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Northwest Atlantic (NWA) redfish (Sebastes mentella and Sebastes fasciatus) stocks are currently assessed using survey indicators and age-
aggregated production models rather than age-based models because routine age readings are not available due to the difficulty in obtaining
reliable measurements for these fish. However, recruitment is highly variable for redfish species so age-aggregated production models are not
a good approach to provide short-term harvest advice. Recently a relatively large dataset of validated age readings was published that provide
a good basis to model growth and its variability [i.e. population growth curve (PGC)]. In this article we propose a hierarchical random effects
growth model that includes between-individual variation to estimate PGCs for 10 NWA redfish stocks and for males and females separately.
These growth curves are required to develop age-based stock assessment models. External estimates of measurement error in length and age
are included in our model to separate these sources of variation from the PGC variability. The hierarchical approach leads to more realistic
growth curves than if each stock and sex are modelled separately. Model results indicated that S. mentella usually grow to larger sizes than
S. fasciatus and that females of both these species grow to larger sizes than males. There was little evidence of a change in growth rates
over time.

Keywords: ageing error, between-individual variation, covariate measurement error, mixed effects model, Von Bertalanffy growth curve.

Introduction
There are four redfish species of the genus Sebastes found in the

North Atlantic (e.g. Planque et al., 2013): Beaked redfish (Sebastes

mentella), Acadian redfish (Sebastes fasciatus), Golden redfish

(Sebastes norvegicus, previously referred to as Sebastes marinus),

and Norway redfish (Sebastes viviparus). They occur in cool

waters (3�–8�C) along the slopes of fishing banks and deep chan-

nels in depths of 100–700 m. In the Northwest Atlantic (NWA),

redfish range from Baffin Island in the north to waters off New

Jersey in the south; however, S. norvegicus is mostly found on the

Flemish cap and S. viviparus is found in the Northeast Atlantic.

There is a geographic distributional cline in the NWA with

S. mentella in the north and S. fasciatus in the south, and in inter-

mediate areas where both are found, S. mentella is generally

distributed deeper than S. fasciatus. However, in the Gulf of St

Lawrence, S. mentella dominates (Gascon, 2003) and there is

evidence of introgressive hybridization between S. mentella and

S. fasciatus (Valentin et al., 2014). These two species have very

similar external morphological features which make their species

differentiation difficult and nearly impossible by cursory examin-

ation (e.g. Gascon, 2003; Cadrin et al., 2010). As a result, in the

NWA S. mentella and S. fasciatus catches are usually reported as

combined and these two species are managed together as beaked

redfish.

There are currently nine redfish management areas in the

NWA (Figure 1): (i) South Greenland in NWA Fisheries

Organization (NAFO) Division 1F, (ii) Labrador Shelf (NAFO

Divisions 2GHJ and 3K), (iii) Flemish Cap (Division 3M), (iv)
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Grand Banks (Divisions 3LN), (v) Southern Grand Banks

(Division 3O), (vi) Gulf of St. Lawrence (Unit 1—Divisions 4RST

and 3Pn4Vn during January to May), (vii) Laurentian Channel

(Unit 2—Divisions 3Ps, 4Vs, 4Wfgi, and 3Pn4Vn during June to

December), (viii) Scotian Shelf (Unit 3—Divisions 4WdegklX),

and (ix) Gulf of Maine (NAFO Subarea 5). However, there is re-

cent evidence of further sub-stock structure in the Northern Gulf

of St Lawrence (Valentin et al., 2014). Except for the Flemish Cap

and the Gulf of Maine stocks, redfish have been commercially

fished by Canada since World War II. The most commonly fished

areas were Subarea 2 þ Division 3K, as well as Units 1–3

(Gascon, 2003). Catches peaked at 400 000 tons in 1959 (Lear,

1998) and ranged between 135 000 and 286 000 tonnes during

1960–1993. Since then catches have been much lower and were

23 000 tonnes in 2015 (source: NAFO STATLANT 21A database).

Stock assessments began in the early 1970s. There has been almost

no significant recruitment in the last 30 years and most stocks are

depleted or collapsed (Valentin et al., 2014). The directed fishery

has been under a moratorium since 1995 in Unit 1, since 1998 in

2J3K, and from 1997 to 2009 in 3LN. Quotas have been generally

declining in other areas. The Committee on the Status of

Endangered Wildlife in Canada assessed the status of S. fasciatus

and S. mentella in Canadian waters as endangered, threatened or

special concern, depending on the area and species under consid-

eration (see Valentin et al., 2014).

