as being correlated with each other), the contri-
bution from the kth source was defined as:

s2
k = s2

total − s2
total−k, (15)

wheres2
total−k is the total uncertainty evaluated when the kth source is

held fixed (Løland et al., 2007). Negative values can thus appear if
s2

total−k . s2
total. The relative contribution from the kth source is

then given by

s2
k

∑5

k=1

s2
k

( )−1

. (16)

Results
Geostatistical simulation of the acoustic backscatter
Over the period 2006–2010, the acoustic backscatter was character-
ized by a high proportion of zeros (between 25 and 51% for adults,
and between 72 and 91% for juveniles) and a skewed histogram
with extreme values (maximum between 2787 and 15 737 m2.nautical
mile22 for adults, and between 6322 and 26 697 m2.nautical mile22

for the juveniles; Table 1). For the example year 2006, the experimental
variogram of the lower-cut Gaussian variable Y+ (Figure 3) was fitted
indirectly using a nested structurewith a nugget of 0.10, an exponential
component of 0.60 with a range of 17.5 nautical miles, and an aniso-
tropic spherical component of 0.30 with a range of 300 nautical miles,
1358 for the direction of the main axis of the anisotropy ellipse, and an
anisotropy ratio of 0.25. For the other years, the variogram models of
the Gaussian Y presented either two (for juveniles), or three (for
adults) structures (Table 2). The first structure was always a nugget.
Juveniles always had a short-range structure, whereas adults had
short- and long-range structures. The short-and long-range structures
were modelled either by a spherical or an exponential component,
which complicated comparing spatial ranges among years. The
long-range structure for adults always exhibited anisotropy with the
main direction 1358 (along the EBS shelf) and an anisotropy ratio
between 0.25 and 0.45 (Table 2).

Table 1. Descriptive statistics (mean, standard deviation (s.d.), skewness, maximum (max.), percentage of zeros (% zeros), and number of
samples (N)) of the raw and simulated acoustic backscatter (m2.nautical mile22) for the two walleye pollock aggregation types (adults or
juveniles).

Year Aggregation type

Mean s.d. Skewness Max. % zeros N

Data Simu Data Simu Data Simu Data Simu Data Simu Data Simu

2006 Adults 234 236 396 394 4 4 5017 6093 25 25 1653 11 753
2007 Adults 349 357 622 613 4 3 5637 5734 33 34 1314 9207
2007 Juveniles 150 151 1131 1112 17 18 23 094 33 846 91 91 524 3568
2008 Adults 150 146 259 238 4 3 2787 2836 39 40 1327 9422
2008 Juveniles 317 384 1673 2022 11 11 26 697 41 937 77 78 449 3113
2009 Adults 226 221 799 756 8 7 11 166 11 545 51 52 942 6828
2009 Juveniles 273 295 1017 1076 5 5 9096 12 566 80 80 354 2381
2010 Adults 389 395 1072 1004 7 6 15 737 17 005 48 49 1412 10 128
2010 Juveniles 175 198 536 628 6 7 6322 10 778 72 73 418 3019
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One hundred realizations of acoustic backscatter were produced for
each year over the period 2006–2010. For year 2006, realizations with
low,medium,andhighmeanlevelsover thedomain illustratedthevari-
ability of the simulated spatial distribution of acoustic backscatter
(Figure 4a–c). High values of simulated acoustic backscatter were
found mostly in the northwest of the survey domain in 2006, while
intermediate values were found over the whole EBS shelf except in
the southeast away from the Aleutian Islands (Figure 4a–c).
Descriptive statistics from simulated and raw acoustic backscatter
were computed (Table 1). The conditional simulations of acoustic
backscatter were able to reproduce the summary statistics of the raw
data, except for the maxima (Table 1). Maxima were deliberately un-
bounded in the modelling of the Gaussian anamorphosis, resulting
in simulated values higher than in the raw data.

Geostatistical co-simulation of the length frequency
distribution
The quantile function of each sampled length frequency distribu-
tion (i.e. each trawl) was modelled using piece-wise linear interpol-
ation and 14 length quantiles were estimated for the chosen
probabilities (Figure 5). The length quantiles were then transformed
into normally distributed variables. The experimental (simple and

cross) variograms for the normal score length quantiles were com-
puted at lags between 25 and 35 nautical mile, depending on the
sampling lag of the year (e.g. 35 nautical mile for 2006). No anisot-
ropy was detected, so the experimental variograms were omnidirec-
tional. A linear model of co-regionalization was fitted for each year.
For instance, in 2006, a nugget effect and two nested isotropic struc-
tures, the first one spherical with a range of 50 nautical mile and
the second one linear, were fitted for the linear model of
co-regionalization of the transformed length quantiles using the al-
gorithm of Goulard and Voltz (1992)(Table 3). The resulting fit is
illustrated in Figure 6. A third model component was needed to fit
the trend present in the transformed length data. Since the trawl
locations had good coverage over the surveyed region and especially
over the fish distribution, there was no unwanted extrapolation of
the model. For the other years, the fitted models were very similar,
showing some consistency over time in the co-regionalization of
the length quantiles (Table 3).

