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The autodiametric method is a highly streamlined method for estimating fecundity of fish with determinate oocyte development pattern.
Greenland halibut presents a peculiar reproductive strategy with two simultaneously cohorts one of large vitellogenic oocytes (for the current
year) and another one of small vitellogenic oocytes (for the subsequent year). Results of this study showed that autodiametric method can be
applied to estimate fecundity in Greenland halibut. Additionally, spatial differences in the autodiametric calibration curve were observed in
the Northwest Atlantic, but did not translate into differences in fecundity at length. This is the first time that spatial differences between
ACCs of the same species have been reported, what could be the result of (i) the unusual oocyte development pattern, or (ii) spatial differen-
ces in oocyte biochemistry. More research on the relative dynamics of oocyte cohorts simultaneously present in Greenland halibut ovaries
and the factors (endo- or exogenous) influencing oocyte packing density could provide a better understanding of observed geographical
differences.
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Introduction
The estimation of fish fecundity is an important aspect for study-

ing fisheries ecology, allowing the exploration of spawning ener-

getics and the reproductive dynamics of fish populations, and to

estimate annual reproductive output and links to subsequent re-

cruitment (Ganias et al., 2014). However, the time-intensive na-

ture of traditional fecundity estimation techniques have proved

challenging for long-term monitoring programs (Tomkiewicz

et al., 2003). These traditional techniques generally involved

counting a subsample of the eggs in the ovary and then scaling

that number up to the total potential fecundity (PF) based on the

proportion of the total weight or volume of the gonad that was

sampled. The bottleneck of these methods was primarily related

to the techniques used to liberate oocytes from the ovarian tissue

(e.g. physically teasing oocytes from connective tissue, treatment

with chemicals to dissolve connective tissue, and/or rinsing tissue

through a series of graduated sieves to collect the oocytes) and

the typically manual counting of oocytes.

The autodiametric method (Thorsen and Kjesbu, 2001) is a

highly streamlined method for estimating fish fecundity. The
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method relies on a relationship between mean vitellogenic oocyte

diameter and oocyte packing density (OPD). Mean oocyte diame-

ter of an ovarian subsample is quickly obtained using an auto-

mated image analysis system and then converted to OPD, which

is then scaled up to give an estimate of fecundity based on the

weight of the ovaries (Ganias et al., 2014). This method has been

widely utilized for estimating fecundity on a broad range of spe-

cies with determinate fecundity (Murua et al., 2003; Boulcott and

Wright, 2008; Kennedy et al., 2008; Lambert, 2008; Alonso-

Fernández et al., 2009; Witthames et al., 2009). The suitability of

the autodiametric method for use on species with indeterminate

fecundity has been questioned (Witthames et al., 2009); these spe-

cies have a single continuous oocyte size distribution, which over-

laps with the previtellogenic distribution leading to a high

variance in the estimation of oocyte density hampering accurate

prediction of fecundity with this method (Witthames et al.,

2009). However, a technical expansion of the autodiametric

method (incorporating aspects of stereology) was used to exam-

ine oocyte recruitment in at least one species with indeterminate

fecundity (Korta et al., 2010). Clearly the suitability of the auto-

diametric method for estimating fecundity depends on oocyte de-

velopment patterns and should be examined on a per species

basis (Witthames et al., 2009).

Greenland halibut Reinhardtius hippoglossoides is a deepwater

flatfish found in the Northern hemisphere in both the Atlantic and

Pacific oceans. In the Northwest Atlantic around Newfoundland,

Greenland halibut are managed as three stocks, with those in the

Gulf of St Lawrence (GSL) considered separate from the much

larger stock off the east coast (Arthur and Albert, 1993) and the

northern stock between Canada and Greenland (Arthur and Albert,

1993). Unlike many other flatfish, Greenland halibut are highly ac-

tive predators, with reduced substrate association and often under-

taking substantial migrations (de Groot, 1970; Bowering, 1984;

Bowering and Lilly, 1992; Boje, 2002; Vollen and Albert, 2008;

Dennard et al., 2009). Noteworthy reproductive attributes include

highly variable and difficult to interpret maturation schedules

(Morgan and Bowering, 1997) as well as suggestions of non-annual

spawning (Fedorov, 1971; Junquera et al., 2003) . Greenland halibut

has generally been considered to have determinate fecundity with

group synchronous oocyte development (Gundersen et al., 1999;