Sebastes species in the North Atlantic can aggregate densely

along the bottom of continental slopes but also form semi-pelagic

schools at times which may lead to high variability in survey

catches of redfish. In the NWA, recruitment tends to be episodic

and significant year-classes have been observed from 5 to more

than 12-year intervals (Gascon, 2003). Growth is usually faster in

southern areas than in northern areas, females grow faster than

males, and S. fasciatus reaches a smaller size at age than S. men-

tella (Campana et al., 2016). On average, redfish take �8–10 years

to reach commercial size (25 cm or 10 inches). Redfish are long-

lived, slow-growing, and late-maturing. Devine and Haedrich

(2011) summarized that the maximum age is 30–50 years for

S. fasciatus and 60–75 years for S. mentella and S. norvegicus in

the NWA. Average age at 50% maturity for most populations of

S. fasciatus in the Canadian NWA is 5.5 years and 10–13 years for

S. mentella.

Ageing redfish is difficult and time-consuming. Growth par-

ameters reported in different studies have varied widely, in part

because of the difficulty of distinguishing among the redfish spe-

cies (Campana et al., 2016), but also because the annual incre-

ments in immature fish are poorly defined while those in old

individuals are often narrow and difficult to interpret (Nedreaas

1990; Stransky et al., 2005). In addition, a substantial portion of

the published studies on Sebastes spp age and growth used either

whole otoliths or scales, both of which are now known to produce

significant age underestimation bias in adult fish (Campana,

2001). As a result, most laboratories investigating stock dynamics

of redfish have not implemented routine age readings because of

the difficulty in obtaining reliable measurements (e.g. Stransky

et al, 2005). Hence, survey indicators and age-aggregated produc-

tion models have been used for stock assessment rather than age-

based models (e.g. DFO, 2012). These age-aggregated approaches

are certainly not best practice for stocks like redfish and there are

several research initiatives under-way to improve their stock as-

sessment by better utilizing the available size, age, morphological,

and genetic measurements.

Campana et al. (2016) recently provided a relatively large data-

set of validated age readings, based on image-enhanced burnt

thin sections, that provide a good basis to model growth and its

variability [i.e. population growth curves (PGCs)]. In this article

we estimate PGC’s for 10 NWA redfish stocks with Canadian fish-

eries, and for males and females separately. This is an ambitious

objective and important to improve the assessment of these

stocks. The data in Campana et al. (2016), and more specifically

the range of ages, were not always extensive enough at the stock

and sex level to support reliable PGC estimation and extrapola-

tions for stock assessment. We use a hierarchical model-based ap-

proach with main effects for species and sex, and random stock

specific interactions, to address this data deficiency. Essentially

with this approach we use growth information from other species

and stocks where data are deficient, and account for the uncer-

tainty due to insufficient data. This is similar to meta-analysis

approaches to improve the assessment of data-poor stocks (e.g.

Punt et al., 2011; Thorson et al., 2015).

Some of the ongoing research initiatives for NWA redfish in-

clude age-based assessment models fitted to survey indices and

estimates of fishery catches, including length composition infor-

mation. PGC’s are used to transform age-based model quantities

to length-based ones to fit to data. Hence, the variation of fish

size at age is also a focus of this paper. The distribution of size at

age in growth samples includes individual variation but also

variability due to measurement errors (MEs) in lengths and ages.

The ME sources of variation should be removed from a PGC.

We use a hierarchical PGC model to account for stock and sex

variation in growth rates, and also include a random effect to

account for other between-individual variability in growth rates.

Hierarchical random-effect PGC models have been proposed by

Figure 1. NWA redfish management units. The shaded zone is
included in Unit 1 from January to May, and in Unit 2 from June to
December. Grey lines indicate 200 m depth contours. Source:
Modified from Gascon (2003).
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others in Bayesian (e.g. Helser and Lai 2004, He and Bence 2007)

and non-Bayesian settings (e.g. Schaalje et al., 2002,

Morrongiello and Thresher, 2015) and we extend the latter

approaches to include ME in age and between-individual

variability.

We use a covariate ME modelling approach for observations of

ages and lengths based on external estimates of their ME vari-

ances to separate these sources of nuisance (i.e. not a population

characteristic of interest) variability from stock, sex and between-

individual variability. Including ME in the length response vari-

able is standard but including ME in the age covariate is not.

Proper accounting of covariate ME is important for more reliable

statistical inferences and to avoid the “bias attenuation” problem

in which regression parameter estimates are biased towards zero

when covariate ME is present (e.g. Carroll et al., 2006). Covariate

ME is also referred to as “errors in variables” and this problem

has been long recognized in fisheries science when fitting linear

regression models (e.g. Schnute et al., 1990), stock-recruit models

(e.g. Walters and Ludwig 1981), simple biomass production mod-

els (e.g. Uhler, 1980), and growth models. Kitakado (2000) inves-

tigated methods to account for ME’s in release lengths in growth

models based on length increment data obtained in tag-recapture

studies. Suh and Schafer (2002) investigated fitting the Von

Bertalanffy (VonB) model to fish growth data with ME’s in ages

but for which there was a small validation sample of fish with ac-

curate age measurements. Cope and Punt (2007) investigated

including ageing error from reader comparisons when fitting

VonB growth curves. However, in practise covariate ME is often

not accounted for in regression analyses of fisheries or other eco-

logical data (Denham et al., 2011), although there are many pub-

lished exceptions in addition to those listed earlier (e.g. Hwang

et al., 2007). Part of the problem is that some of the methods pro-

posed to adjust for covariate ME are too complicated to be rou-

tinely implemented and do not easily extend to hierarchical

models like we use. We propose a practical approach to include

ME in age. Our PGC model is novel in that we include ageing

error in a hierarchical generalized VonB growth model for many

redfish stocks that also includes between-individual variation in

growth.