Conditional co-simulation of the length quantiles was per-
formed on the same simulation grid as that used for the acoustic
backscatter. One hundred realizations of transformed length quan-
tiles were produced and back transformed to realizations of raw
length quantiles using appropriate anamorphosis models. Each

Figure 3. (a) Experimental variogram of the lower-cut Gaussian Y+, with symbol size proportional to the number of data points, computed in two
directions, 458 (circles, across shelf) and 1358 (squares, alongshelf), and (b) the anisotropic variogram model of the Gaussian Y (solid, 458; dotted,
1358) and the corresponding variogram for the lower-cut Gaussian Y+. This figure is available in black and white in print and in colour at ICES Journal
of Marine Science online.

Table 2. Models fit to experimental variograms of normal score transformed acoustic backscatter from EBS surveys 2006 to 2010.

Year Aggregation type
Structure 1

Structure 2 Structure 3

Nugget Type Partial sill Range Type Partial sill Range Direction Ratio

2006 Adults 0.10 exp 0.60 17.5 sph 0.300 300 135 0.25
2007 Adults 0.10 exp 0.47 10.0 sph 0.430 280 135 0.35

Juveniles 0.10 sph 0.90 30.0 – – – – –
2008 Adults 0.10 exp 0.40 8.0 exp 0.600 80 135 0.35

Juveniles 0.20 sph 1.10 32.0 – –- – – –
2009 Adults 0.10 sph 0.50 30.0 sph 0.750 80 135 0.45

Juveniles 0.20 exp 1.10 14.0 – – – – –
2010 Adults 0.05 exp 0.55 12.0 sph 0.325 175 135 0.35

Juveniles 0.10 exp 1.20 15.0 – – – – –
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Gaussian anamorphosis was modelled using a piece-wise linear in-
terpolation, similar to that for the acoustic backscatter, with bounds
fixed to the maximum and the minimum values observed in the

survey data of the length quantile under consideration. Finally,
simulated length frequency distributions were rebuilt at each grid
node from the simulated length quantile values, and multiple reali-
zations of length frequency distributions were produced. Maps
detailing the probability of finding small, medium or large
pollock were produced for three different realizations to illustrate
the spatially simulated length frequency distributions (Figure 7).
Probabilities of finding small fish were higher in the northwest of
the survey domain. Probability of finding medium fish were high
inside and near the previous area, while probabilities of finding
large fish were high in the rest of the survey area (Figure 7).

Bootstrapping
Residuals from the regression between target strength and length
were resampled 100 times, providing 100 bootstrapped estimates
for the parameter b. The distribution of the bootstrapped estimates
was fairly symmetric and close to normal, despite the low number of
points in the regression. The resulting relationship is illustrated with
the 95% confidence intervals derived empirically using the boot-
strap estimates (Figure 8).

Similarly, residuals from the regression between weight and length
were resampled 100 times for each year, providing 100 bootstrapped
estimates for the parameters c and d. The distributions of the boot-
strapped estimates were fairly symmetric and close to normal.
Bootstrapping allowed the uncertainty associated with the regression
to be evaluated, as illustrated by the bootstrapped 95% confidence
intervals in Figure 9.

One hundred bootstrapped age–length keys were produced for
each stratum and year. The mean age–length key and its variance
were computed for year 2006 (Figure 10). Variability was higher
for older fish in both strata, for intermediate fish in the stratum
east of 1708W, and for younger fish in stratum west of 1708W.

Combining uncertainties for abundance and biomass
One hundred realizations of the acoustic backscatter, length frequency
distribution, target strength-at-length relationship, age–length key,
and weight-at-length relationship were produced for years 2006–
2010 either by geostatistical (co)-simulation or bootstrap. The realiza-
tions were combined to produce estimates of abundance- and
biomass-at-length, abundance- and biomass-at-age, total abundance
and biomass. Uncertainties associated with the abundance and
biomass estimates are illustrated for year 2006 in Figure 11. Results
from the other years were similar, but are not described in detail.
These simulation results compared well with AFSC survey estimates.
The AFSC survey estimates lie within the empirically derived 95%

Figure 4. Realizations of the spatial distribution of acoustic backscatter (m2.nautical mile22) with (a) low, (b) medium, and (c) and high mean levels
over the domain. Only simulated values above zero have been coloured. This figure is available in black and white in print and in colour at ICES
Journal of Marine Science online.

Figure 5. Inverse empirical cumulative distribution function of length
for trawl station #47 in 2006. The quantile function was piece-wise
interpolated (line) and length quantiles (dots) estimated for
probabilities {0, 0.025, 0.05, 0.1, 0.15, 0.2, 0.3,. . ., 1}.