Junquera et al., 1999; Tuene et al., 2002). However, the simulta-

neous presence of two cohorts of vitellogenic oocytes, one large and

one small, has led to much confusion, as the fate of the smaller vitel-

logenic oocytes was uncertain (Fedorov, 1968; Saborido-Rey and

Junquera, 1998; Rideout et al., 1999). More recently it has been sug-

gested that Greenland halibut utilize a very unusual oocyte develop-

ment pattern, whereby an individual cohort of developing oocytes

requires >1 year to complete vitellogenesis, but the potential for an-

nual spawning is maintained by the fact that developing ovaries

contain two simultaneously developing cohorts of vitellogenic oo-

cytes. The larger oocytes are developing to spawn in the current

year, while the cohort of smaller vitellogenic oocytes are developing

for the subsequent reproductive season (Gundersen et al., 2000;

Kennedy et al., 2011; Rideout et al., 2012). In captivity, Greenland

halibut females produce a single batch during the spawning season,

i.e. it is a total spawner (Dominguez-Petit et al., 2013)

Previous fecundity studies have presented data for Greenland

halibut from a broad range of geographical areas, including the

Barents Sea (Gundersen et al., 1999, 2000; Nú~nez et al., 2015),

East Greenland (Gundersen et al., 2001; Kennedy et al., 2009),

West Greenland (Gundersen et al., 2000), Iceland (Gundersen

et al., 2009), Bering Sea (D’yakov, 1982), Flemish Cap (FC)

(Junquera et al., 1999), the GSL (Bowering, 1980), and the

Labrador-eastern Newfoundland area (Lear, 1970; Bowering,

1980; Serebryakov et al., 1992). Some studies have attempted to

count only those oocytes of the larger vitellogenic size class by

employing size selection criteria (e.g. Junquera et al., 1999;

Gundersen et al., 2000; Nú~nez et al., 2015), while others have

counted all vitellogenic oocytes (e.g. Lear, 1970) or provided in-

sufficient detail to fully evaluate oocyte size selection criteria (e.g.

Bowering, 1980; Serebryakov et al., 1992). Such differences in

methodology raise questions about the comparability of histori-

cally collected fecundity data. The unusual oocyte development

pattern employed by Greenland halibut also raises questions

about the suitability of the autodiametric method for estimating

fecundity for this species. Previous studies (e.g. Nú~nez et al.,

2015) have used automated particle counting to improve over

previous manual counting procedures but the relationship be-

tween oocyte size and OPD has not been explored. This relation-

ship is the foundation of the autodiametric method and could

make future fecundity work on this species much more efficient

by requiring only gonad weight and average oocyte size in order

to estimate fecundity.

The first objective of this study was to determine if the autodia-

metric method could be reliably used for estimating fecundity of

Greenland halibut, despite the unusual oocyte development pattern

(i.e. presence of a confounding secondary group of vitellogenic oo-

cytes). Second, autodiametric calibration curves (ACCs) were de-

veloped and compared for fish collected from four general areas in

the Northwest Atlantic: FC (NAFO Div. 3 M), Grand Bank (GB)

(NAFO Divs. 3LNO), Southern Newfoundland (SNF) (NAFO

Subdiv. 3Ps) and the GSL (NAFO Div. 4 S). Finally, these ACC

were used to estimate PF of Greenland halibut from the various

areas and test for regional differences.

Material and methods
This study brings together work done by three different laborato-

ries to examine fecundity of Greenland halibut from four differ-

ent areas in the Northwest Atlantic. Data from the GSL were

collected by the Institute Maurice Lamontagne (IML, DFO,

Canada). Data from SNF (NAFO Subdiv. 3Ps) were collected by

the Northwest Atlantic Fisheries Centre (NAFC, DFO, Canada).

Data from the FC (Div. 3 M) were collected by the

Oceanographic Centre of Vigo (IEO, Spain) and data from the

eastern edge of the GB (Divs. 3LNO) were collected by both

NAFC and IEO.