Material and methods
Samples of redfish were collected with otter trawls aboard re-

search vessels in 2001, 2002, 2011, and 2013, mostly during rou-

tine annual groundfish surveys. Fish species was determined

based on the genotype at 13 microsatellite loci (Valentin et al.,

2014). Lengths were usually measured to the nearest millimeter

although some samples from 2J3K and Unit 3 redfish were meas-

ured to the nearest centimetre. Age determinations were based on

a combination of the “crack and burn” and section methods,

whereby the sagittal otolith was cut transversely through the core

with an Isomet saw and subsequently charred over the flame of

an alcohol lamp. Ages (i.e. years since birth) were determined

from high resolution images after digital enhancement with

Adobe Photoshop CS2 using grey level expansion and an unsharp

mask filter (Campana et al., 2016). The final product was 933

length and age measurements representing six S. fasciatus stocks

and four S. mentella stocks (Table 1). A small number of juvenile

Unit 3 S. fasciatus were aged which gives important information

about size at young ages (i.e. 2-5). For the other stocks much of

the growth data were for ages � 8. The number of length and age

measurements for each stock and sex ranged from 10 to 91 which

is often insufficient to estimate PGC’s separately. To address this

problem we use a hierarchical random effects modelling

approach.

We fit VonB PGC models by stock (s) and sex (x ¼ F,M). We

assume a 50:50 sex ratio for unsexed juveniles. For convenience

we indicate each species/management unit/sex category as g, and

there are a total of 21 categories which we denote by the set

G. We also include a model component to account for between

individual variations in growth. We assume growth rates are con-

stant over time but examine the appropriateness of this assump-

tion. Campana et al. (2016) found little evidence of long-term

(20-year) changes in growth rates within Unit 2 redfish, despite

marked changes in age composition. The VonB PGC model for-

mulation we use gives length as a function of age (a),

Lg að Þ ¼ fL1g 1� 1� rg

� �
exp �kg a
� �

g exp ðeIg Þ; (1)

where L1g is the asymptotic length (as a ! 1), kg is a growth

rate parameter, rg ¼ Lg 0ð Þ=L1g is the size at birth relative to the

maximum size, and eIg accounts for individual variation. We as-

sume eIg � Nð0; r2
I Þ are independent and identically distributed

(iid) for all individuals and across all levels of g 2 G. This is con-

sidered further in the Discussion. The VonB model is derived from

the differential equation (ignoring eIg ) @l að Þ=@a ¼ kfL1 � l að Þg
and the initial size, L 0ð Þ. The growth rate at birth (i.e. slope at the

origin) is kL1ð1� rÞ and @l(a)/@a declines to zero as age

increases.

The VonB assumption of a linear decline in growth rates as

size increases may not be completely appropriate over a broad

range of redfish ages for a variety of reasons, including changes in

growth rates due to maturation or prey composition. We address

this by using a more general PGC model that can accommodate a

greater variety of growth dynamics. The generalized VonB model

(i.e. VonBg) is

Lg að Þ ¼ L1g 1� 1� rg

� �
exp �kg acg
� �

gexp eIg

� �
:

�
(2)

This is a simplified version of the Schnute-Richards growth

model (Schnute and Richards 1990; Quinn and Deriso, 1999).

Table 1. Redfish growth data summary.

Length
Age

Length
Age

Stock Species n med med L U n med med L U
Juveniles

Unit3 fas 12 9.0 3 2 5
Males Females

2J3K fas 13 22.0 7 4 22 24 25.0 8 4 11
3LN fas 32 24.5 11 5 19 27 27.4 10 5 18
3O fas 18 23.0 10 7 18 14 22.9 9 6 13
Unit1 fas 37 28.2 17 8 27 54 32.3 14 7 36
Unit2 fas 40 27.5 13 7 24 81 30.3 13 8 21
Unit3 fas 31 24.0 12 4 30 83 33.0 14 4 38
2J3K men 65 29.0 8 4 13 61 30.0 9 5 14
3LN men 10 28.0 8 5 11 20 27.6 8 6 14
Unit1 men 69 32.3 21 14 40 66 35.0 21 9 38
Unit2 men 91 33.0 21 18 35 85 35.0 21 13 33

fas, S. fasciatus, men, S. mentella; n, sample size; med, median; L, 2.5th percent-
ile; U, 97.5th percentile. Total n is 933.
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Campana et al. (2016) found that S. fasciatus and S. mentella

had similar growth patterns and that growth was usually fairly

similar across stocks, but S. mentella tended to grow to a slightly

larger asymptotic size. We account for these similarities using

mixed-effects multiplicative models for the VonB parameters. We

assume

L1g ¼ L1L1spL1xd1g ; (3a)

where L1 is a common parameter for all stocks, L1sp is an

S. mentella species (sp) effect (the effect for S. fasciatus is one),

L1x is a sex effect for males, and d1g are random stock/sex effects

that are iid log d1g

� �
� N 0; r2

1
� �

: Similarly,

kg ¼ kkspkxdkg ; log dkg

� �
� N 0; r2

k

� �
; (3b)

Lg 0ð Þ ¼ kodog ; log dog

� �
� N 0;r2

o

� �
; (3c)

cg ¼ cdcg ; log dcg

� �
� N 0; r2

c

� �
: (3d)

Note that we do not assume species or sex fixed-effects for Lg 0ð Þ
or the VonBg parameter cg in Equation (2). We assume that these

random effects are independent across levels of G but we assume

that q ¼ Corrðd1g ; dkg Þ is nonzero and is an estimated param-

eter. The L1 and k parameters have an intrinsic inverse relation-

ship (e.g. Quinn and Deriso, 1999) and are usually negatively

correlated which is why we include correlation in the d1g and dkg

random effects.