Table 3. Variogram models fitted for the linear model of
co-regionalization of the transformed length quantiles using the
algorithm of Goulard and Voltz (1992).

Year Aggregation type Structure 1

Structure 2
Structure 3

Type Range Type

2006 Adults Nugget Spherical 50 Linear
2007 Adults Nugget Spherical 50 Linear

Juveniles Nugget Spherical 50 Linear
2008 Adults Nugget Spherical 50 Linear

Juveniles Nugget Spherical 50 Linear
2009 Adults Nugget Spherical 25 Linear

Juveniles Nugget Spherical 30 Linear
2010 Adults Nugget Spherical 50 Linear

Juveniles Nugget Spherical 50 Linear
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confidence intervals of the simulated outcomes 100% of the times for
total abundance or biomass, 100% of the times for abundance or
biomass-at-age, 70% of the times for abundance-at-length and 58%
of the times for biomass-at-length in 2006. Thus, some discrepancies
exist for estimates at length. For instance, troughs (e.g. �18 cm) and
peaks (e.g. �23 cm) in the survey abundance-at-length estimates are
sometimes not well reproduced by the simulation estimates. In add-
ition, simulation mean estimates were lower for small length classes
(12–15 cm) and higher for medium length classes (43–51 cm).
These discrepancies are explained by the methods used. While the
AFSC stratum approach conserves the fluctuations seen in the
sampled length frequencies, the geostatistical co-simulation tends to
create more gradual transitions between sampled length frequencies
at different locations, which results indampened abundance-at-length
variability over the survey domain where abrupt peaks and troughs
occur in the survey data.

Otherwise, over the period 2006–2010, the coefficients of vari-
ation (CVs) of the abundances-at-age (the standard deviations of
the simulated abundances divided by their means) ranged from 8
to 84%. High CVs were found for young ages (ages 1, 2, and to a
lesser extent age 3). These young ages also had the highest variability
over time. Otherwise, CVs were mostly between 12 and 18%, on
average. The CVs of the total abundance were relatively high,
�24% on average, but also quite variable (ranging from 8 to
51%). Young ages contribute substantially to uncertainty of total
abundance; high CVs in total abundance are found for years
where the CVs for the young ages are high (year 2007, 2009, and
to a lesser extent 2008; Table 4).

Decomposing the total uncertainty
The relative contribution of each source of uncertainty was evaluated
independently for total abundance, biomass, abundance-at-age, and

Figure 6. Experimental (black plain lines with circles sized in proportion to number of data points) and modelled (grey solid lines) simple and
cross-variograms for normal scores of the first five length quantiles (L0%, L2.5%, L5%, L10%, and L15%) for year 2006.
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biomass-at-age for each survey (Table 5). In 50 of 55 cases, the sources
that contribute the most to the total uncertaintyor uncertainty-at-age
are the same for abundance and biomass. All sources except the
weight-at-length relationship were the major source of uncertainty
at least once. In contrast, the contribution of the weight-at-length re-
lationship to total uncertainty was negligible (always close to zero).
The contribution of age–lengthkeys to total uncertaintywas also neg-
ligible, but only for the total abundance or total biomass estimates.
Some relative contributions appeared negative because of the vari-
ation overlaps between all the variables. For the example, in 2006,
the length frequency distribution was the major source of uncertainty
for ages 1–3, the target strength-at-length relationship was the largest
contributor for ages 4–7, and the age–length key dominated for ages
8–10. For the total abundance, the target strength-at-length relation-
ship contributed the most to uncertainty, while acoustic backscatter
and length were comparable (24 and 30%, respectively). The target

strength-at-length relationship contributed the most to uncertainty
of total abundance and biomass. For each estimate of 2006, the
major sources of uncertainty indicate retrospectively where more
sampling effort should have been spent to reduce uncertainty.
However, general recommendations are hard to draw as the major
sources of uncertainty change over the time. Finally, the relative con-
tribution to total uncertainty of the target strength-at-length relation-
ship tended to be high (Table 5) when the overall uncertainty was low
for years 2006 and 2010 (Table 4). This is because this uncertainty is
fixed over years.

Structure of the estimation variance–covariance matrices
Variance–covariance matrices for abundance-at-age and biomass-
at-age were very similar (not shown), and differed slightly from
variance–covariance matrices of proportions-at-age, that were
conveniently represented in terms of correlation (Figure 12).