Ovaries with advanced vitellogenic oocytes were collected from

a total of 156 female Greenland halibut. Fork length and gonad

weight were recorded for all fish. Fish from the GSL (n ¼ 55) had

fork lengths of 38–74 cm. Of these, 41 specimens were caught in

October 2007 and 14 in August 2008 in the St Lawrence estuary

and the area of the Laurentian Channel and Anticosti Island

(Figure 1). Fish from SNF d (n ¼ 21) were collected in July 2010

from commercial gillnets and had fork lengths of 60–88 cm. Fish

were collected from the eastern slope of the GB by both NAFC

(n ¼ 35) and IEO (n ¼ 21). Analyses indicated no difference in

the oocyte size–density relationship between samples collected

and processed by the two labs and hence these samples were com-

bined as “GB”. The NAFC samples were collected in July–August

2010 from commercial gillnet vessels and had fork lengths of 56–

91 cm, while the IEO samples were collected between February

2001 and August 2009 during both scientific and commercial
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surveys and had fork lengths of 51–95 cm. Fish from the FC (3

M) were collected in June–August 2004–2008 from scientific sur-

veys (fork lengths of 60–98 cm) and in April 2007 and 2008 from

commercial surveys (fork lengths of 58–89 cm).

Ovaries to be used for fecundity analyses were either fixed

onboard the vessel (IML, IEO) or were left in the gutted fish car-

cass (0–2 days) on ice until landing (NAFC). For ovaries fixed at

sea, subsamples were taken by teasing out a small piece of tissue

using pointed forceps, while for the non-fixed ovaries; subsam-

ples of fresh tissue were collected with a positive displacement pi-

pette and subsequently fixed. Table 1 summarizes sampling

procedures in each lab. The fixative used by all three laboratories

was 4% phosphate buffered formaldehyde. Care was taken to

avoid collecting ovarian wall tissue as part of the subsamples. The

gonad subsample weight varied between 0.03 and 3.4 g depending

on the method used for subsampling and the developmental stage

of the ovaries: more tissue was needed from ovaries with larger

oocytes in order to get a sufficient number of oocytes to be repre-

sentative of the whole gonad (Gundersen and Emblem, 2002).

Oocyte counts and sizes were obtained by examining the ovarian

subsample whole-mounts via an image analysis system and the

freeware ImageJ or software Leica QWin, depending on the lab.

A preliminary examination of oocytes from six fixed locations

within Greenland halibut ovaries (distal, central and proximal

position to gonoduct, in both left and right lobes) revealed no

significant difference in OPD throughout the ovaries and so any

potential influence of sample collection site within the gonads

was considered negligible. Also, for those laboratories that col-

lected subsamples from whole ovaries fixed at sea, the use of a

fresh-fixed weight relationship to estimate “fresh” weights was in-

vestigated. This conversion did not significantly influence results

(r2 ¼ 0.99, p < 0.01) and hence it was decided to proceed using

the weights as collected by each laboratory (i.e. fixed weights for

IML and IEO; fresh weights for NAFC).

The unusual oocyte development strategy employed by

Greenland halibut poses challenges for estimating fecundity.

Ovaries in advanced stages of development contain two cohorts of

vitellogenic oocytes. The cohort of larger vitellogenic oocytes (G1)

is considered to represent the PF for the current spawning year.

The smaller vitellogenic oocytes (G2) are thought to be developing

for the subsequent year. Hence distinguishing between the two co-

horts of vitellogenic oocytes is a necessity for accurately estimating

fecundity. During the early stages of vitellogenesis, only a single

mode of vitellogenic oocytes is observed (G2). Later in develop-

ment, the largest of these vitellogenic oocytes begin to develop at

an accelerated pace, resulting in two modes of vitellogenic oocytes

with a hiatus in the size distribution between the two (Rideout

et al., 1999). Because the G1 oocytes develop at a greater rate than

the G2 cohort the size of the hiatus between the two cohorts in-

creases (Kennedy et al., 2011). In the samples that we examined,

the hiatus that distinguished the two cohorts of vitellogenic oocytes

first formed when G1 reached �1000 mm. The largest G2 oocytes

that we observed (i.e. those on the lower side of the size hiatus)

were�700 mm. These findings led to the generalization that G2 oo-

cytes are typically <700 mm. The two cohorts are easily distinguish-

able when whole-mount preparations are viewed with transmitted

light (Figure 2). Oocytes of the G2 cohort have limited quantities

of yolk in the cytoplasm and are translucent to transmitted light,

giving them a brownish appearance. The larger G2 oocytes, how-

ever, are packed with yolk, making them opaque to transmitted

light and appearing as black spheres (Rideout et al., 1999;