The data available to estimate model parameters (h, see next

Section) are n ¼ 933 measurements of age and length for ran-

domly sampled redfish. Let Loi denote the observed length

(including ME) for the ith fish with actual or true length Li, and

let Aoi and Ai be the observed and true ages. For simplicity we as-

sume that measurements of both length and age are continuous,

similar to Cope and Punt (2007). We assume a multiplicative ME

model for length,

Loi ¼ Lgi Aið Þexp eLgi

� �
; (4)

where Lgi Aið Þ is obtained from either Equation (1) or (2), and

the eLgi are iid N 0;r2
L

� �
for all i 2 g and g 2 G. This assumption

reflects our belief that ME will be smaller for very small fish (i.e.

<20 cm) compared with larger sizes (i.e. >20 cm). Errors in age

will also usually increase with age because it is more difficult to

count annual otolith growth increments in older fish. Hence, we

assume multiplicative ME in ages,

Aoi ¼ Ai exp eAg

� �
; (5)

where the eAgi are iid N 0;r2
A

� �
for all i 2 g and g 2 G. These as-

sumptions are considered further in the “Discussion” section. It

is difficult to separate the age and length ME’s and the individual

variation in fish growth (i.e. eIg ) based only on samples of ages

and lengths. For example, it is clear from Equations (4) and (2)

that eLgi and eIg are completely confounded. Hence, we simply as-

sume values for r2
L and r2

A. Based on our expert judgement we

feel length measurements are accurate within 6 1 cm at larger

sizes (�30 cm). Assuming this accuracy is achieved 95% of the

time suggests that rL ¼ 0:5=30 � 0:017 which is the value we use

for rL. The age reader comparisons of Campana et al. (2016)

indicated that the ME coefficient of variation (CV) was about

6%, which suggests rA ¼ 0:06 is a reasonable choice.

Note that values for r2
I and r2

A are not completely confounded

like r2
I and r2

L. We can find a value for r2
A that maximizes the

data likelihood (see below). However, in preliminary simulation

testing we found that estimates of r2
A were highly variable and

biased, which we feel introduced bias into estimates of r2
I and dir-

ectly affected the variability in PGC’s. This bias issue is analogous

to more simple ME models where it is well known that response

and covariate ME variances are confounded in normal linear re-

gressions models but not necessarily in some nonlinear models,

although variance parameter estimates are often not stable and

useful (see Section 8.1.2 in Carroll et al., 2006). Hence, we

decided to simply fix rA at the value indicated by age reader

comparisons.

We estimate the fixed-effect parameters

h ¼ ðL1; L1sp; L1x ; k; ksp; kx ; ko; c;q;r
2
I ;r

2
1;r

2
k ;r

2
o;r

2
cÞ

based on the marginal maximum likelihood method which we

describe later. However, we first need to specify joint log-

likelihoods for h and the random effects which require probability

density functions for the data and random effects. Let fX(x) be the

density function for a random variable X, and let fY,X(x,y) denote

the bivariate density function for the random variables X and Y.

Let fYjX(y) be the conditional density of Y given X ¼ x is fixed.

The marginal density for age and length measurements of the i’th

fish is

fAoi ;Loi
ao; lohð Þ ¼

ð ð
fAoi ;Loi jAi ;Li

ao; lojhð ÞfAi ;Li
a; ljhð Þ@a@l: (6)

Equation (6) is based on the ME models for length and age, and

the PGC model, integrated over true but unknown length and

age. To simplify equations we hide the dependence of probability

densities on the h parameters. If age and length ME’s are inde-

pendent then

fAoi ;Loi jAi ;Li
ðao; loÞ ¼ fAoi jAi

ðaoÞfLoi jLi
ðloÞ; (7)

and Equations (4) and (5) specify fLoi jLi
ðloÞ and fAoi jAi

ðaoÞ.
The joint density of the true age and length can be partitioned as

fAi ;Li
ða; lÞ ¼ fLi jAi¼aðlÞfAi

ðaÞ: Between-individual and between-

stock variations in growth rates affect fLi jAi
ðlÞ: Assume i 2 g and

let U ¼ ðeIg ; d1g ; dkg ; dog ; dcg Þ be a vector of all the random ef-

fects in Equations (2) and (3a–3d). Note that

U 2 R5 ¼ �1;1ð Þ � . . . �1;1ð Þ.

fLi jAi
ðlÞ ¼

ð
u2R5

fLi jAi ;U¼u ðlÞfU uð Þ@u; (8)

where f U uð Þ ¼ f eIg
u1ð Þf d1g ;dkg

u2; u3ð Þf dog
u4ð Þf dcg

u5ð Þ: Except

for d1g and dkg , we have assumed that the random effects are in-

dependent. We also assume that, conditional on u , the size of the

i’th fish in the sample is given exactly by Equation (2). This impli-

citly involves the assumption that the survey gears used to sample

fish were not length selective, and this is considered further in the

Discussion. Hence,
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fAoi ;Loi

�
ao; loÞ

¼
ð

a2Rþ

ð
u2R5

fAoi jAi
ðaoÞfLoi jLi¼Lg Aið Þ;U¼u ðloÞfU uð ÞfAi

ðaÞ@a@u:

(9)