Figure 7. Three realizations of a spatial length frequency distribution with a low (a, b, and c), medium (d, e, and f), and high mean length (g, h, and i)
mapped as the proportion of walleye pollock ,20 cm (a, d, and g), .20 cm and ,40 cm (b, e, and h), and .40 cm (c, f, and i). This figure is
available in black and white in print and in colour at ICES Journal of Marine Science online.
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Correlation between ages is generally positive, and the proportion-at-
age for groups of ages is highly correlated with each other. For the
example year 2006, group of ages were positively correlated together
(ages 1–3, ages 3 and 4, and ages 5 and higher), but negatively corre-
lated between groups. Otherwise, the years 2007 and 2009 differed
greatly from other years. In these 2 years, there was very strong positive
correlation between proportion at age estimates for all ages other than
age-1. The reasonwasthat age-1 year-class was dominant in theseyears,
as a result the proportions of other ages were all low and correlated.

Discussion
The simulation framework developed here allowed the evaluation of
the total uncertainty associated with abundance- and biomass-at-age
estimates for EBS walleye pollock using geostatistical co-simulation
and bootstrap techniques. The simulation approach used for the
length frequency distribution, i.e. the co-simulation of the length
quantiles, is original. Previous simulation approaches used mean
length or a root mean square length (Gimona and Fernandes, 2003;
Walline, 2007; Woillez et al., 2009), or resampled length frequencies
using nearest neighbour techniques (Zwolinski et al., 2009). Other
approaches used for estimation rather than simulation are co-kriging
of polynomial coefficients that model the length frequency distribu-
tions (Petitgas et al., 2011), and aggregation of length frequency dis-
tributions by strata based on similarity (Simmonds and MacLennan,
2005) or through expert opinion (Honkalehto et al., 2012). Among
these techniques, a co-simulation approach was tested, which was
based on polynomial coefficients that were used to model the length-
frequency distributions. However, the quantiles approach was pre-
ferred, because summary statistics over the simulated field were not
well reproduced for the polynomial approach; major peaks were
underestimated and the relative proportion of the largest fish was
overestimated (not shown).

Discrepancies were observed between survey and simulation esti-
mates of abundance and biomass (Figure 11). They might be
explained by methodological differences. That is, the survey
method grouped length frequency distribution data together by
stratum and associated these data with corresponding acoustic
backscatter, while the simulation method created smoother transi-
tions in the spatial distribution of length frequency distributions. In
addition, the length frequency distributions were modelled from a
reduced number of quantiles and not from all the length classes,
which might explain why some troughs and peaks were not well
reproduced. For example, for the first length quantiles (e.g. 0.025
quantile), if small values at given sample location were surrounded
by larger values from other sample locations, it is likely that the
simulation would limit the influence of this small value by more
than what occurs with the current AFSC method. An alternative ex-
planation would come from the (relative) continuity of the trans-
formed length quantiles (i.e. small nugget effect), meaning that
the regionalized variables have a very smooth shared behaviour.
Test results comparing the assessment model using the standard
AFSC values with the simulation estimates were nearly identical, in-
dicating that the differences were minor. This exercise simply used
different point estimates for abundance-at-ages (using the two
methods), but applied the same covariance matrix as derived
from the simulation framework. Generally, the lower estimates of
age-1 recruits in some years and higher CVs found with our simula-
tion framework demonstrates how accounting for more aspects of
the sampling process (and uncertainty) can affect the assessment
model estimates. These results are consistent with the higher uncer-
tainty found for age-1 pollock, which had a low or negative covari-
ance structure with the others ages (see Table 4 and Figure 12).

The simulation approach could be improved in several ways. For
years when adult and juvenile types of walleye pollock backscatter
were identified, co-simulations of acoustic backscatter and length
frequency distributions were first performed independently then
combined. Such an approach more closely simulates the method
currently used at the AFSC. However, there is no biological justifica-
tion for treating these data types separately, and there may be draw-
backs. For example, the sampling intensity is lower for juvenile

Figure 9. Bootstrapped 95% confidence intervals (dashed lines)
generated by resampling residuals of the regression (solid line) relating
walleye pollock weight-at-length (data represented as points), with
inset histograms of the bootstrapped estimates of the regression
parameters (c and d in equation 7).

Figure 8. Bootstrapped 95% confidence intervals (dashed lines)
generated by resampling residuals of the regression (solid line) relating
walleye pollock target strength-at-length (data represented as points),
with inset histogram of the bootstrapped estimates of the regression
parameter (b in equation 6).
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pollock because fewer trawls targeted the associated layers.
Consequently, fitting the variograms and covariograms is less reli-
able. The original choice was supported because of morphological
and vertical positioning differences between aggregations (juvenile
pollock aggregations are usually found higher in the water column in
dense concentrations over a reduced area of the EBS shelf). This
results in very different length frequency distributions in neighbour-
ing trawl locations, or in trawl hauls made at different depths in the
same location. This problem could be overcome in the modelling by
including the vertical dimension. Another potential source of bias in
the AT survey is trawl size selectivity where juvenile pollock under
25 cm are underrepresented in net samples (Williams et al., 2011).
This is particularly problematic when juveniles are present with
older fish. Such bias could have been compensated in the quantiles
simulation framework. Another aspect that could have been inves-
tigated and included in the simulation procedure is the potential
co-variability between the acoustic backscatter and length data. If
present, the simulation procedure should take it into account.
This would mean that the simulation of one variable would
depend on the other one, implying a probable slight reduction of

the total uncertainty. Furthermore, a multiyear modelling approach
could be investigated to reduce uncertainty and use the knowledge
of prior years for a given year as it is likely that there is some stability
over years in the co-regionalization of the length quantiles. In terms
of simulation technique, the Gibbs sampler appeared to be an ap-
propriate method to correctly specify the Gaussian variable Y at all
data points, so that its histogram is totally Gaussian (without the
spike corresponding to the zeros) and its spatial structure respects
the inferred Gaussian model of Y. However, the convergence rate
towards this equilibrium is not well known and is under study
(Galli and Gao, 2001; Lantuéjoul, 2002). Recently, Lantuéjoul and
Desassis (2012) proposed a propagative version of the Gibbs
sampler that no longer has this limitation. It could be used instead
of the Gibbs sampler in our simulation procedure.

The main source of uncertainty was not always the acoustic back-
scatter in contrast to most pelagic species surveyed using acoustic
and trawl surveys (e.g. Zwolinski et al., 2009). Decomposing the
total uncertainty into the relative contribution of each source
showed that length or age–length keys matter too, especially for
abundance- and biomass-at-age estimates. This is in agreement

Figure 10. Mean (right) and variance (left) of 100 bootstrapped age–length keys for strata east (top) and west of 1708W (bottom).
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with Løland et al.(2007). Uncertainty coming from the target
strength-at-length relationship is assumed to be invariant between
years. As a result, its relative contribution is variable over years,
being more important when total uncertainty was low, and less im-
portant when total uncertainty was high. It should be noted that
only a few data points were used to estimate the TS-L relation,
making it quite uncertain. Additional experimental points would
help to reduce uncertainty due to the TS-L relationship. Results
from Table 5 are very useful in indicating where more sampling
effort should have been spent retrospectively to make most gains
in terms of reduced uncertainty. The simulation analysis could be
repeated considering alternative sample sizes for each of the five
quantities on which the analysis is based, to try and gain an under-
standing on the issue of optimizing sampling efficiency. However,
such analysis was not the aim of the paper. Otherwise, additional
sources of uncertainty (e.g. species identification, vessel avoidance,

acoustic shadowing, depth-dependent target strength, and potential
ageing errors) could be incorporated into this framework to provide
more comprehensive variance estimates of the abundance.

A frequentist approach was used here to evaluate the uncertainty
of the abundance and biomass estimates. A Bayesian approach is an
alternative that could have been considered. Several attempts have
already been made to analyse AT data using Bayesian method, such
as Juntunen et al.(2012), and Boyd et al. (2015). Juntunen
et al.(2012) constructed a Bayesian spatial model to estimate the
abundance of multiple pelagic fish species. In this work, the loga-
rithm of the mean of NASC was the variable to be simulated, but
it was unclear how the zero values in the acoustic backscatter data
were treated. Boyd et al.(2015) made Bayesian posterior predictions
based on a truncated GRF. This was effective at reproducing the
patchiness of the observed spatial distribution of anchoveta off
Peru.

Figure 11. Distributions obtained from simulations for (a) total abundance, (b) abundance-at-age, (c) abundance-at-length, (d) total biomass, (e)
biomass-at-age, and (f) biomass-at-length in 2006. Distributions of simulated total abundance and simulated total biomass are represented as
histograms (a and d), while mean estimates for simulated abundance- and simulated biomass-at-age or -at-length are represented with bars where
whiskers represent the associated 95% confidence intervals (b, c, e, and f). Grey lines or dots represent AFSC survey estimates in 2006.
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Figure 11 Continued

Table 4. CVs (%) of abundance-at-age, total abundance, biomass-at-age, and total biomass estimates obtained from simulations for years
2006–2010.

Age

Abundance Biomass

CV

Mean s.d.

CV

Mean s.d.2006 2007 2008 2009 2010 2006 2007 2008 2009 2010

1 28 76 38 84 13 48 31 26 56 44 68 12 41 22
2 18 56 23 37 10 29 18 18 51 23 29 10 26 16
3 12 21 21 44 10 22 14 12 17 19 42 9 20 13
4 10 11 15 23 10 14 6 9 9 14 19 10 12 4
5 8 8 11 23 11 12 6 8 8 11 21 11 12 5
6 8 8 9 19 16 12 5 8 8 9 18 17 12 5
7 8 9 8 18 28 14 9 8 9 8 17 27 14 8
8 11 9 10 17 27 15 8 11 9 11 17 27 15 7
9 16 14 10 23 19 16 5 16 14 11 22 21 17 5
10 10 14 19 22 23 18 5 10 15 20 21 24 18 6
Total 8 34 17 51 9 24 19 7 7 10 13 8 9 3

Mean CV and standard deviation (s.d.) CV are computed over the time-series.
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Ianelli et al.(2011) treat the survey data as providing an index of
total abundance, assuming a lognormal distribution and a separate
multinomial component that relates to the age-composition data

treated as proportions with a scaled sample size. The work presented
here provides the ability to use, or at least, to take advantage of, the
direct estimates from the sampling process and avoids having to

Table 5. Relative contribution of each source of uncertainty in abundance and biomass estimates.