A somewhat controversial issue (e.g. Huang et al., 2006) is

how to treat the distribution of true ages, fAi
ðaÞ. Flexible models

may be more robust (e.g. Carroll et al., 1999) but are more diffi-

cult to implement. Suh and Schafer (2002) used a nonparametric

estimator of fAi
ðaÞ to estimate the VonB model via an EM algo-

rithm. Cope and Punt (2007) favored the gamma distribution for

Ai over the simpler one-parameter exponential distribution. Note

that our model is an extension of Suh and Schafer (2002) and

Cope and Punt (2007) who only considered fitting a single

growth model without between-individual variation. Mohammed

(2015) found that estimation of the VonB model with between-

individual variation in growth and assuming a simple gamma dis-

tribution for Pr ðAiÞ was robust to substantial deviations in the

true age distribution. Hence, we use the same approach as Cope

and Punt (2007) and assume

fAi
að Þ ¼ aa�1 exp a=bð Þ

baCðaÞ : (10)

The a and b parameters also have to be estimated and are

included in the parameter vector h. We investigate the sensitivity

of results to an alternate and more flexible model for the true age

distribution in which we use different Gamma parameters for

each of the ten stocks.

Let D be the set of all data, D ¼ f a1; l1; g1ð Þ; . . . ; an; ln; gnð Þg.
We assume fish were randomly selected from the survey catches

for age measurements. This assumption is also considered further

in the Discussion. The log-likelihood function for h is

l hð Þ ¼
X
g2G

X
i2g

log fAoi ;Loi
ðai; lijhÞg;

�
(11)

and is based on Equations (6)–(9).

The template model builder (TMB; Kristensen et al, 2016) pack-

age within R (R Core Team, 2016) was used to implement the model.

The MLE’s of h maximize l(h). The user has to provide Cþþ com-

puter code to calculate fLoi jLi¼Lg Aið Þ;U¼u ðloÞ; fAoi jAi
ðaoÞ; fAi

ðaÞ and

f U uð Þ, but the integration in Equation (9) required for Equation (11)

is numerically evaluated in TMB using the Laplace approxima-

tion. The random effects U and Ai can be predicted by maximiz-

ing the joint likelihood, which is the integrand of Equation (9).

Additional information on these procedures is provided by Skaug

and Fournier (2006). TMB uses automatic differentiation to

evaluate the gradient function of Equation (11) and in the

Laplace approximation. The gradient function is produced auto-

matically. This greatly improves parameter estimation using a

derivative-based optimizer. We use the nlminb function within R

(R Core Team, 2016) to find the MLE for h. Source code (R and

TMB) is provided as Supplementary Materials. The file maked.R

creates the inputs to TMB which is run via fit.R.

The reliability of the model was assessed through detailed

examination of model estimates and residuals. Sensitivity analyses

to some model assumptions were also performed. A simulation

self-test (i.e. Deroba et al., 2014) was conducted in which the

model was fit to simulated data generated by the model. This

does not address the reliability of the assumptions of the model

but rather it simply addresses how reliable are model estimates

assuming the model is correct. We conducted self-test simula-

tions by conditioning on the predicted eIg individual variability

random effects when generating simulation data. However, these

effects were not fixed when estimating the model with the simu-

lated data. We generated 1000 simulated data sets.

PGC’s were computed based on model predictions of size at

ages 0–40 that also included the between-individual variation

term eIg (i.e. Equations 1 or 2). We assumed that fish are binned

in one cm lengths classes for the PGC’s. The probability that an

age a fish with estimated length L̂a is in length class C was com-

puted using a Normal distribution approximation,

Pr L 2 Cð Þ ¼ /
log C þ 1

2

� �
� log ðL̂aÞ

seflog L̂a

� �
g

�
� /

log C � 1
2

� �
� log ðL̂aÞ

seflog L̂a

� �
g

�
;

((

(12)

where / is the cumulative probability distribution function for a

standard normal random variable. The ADREPORT() feature of

TMB was used to provide standard errors of estimates of log-

length at age, seflog L̂a

� �
g, in Equation (12).

Results
In preliminary analyses we found that estimates of Lg 0ð Þ were

essentially zero for both the VonB and VonBg models so we

simplified the model by assuming Lg 0ð Þ and rg were zero, and

removed the ko parameter in h. The VonBg model resulted in a

significantly better fit to our data (Table 2, M1) compared with

the VonB model (M2) as evidenced by the lower AIC statistic.

Model M3 is provided to examine the sensitivity to assump-

tions about ME variation in length (rL). As expected this model

fit exactly the same as M1 and all parameter estimates were

identical except for rI which was lower in M3 because of the

higher values of rL compared with M1. This resulted in more

narrow distributions of length at age (results not shown).

Model M4 is provided to examine the sensitivity to assump-

tions about ME variation in age (rA). Parameter estimates were

fairly similar and rI was lower as expected. Although this

model had a lower AIC we do not conclude this is a better fit-

ting model for reasons outlined in the Methods section. Model

M5 had different parameters for the Gamma distribution of

true ages for each stock. However, parameter estimates and

CV’s (Table 2) were similar to M1 indicating a lack of sensitiv-

ity of the VonBg and VonB parameters to the choice of distri-

bution for true ages. Hence, we prefer model M1 for estimating

PGC’s.

The species and sex effects for L1 (i.e. L1sp; L1x) from model

M1 (Table 2) indicate that this parameter was about 12% higher

for S. mentella and 9% higher for females. This is consistent with

the redfish literature. However, k was about 7% higher for

S. mentella and 15% lower for females. The VonBg c parameter

was significantly lower than one. There was also additional

between-stock variation in these parameters. The stock-specific

predicted values of these parameters follow the same patterns

overall (Figures 2–4). Female L1 was always higher than male

L1, and S. mentella L1 was usually higher than for S. fasciatus.