Year Age

Relative contribution for abundance Relative contribution for biomass

A L ALK TS-L A L ALK W-L TS-L

2006 1 11.6 81.9 20.6 7.1 11.9 80.3 0.0 20.4 8.2
2 16.4 69.0 8.5 6.1 16.4 62.9 13.3 20.1 7.4
3 24.5 51.8 7.7 16.0 22.8 45.8 15.1 20.2 16.6
4 27.9 23.8 13.6 34.7 25.3 17.0 16.9 20.4 41.2
5 31.0 1.1 22.6 45.2 29.1 1.5 22.2 20.5 47.7
6 12.7 6.4 22.8 58.1 12.1 5.1 23.7 0.2 58.9
7 16.7 23.9 33.6 53.7 16.1 21.9 35.5 20.1 50.4
8 6.4 28.3 66.8 35.2 8.6 26.3 65.8 20.1 32.0
9 1.4 210.7 80.9 28.4 2.4 27.5 78.4 0.1 26.6
10 20.3 28.1 57.6 30.2 23.6 3.6 42.8 0.7 29.3
Total 23.9 29.7 0.0 46.3 25.6 22.7 0.0 20.1 77.3

2007 1 20.0 81.5 20.7 20.8 23.9 78.9 22.4 20.5 0.1
2 21.9 73.2 3.1 1.8 18.2 77.8 2.5 0.4 1.1
3 25.8 46.0 12.9 15.3 23.4 46.9 9.6 0.3 19.8
4 13.8 39.6 17.4 29.3 15.8 31.5 17.4 0.1 35.2
5 22.4 20.8 21.9 56.5 21.9 21.4 23.8 0.0 55.7
6 34.0 25.1 17.1 54.0 33.8 28.5 17.6 0.4 56.7
7 18.0 28.7 37.4 53.3 17.0 26.4 39.6 0.1 49.8
8 19.0 222.6 54.6 49.0 23.7 232.7 53.1 20.2 56.2
9 9.4 3.1 67.4 20.1 9.8 5.1 63.1 0.1 21.8
10 13.5 29.9 52.3 4.3 12.3 37.7 45.0 20.1 5.1
Total 36.0 61.9 0.0 2.1 32.5 22.2 0.0 0.4 69.3

2008 1 35.3 36.6 26.2 1.8 28.5 33.8 36.6 0.2 0.9
2 72.2 26.0 1.3 0.5 76.4 23.5 1.5 20.7 20.7
3 89.5 27.1 11.3 6.3 98.2 212.9 9.0 20.6 6.2
4 53.9 25.4 36.2 15.3 52.2 21.8 33.8 20.6 16.4
5 36.8 7.2 38.0 18.0 30.6 7.4 40.8 0.1 21.1
6 18.6 21.7 26.7 33.0 18.6 18.8 27.1 0.1 35.4
7 32.0 215.9 35.8 48.1 29.1 213.6 32.2 0.6 51.7
8 16.0 8.0 44.0 32.1 17.7 25.0 29.1 1.5 26.7
9 14.9 4.1 48.8 32.2 17.5 24.4 31.4 0.8 25.8
10 17.3 39.1 28.3 15.2 18.1 46.2 20.7 0.6 14.3
Total 80.7 15.4 0.0 3.9 81.5 28.5 0.0 20.4 27.4

2009 1 14.3 80.6 0.0 5.0 14.1 80.1 0.1 0.2 5.5
2 2.1 98.6 7.2 27.8 3.8 93.1 8.6 0.8 26.2
3 12.0 86.4 0.1 1.5 12.2 85.6 0.7 20.2 1.7
4 18.0 56.2 17.2 8.7 19.5 50.2 20.7 20.2 9.8
5 36.2 0.8 69.1 26.1 41.2 2.1 63.3 0.4 27.0
6 53.6 241.1 83.3 4.2 60.9 236.8 74.1 21.4 3.3
7 114.0 268.5 65.0 210.8 96.1 232.4 45.7 0.9 210.3
8 70.3 213.4 31.2 11.8 76.2 28.3 19.1 20.7 13.7
9 29.7 26.1 66.2 10.1 32.3 7.8 52.9 20.5 7.4
10 49.9 11.1 35.4 3.6 45.8 26.0 24.0 0.0 4.2
Total 17.2 75.6 0.0 7.2 57.7 23.4 0.0 20.1 19.0

2010 1 28.3 56.8 20.8 15.7 27.3 57.1 0.1 0.0 15.4
2 29.0 26.4 12.1 32.5 31.3 23.1 10.4 20.2 35.4
3 42.8 6.2 20.2 30.8 48.3 21.8 13.0 20.3 40.9
4 53.7 220.7 12.3 54.7 54.6 219.3 9.0 0.0 55.8
5 30.7 212.9 39.8 42.4 30.0 20.6 32.8 0.0 37.8
6 30.3 244.9 92.5 22.1 29.4 227.0 76.7 0.4 20.5
7 222.2 277.2 206.0 26.9 28.8 228.1 141.0 0.5 24.1
8 47.2 20.2 41.1 28.6 50.0 16.4 42.7 0.4 29.5
9 50.5 21.4 56.6 25.7 57.1 4.7 46.7 0.1 28.6
10 74.3 22.2 6.2 22.7 70.7 30.2 0.6 0.5 22.1
Total 35.2 25.9 0.0 38.9 45.4 29.4 0.0 20.1 64.1

A, acoustic backscatter; L, length frequency distribution; ALK, age–length key; TS-L, target strength-at-length relationship; W-L, weight-at-length relationship.
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assume a strict multinomial sampling process (in which all the corre-
lations are by definition, negative). The correlation matrices pro-
duced by our simulation framework differ greatly from what the

walleye pollock stock assessment assumes. Indeed, covariance terms
for a multinomial distribution, whatever the chosen effective
sample size, are always negative, which is clearly not the case in
Figure 12.

Applying the revised estimates of numbers-at-age and their co-
variance estimates (from our simulation framework) for years
2006–2010 within the assessment model results in lowered recruit-
ment estimates in some years and higher CVs, compared with the
original assessment (Figure 13). Such changes in the point estimates
have obvious consequences to subsequent biomass estimates used
for management. Furthermore, accurate estimates of uncertainty
within the assessment model are considered important. In this ap-
proach, this type of likelihood specification is an improvement
over the traditional assumptions about the sampling process.
Thus, the estimates of uncertainty shown here should be considered
more reliable.

Finally, the methods presented here allowed ustoassess the relative
contribution of each of the major sources of uncertainty in the Bering
Sea walleye pollock ATsurvey and to improve the way that survey data
are included in stock assessment models. We suggest that simulated
uni- and multivariate distributions of abundance-at-age estimates
based on realized sampling characteristics are an improvement over-
estimates of covariance derived from assumed multinomial likeli-
hood currently used in assessment models.
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Figure 12. Correlation matrices of proportion-at-age estimates obtained by simulation for years 2006–2010.

Figure 13. Impact of applying the estimated correlation matrices and
associated abundance-at-age for years 2006–2010 within the stock
assessment model. Solid line: ratio of assessment model estimates of
age-1 recruits (new estimate on original one). Dashed line: analogous
ratio of the CVs of the recruitment estimates.
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Annex1: the Gibbs sampler
The algorithm starts with the arbitrary assignment of values in the
interval [−1; yc] to data points where Z equals zero. The algorithm
proceeds iteratively. Each iteration entails selecting the set of
samples to be modified at random. At iteration (n+ 1) and for the
current sample i, a new Gaussian value Yn+1

i is generated as a func-
tion of its conditional distribution to the other Gaussian values,
both at the data points where the Gaussian value is determined
based on the sampled data and at the data points where the
Gaussian value is to be modified. Practically, this is equivalent to
simulating the Gaussian value Yn+1

i such that

Y y+1
i = YKS

i + sKS(i)Ri,

where YKS
i is the simple kriging estimate of Yi derived from the other

data (those for which the Gaussian value is determined from the
sample data and those for which the Gaussian value is to be modi-
fied), sKS(i) is the standard deviation of the simple kriging estima-
tion error and Ri refers to a normalized Gaussian residual. This
new Gaussian value is kept only if it falls within the interval
[−1; yc]; otherwise, another value is simulated. After a large
number of iterations (in practice 1000), it can be shown that Yi

tends towards its conditional distribution defined from the starting
values of Y (i.e. the determined Gaussian values and the Gaussian
values that are undetermined but below yc).

The Gibbs sampler thus allows correct specification of the variable
Yat all data points, so that its histogram is Gaussian (without a spike)
and its spatial structure respects the inferred Gaussian model of Y
(Chilès and Delfiner, 1999; Lantuéjoul, 2002; Woillez, 2007). This
new variable lends itself to geostatistical conditional simulations.