The exception to this latter trend is in NAFO Divisions 3LN. In

NAFO Division 3O, S. fasciatus had a substantially lower L1 for
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both sexes (Figure 2) than other stocks but higher k’s (Figure 3).

Sebastes mentella in NAFO Divisions 2J3K and Units 1 and 2 had

higher L1’s for both sexes. The between-stock CV for k (i.e. rk)

was much larger than for L1 (Table 2) indicating more between-

stock variation in growth rates than in asymptotic sizes. There

were some large correlations in parameter estimates for model

M1, as is typical when fitting VonB growth models. The estima-

tors of L1 and k were negatively correlated (�0.78). Similarly the

species effects for L1 and k were negatively correlated (�0.92).

However, the sex effect correlation was much lower (�0.39). The

estimators of r1 and rk were positively correlated (0.90). The

Gamma age distribution (GAD) parameters (a and b) were nega-

tively correlated (�0.94). Otherwise correlations in parameter es-

timates were much lower and often close to zero. These

correlations are considered further in the Discussion.

Comparisons of predicted PGC’s (Figure 5) show that there is

broad similarity in PGC’s across these two species and the vari-

ous NWA stocks, particularly among Unit 1 stocks and sexes.

Also, for all stocks, growth rates reduced substantially for ages

greater than 10 and by age 30 most fish were very close to their

model maximum size. The biggest difference in this general pat-

tern was for Division 3O S. fasciatus; this stock had a higher

growth rate (k ¼ 0.56 for females and 0.66 for males) but a lower

asymptotic size (L1 ¼ 26 cm for females and 24 cm for males)

than the other stocks where L1 was usually between 30 and

40 cm and growth rates were much lower (k � 0.25). Sebastes

mentella in NAFO Divisions 3LN also reached a much smaller

size relative to the other S. mentella stocks. The lower L1’s for

Unit 2 are somewhat unusual but the residuals for this stock

(Supplementary Figure S1) suggest potential model mis-

specification and a slight under-estimation of L1. Otherwise the

residuals for other stocks do not indicate mis-specification. A re-

sidual pattern vs. year would indicate a change in growth rates

over time but we did not find any evidence of this for any of the

stocks (results not shown).

PGC’s and 95% CIs (Figure 6) provide a good description of

the overall variability in the growth data. The resulting PGC’s are

illustrated for S. mentella in NAFO Divisions 2J3K (Figure 7a—

males; Figure 7b—females). The distribution of size at age for fe-

males is wider than for males. PGC’s for all stocks are shown in

the Supplement Materials (Supplementary Figures S2-S7).

Figure 2. Estimates of L1 for six S. fasciatus (fas) and four S.
mentella (men) stocks. Males are indicated with shaded bars and
females with white bars. Management units are listed at the top.

Figure 3. Estimates of k for six S. fasciatus (fas) and four S. mentella
(men) stocks. Males are indicated with shaded bars and females with
white bars. Management units are listed at the top.

Figure 4. Estimates of c for six S. fasciatus (fas) and four S. mentella
(men) stocks. Males are indicated with shaded bars and females with
white bars. Management units are listed at the top.

Table 2. Estimates (Est) of model parameters with percent CV
(CV� 100), for five model formulations (see below).

M1 M2 M3 M4 M5

AIC:
�304.5 �255.0 �304.5 �332.6 �1242.4

Quantity Est CV Est CV Est CV Est CV Est CV

L1 30.837 5.7 29.801 4.9 30.837 5.7 30.930 5.7 30.796 5.6
k 0.306 19.6 0.209 16.4 0.306 19.6 0.282 19.3 0.299 18.9
c 0.787 6.1 – – 0.787 6.1 0.817 5.8 0.794 6.0
L1sp 1.115 8.6 1.101 7.7 1.115 8.6 1.097 8.5 1.121 8.4
ksp 1.065 28.6 0.956 25.8 1.065 28.6 1.096 27.7 1.039 27.4
L1x 1.093 2.2 1.082 1.1 1.093 2.2 1.090 2.0 1.100 2.2
kx 0.845 8.4 0.996 4.2 0.845 8.4 0.874 8.4 0.840 8.3
r1 0.127 25.9 0.116 23.9 0.127 25.9 0.128 24.8 0.123 26.7
rk 0.413 28.4 0.375 27.3 0.413 28.4 0.404 27.3 0.393 28.1
q �0.974 4.1 �0.920 6.1 �0.974 4.1 �0.978 3.4 �0.967 4.5
rc 0.089 26.6 – – 0.089 26.6 0.075 27.8 0.087 26.8
rI 0.083 2.6 0.087 2.6 0.060 5.1 0.077 2.9 0.083 2.6

M1, VonBg (base): rL ¼ 0:016 rA ¼ 0:06 Gamma age
distribution (GAD)

M2, VonB (c¼ 1): rL ¼ 0:016 rA ¼ 0:06 GAD
M3, VonBg (test rL): rL ¼ 0:06 rA ¼ 0:06 GAD
M4, VonBg (test rA): rL ¼ 0:016 rA ¼ 0:1 GAD
M5, VonBg (test age): rL ¼ 0:016 rA ¼ 0:06 stock specific GAD

AIC is the Akaike information criterion.
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The self-test simulations showed that L1 and the associated

sex and species effects were estimated with high precision and ac-

curacy (Figure 8). This is not surprising because much of the

growth data are for larger sized redfish that mostly provide infor-

mation on L1. Between-individual variation (rI ) was also esti-

mated with high precision which is also not surprising because

the other related variance parameters for ME in length and age

were fixed. Hence, the remaining variance in the within-stock/sex

distribution of size at age can only be accounted for by rI .