Annex2: Inference of the variogram of a Gaussian
random field Y from a lower-cut Gaussian random
field Y1

Let Y(x) be a regionalized Gaussian random field. The inference of
its spatial model, i.e. its variogram, is direct through the structural
analysis. However, when only a function of the Gaussian random
field, for instance a lower-cut Gaussian random field (Gaussian
histogram with a spike of equal values on the left part), is available,
the inference of the variogram of the Gaussian is also possible. In this
case, the inference is indirect and based on some developments in
Hermite polynomials (Woillez, 2007).

Hermite polynomials
The Hermite polynomials are defined from the Rodrigues’ formula as

Hn(y) =
1���

n!
√

g(y)
dng(y)

dyn
,

where 1/
���
n!

√
is a normalizing factor and g is the standard Gaussian

pdf. Hn(y) is a polynomial of degree n defined by recurrence (n . 0):

H0(y) = 1

H1(y) = −y

H2(y) =
1��
2

√ (y2 − 1)

Hn+1(y) = − 1������
n + 1

√ yHn(y) −
������

n

n + 1

√
Hn−1(y).

These polynomials, for n . 0, have a null mean (Y(x) being a stand-
ard gaussian RF):

E[Hn[Y(x)]] =
∫

Hn(y)g(y)dy.

A unit variance:

Var[Hn[Y(x)]] = E[Hn[Y(x)]2] = 1.

And check, for n=p, positive or null:

Cov[Hp[Y(x)],Hn[Y(x)]] = E[Hp[Y(x)]Hn[Y(x)]] = 0.

Development of a lower-cut Gaussian in Hermite
polynomials
All function f [Y(x)] can be developed using Hermite polynomials:

f [Y(x)] = f0 + f1H1[Y(x)] + f2H2[Y(x)] + · · · =
∑1
n=0

fnHn[Y(x)].

As Hermite polynomials are orthonormal, one can write:
E[ f [Y(x)]Hn[Y(x)]] = fn.

Indeed, we have:

E[ f [Y(x)]Hn[Y(x)]] = E
∑1
p=0

fpHp[Y(x)]
[ ]

Hn[Y(x)]
[ ]

=
∑1
p=0

fpE[Hp[Y(x)]Hn[Y(x)]]

= fn.

Given all the f ’s, computation of the coefficients is possible based
on:

fn = E[ f [Y(x)]Hn[Y(x)]] =
∫

f (y)Hn(y)g(y)dy

with f0 = E[ f (Y(x))].

For the development of a lower-cut Gaussian, let’s consider the
function f [Y(x)] of a variable equal to:

yc if Z(x) = 0, such as G(yc) = P(Y , yc) = P(Z = 0)
Y(x) if Z(x) . 0.

The considered variable is a lower-cut Gaussian that will be named
Y+(x). This variable Y+(x) is a continuous function of the Gaussian
variable Y(x) such as:

Y+(x) = ycIY(x)≤yc
+ Y(x)IY(x).yc

= ycIZ(x)=0 + Y(x)IZ(x).0.
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This function can be developed using Hermite polynomials and the
analytical expression of its coefficients is:

fn =
∫
(ycIY(x)≤yc

+ Y(x)IY(x).yc
)Hn(y)g(y)dy,

for n = 0, f0 = g(yc) + ycG(yc)
for n = 1, f1 = G(yc) − 1

for n ≥ 2, fn = 1����������
n(n − 1)

√ Hn−2(yc)g(yc) +
yc��

n
√ Hn−1(yc)g(yc).

Thus, its development:

Y+(x) = ycG(yc) + g(yc) − y(G(yc) − 1)

+
∑
n≥2

yc��
n

√ Hn−1(yc)g(yc) +
1����������

n(n − 1)
√ Hn−2(yc)g(yc)

( )
.

Link between the covariance of a function of the Gaussian
variable and the covariance of the Gaussian variable itself
The spatial covariance of a function of a Gaussian variable can be
developed thanks to orthogonality of Hermite polynomials and
the assumed bigaussian nature of the bivariate distributions
(Y(x),Y(x + h)). We have then:

Cov[f (Y(x + h)), f (Y(x))] = E[( f (Y(x + h)) − f0)( f (Y(x)) − f0)]

= E
∑1
n=1

fnHn[Y(x + h)]
( ) ∑1

p=1

fpHp[Y(x)]
( )[ ]

=
∑1
n=1

( fn)2E[Hn[Y(x + h)]Hn[Y(x)]]

=
∑1
n=1

( fn)2[Cov[Y(x + h),Y(x)]/Var[Y(x)]]n.

This expression allows the inference of the spatial model of the
Gaussian by indirectly fitting the covariance of a function of the
Gaussian variable, in our case the lower-cut Gaussian, to its
known experimental variogram.
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Lantuéjoul, C. 2002. Geostatistical simulation: models and algorithms.
Springer, Berlin. 256 pp.
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