However, the estimates of rI were slightly negatively biased be-

cause the standard deviation of the predicted values for the eIg ’s

(0.078) used to generated simulation data was less than the esti-

mate of rI (0.083; see Table 2). The between-stock variability in

L1 (i.e. r2
1) was estimated accurately but with much less preci-

sion which is consistent with the higher CV’s for this parameter

in Table 2. There are only 21 stock/sex combinations to base this

variance parameter on, and consequently it is not estimated with

as high of precision as rI . The k and c parameters and their

between-stock variance parameters (i.e. r2
k and r2

c) were esti-

mated less accurately but the results still seemed reliable. The

simulation performance of stock-specific predictions of the

VonBg parameters followed similar patterns (Supplementary

Figures S8a-c). The L1’s were usually estimated accurately

(Supplementary Figure S8a). The k’s were well estimated except

for Division 3O S. fasciatus. The stock-specific c parameters were

slightly over-estimated (Supplementary Figure S8c) and closer to

one (i.e. a VonB model) which suggests that the model is some-

what biased in detecting this type of a departure from the stand-

ard VonB model.

Discussion
We developed a hierarchical mixed-effects model to describe

growth curves and variation in NWA S. mentella and S. fasciatus

redfish stocks. This included modelling between-stock and

between-individual variability in size at age. Our main purpose

for developing this model is to estimate stock- and sex-specific

PGC’s to use in stock assessment models. The distribution of size

at age in a PGC is caused by between-individual variability in

growth rates. We also accounted for externally derived estimates

of ME variability in age and length. We do not want to include

ME sources of variability in PGC’s which is why it is important to

model these sources separately and remove their influence on es-

timates of between-individual variation. We used the VonB

growth model which is commonly applied to redfish growth data

(e.g. Gascon, 2003; Stransky et al, 2005; Campana et al., 2016);

however, we found evidence of VonB lack-of-fit that was fairly

consistent for males and females and all of the stocks. The VonB

model resulted in mostly positive residuals at younger ages (i.e.

age < 10; results not shown) and this problem was substantially

reduced with the VonBg model. However, the growth model we

used is somewhat complicated and additional investigation of

model goodness of fit may be useful.

It seems we are the first to consider ageing error in hierarchical

mixed effects PGC models, but covariate ME in mixed effect

models has been studied by others (see examples in Carroll et al.,

2006). The literature usually reports similar biases in mixed ef-

fects regression parameter estimates compared with ordinary gen-

eralized linear models but the biases in variance parameter

estimators varies from case to case (Wang et al., 1998), depending

on the nature of the covariate MEs. Wang and Davidian (1996)

and Tosteson et al. (1998) found that not accounting for covari-

ate ME results in substantial positive biases in variance param-

eters reflecting differences amongst individuals. This is

Figure 5. Comparisons of growth curves for NWA redfish stocks.
Panels are for sex and species. Grey horizontal references lines are
shown at 20, 30, and 40 cm.

Figure 6. Sex specific growth curves (grey lines, predictions and 95%
CIs) for six S. fasciatus (fas) and four S. mentella (men) stocks.
Juveniles ¼ 0, males ¼ 1, females ¼ 2. Points are observations.
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particularly relevant for us because it indicates that not account-

ing for length and age ME’s will result in inaccurate PGC’s in

which the distribution of length at age is too variable.

Assumptions
We assumed that growth samples were selected at random from

the research survey catches. In fact the redfish growth data were

collected using a length-stratified sampling design in NAFO

Divisions 3O, 3LN, and 2J3K. This can potentially result in over-

estimation of L1 and under-estimation of k (e.g. Goodyear,

1995; Bettoli and Miranda, 2001) if the stratification is not ac-

counted for, and the biases can be large (Mohammed, 2015). A

sampling-design adjusted approach (e.g. Echave et al., 2012) is

often used to adjust mean length at age to account for length-

stratified sampling. Candy et al. (2007) proposed a similar adjust-

ment for individual growth data but also included adjustments to

deal with gear selectivity which is not an important issue for us

(see below). However, such adjustments may not perform well in

removing design bias with individual length-age data

(Mohammed, 2015). Those results suggested over-estimation of

L1 and under-estimation of k if the stratification was not taken

into account (a result similar to Echave et al., 2012), but the

sampling-design adjusted approach led to over-estimation of k

and under-estimation of L1 by similar magnitudes compared

with the unadjusted estimators. Mohammed (2015) showed that

the VonB growth model that included between-individual vari-

ability gave much better estimates whether length-stratification

was accounted for or not. Hence we have not made any adjust-

ments for length stratified sampling because the model we use

also included between-individual variability. This type of sam-

pling design is also known as response-biased or two-phased sam-

pling and it is well known that not accounting for this type of

sampling can lead to severely biased regression model estimation

(e.g Jewell, 1985; Breslow et al., 2009; Scott and Wild, 2011).

A variety of approaches have been proposed to deal with this

problem and examining this for the redfish growth data may be a

useful area for additional research.

We implicitly assumed that the survey gears used to sample

fish were not length selective. Most of our data are for fish sizes

Figure 7. (a) PGC for S. mentella males in NAFO Divisions 2J3K. Each column indicates the conditional (on age) probability of being in 1 cm
length classes. The shading indicates the probability level. The black curve is the model predicted mean length at age. (b) PGC for S. mentella
females in NAFO Divisions 2J3K.

Figure 8. Model M1 self-test simulation results for some model
parameters. Simulations results are plotted as kernel densities using
the vioplot R package (Adler, 2005). Values used to generate
simulation data are indicated by X’s. *L1 is divided by 100 (i.e. in
metres).
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that are fully selected by the research survey gear and we expect

that selectivity is not an important issue. However, there will be

some size selectivity at smaller sizes so that our samples of young

ages may represent fast growers. We also assumed that age and

length ME’s are independent which will be true if the length of a

fish is not known or not somehow used by age readers when esti-

mating fish age.

We assumed no bias in the length and age measurements.

Campana et al. (2016) confirmed the accuracy of their age inter-

pretations across a range of ages using both bomb radiocarbon

and cohort tracking, which would have detected any significant

ageing bias. Nor do we have reason to expect bias in the length

measurements. We also assumed fixed values for the ME variance

in length and age and we assumed these ME’s had a lognormal

distribution. In practice these measurements only take discrete

values and it is straightforward to extend our methods to use

more realistic discrete ME models such as the ageing error models

in Punt et al. (2008) or Hanselman et al. (2012). Additional re-

search should be conducted to determine if better approaches to

modelling length and age ME’s for redfish produce improved

PGC’s. In addition, a better approach is to include likelihood

components for length and age reader comparison data which

would then include uncertainty about ME variance parameters in

the calculation of PGC’s. However, we do not anticipate that this

would have much effect on PGC’s.

To estimate PGC’s we assumed that the true distribution of

age for the various sampled fish could all be described by a simple

gamma distribution. However, the data come from multiple

stocks and several years and it is likely that the distribution of

true ages is considerably different than our assumption. It seems

that this assumption is not very important because a sensitivity

analysis using a much more flexible distribution for true ages pro-

duced very similar PGC estimates for all stocks and sexes.

We accounted for individual variation in growth using a

multiplicative effect (eIg ) to the growth models that we assumed

had a lognormal distribution. How this is done can directly affect

the PGC’s. It is common to include individual variability in the

VonB L1 and k parameters (e.g. Al�os et al., 2010) and our ap-

proach is identical to including multiplicative variability in L1
but not k. If there is between-individual variability in k then not

accounting for this can lead to biased estimates of k if the vari-

ability is large (e.g. Sainsbury, 1980). Shelton and Mangel (2012)

advocated an alternative formulation of the VonB function based

on the differential generating equation, @l að Þ=@a ¼ q � kl að Þ.
They suggested that q and k were independent parameters. They

included individual variation in both q and k (i.e. qi and ki) but

with a parametric relationship, qi ¼ ck
w
i ; that is, log(qi) is a linear

function of log(ki). D’Arcy and Thorson (2016) used the same

formulation in an application of growth increments from tagging.

We investigated this approach in preliminary analyses and did

not find that q and k were less statistically dependent than L1
and k nor did we find that log(qi) was approximately a linear

function of log(ki). However, individual variation may exist in

both growth rates and asymptotic sizes and the growth rates may

influence the asymptotic sizes such that individual L1i may be

positively correlated with ki (e.g. Vincenzi et al., 2014) or nega-

tively correlated. Although it was difficult for us to separate the

effects of individual variation in L1 and k based on the redfish

growth data, different approaches may fit the data similarly but

produce different PGC’s. This requires further research.

Conclusions
Model results indicated that, overall, S. mentella grow to larger

sizes than S. fasciatus and that females of both these species grow

to larger sizes than males. This is consistent with other literature

results (e.g. Gascon, 2003). The only discrepancy was Division

3LN redfish, where both S. mentella and S. fasciatus had similar

growth rates although females still grew larger than males.

However, there were some large correlations in the estimates of

some of the model parameters which is commonly found when

fitting VonB models. This reduces the reliability of parameter es-

timates and makes it more difficult to compare growth for differ-

ent populations using these parameter estimates. Alternative

model formulations exist that can have lower correlations (e.g.

Francis, 1988). However, these correlations should have little im-

pact on the reliability of the estimated PGC’s. Model results indi-

cated broad similarity in the PGC’s across these two species and

the various NWA stocks. The biggest difference was for Division

3O S. fasciatus which had a higher growth rate but a lower asymp-

totic size. There was little evidence of a change in growth rates

over time which is a similar finding to Campana et al. (2016).

The hierarchical mixed effect model we used for redfish growth

is a practical approach to address data limitations for each indi-

vidual stock and sex. We included additional information on age

and length MEs to separate these sources of variability from

between-individual variation in growth and to estimate PGC’s

that represent the distribution of length at age in the stock and

not just the samples. These PGC’s are an important contribution

to improving the assessment of redfish stocks by facilitating the

use of age-based models for data poor stocks that do not have an-

nual and extensive age sampling programs. This approach may

have applications to other stocks with insufficient growth infor-

mation such as Pacific rockfish species.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the article.
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