Gundersen and Emblem, 2002; Simonsen and Gundersen, 2005)

(Figure 2). To evaluate ACCs for Greenland halibut only the most

advanced vitellogenic oocytes in the ovaries were counted. For ova-

ries in the later stages of development these would have been G1

oocytes (i.e. >1000 mm). In those samples where oocytes between

700 and 1000 mm represented the most advanced oocytes in the

ovaries, G1 was not clearly separated from G2, and all oocytes

>700 mm were counted and measured to estimate ACC. No G2
Figure 1. Map of the sampling areas (DFO. http://www.dfo-mpo.gc.
ca/international/media/images/nafo_map-eng.jpg).

Table 1. Summary of sampling procedure in each laboratory.

Laboratory Area Period Years Survey type N Size range (cm) Sampling method

IML GSL Oct 2007 Scientific 41 33–61 A
GSL Aug 2008 Scientific 14 38–73 A

NAFC SNF Jul 2010 Commercial 21 60–88 B
GB Jul-Aug 2010 Commercial 35 56–91 B

IEO GB May-Aug 2001-2009 Scientific 10 51–95 A
GB Feb-Aug 2001-2006 Commercial 11 68–84 A
FC Jun-Aug 2004-2008 Scientific 14 60–98 A
FC Apr 2007-2008 Commercial 10 58–89 A

Sampling method is codified as A: when whole gonad was fixed immediately onboard and a piece of fixed tissue (0.15–3.4 g) was removed at laboratory for
fecundity analysis, and B: when gutted fish with gonad inside were preserved on ice until arrive to the laboratory, small biopsy (0.03–0.18 g) of fresh gonad
was taken with a pipette and then fixed for fecundity analysis. IML, Institute Maurice Lamontagne (DFO, Canada); NAFC, Northwest Atlantic Fisheries
Centre (DFO. Canada); IEO, Spanish Institute of Oceanography (Spain); GSL, Gulf St Lawrence; SNF, South Newfoundland; GB, Grand Banks; FC, Flemish
Cap.

Autodiametric method applied to Greenland halibut fecundity 833
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oocytes were counted if G1 oocytes were present (i.e. only the most

advance oocytes were counted).

ACCs were estimated according to the Thorsen and Kjesbu

(2001) protocol based on Fry (1949) for each study area and lab:

OPD ¼ a �MDb;

where OPD refers to oocyte packing density in the gonad (num-

ber of oocytes/g of gonad) and MD to mean diameter of the most

advanced mode of vitellogenic oocytes (mm).

Natural logarithmic transformation was applied to the data to

achieve linearity; despite transformation data were not normally dis-

tributed, so the Fligner-Killeen non-parametric test was used to test

homocedasticity of data (p > 0.01). GLMs were used to test homo-

geneity of slopes by introducing the interaction term (LnMD*Area)

in the model. After testing all the assumptions, Analysis of

Covariance was used to compare curves among the four study areas,

with the dependent variable being the oocyte packing density

(LnOPD), the continuous variable the oocyte mean diameter

(LnMD) and the covariate the study area. Interactions were tested

and no differences in the slopes of the regression lines were ob-

served, so the analysis was exclusively focused on the main effects

(LnOD – LnMD þ Area). Akaike Information Criterion (AIC) was

used to determine relative quality of statistical models. Goodness of

fit of the model was estimated as:

r2 ¼ 1� ðresidual deviance=null devianceÞ:

The PF for each fish was estimated based on oocyte density (oo-

cytes�g�1) and the total weight of the ovaries. A PF–length rela-

tionship was estimated in each area and regional differences were

tested by fitting data to the GLM PF�L þ Area. Goodness of fit

of the model was calculated as explained above. Tukey’s range

test was used for post hoc pair-wise comparisons. In all analyses,

differences were considered statistically significant when the

p-value was < 0.01.

Given the unusual oocyte development pattern used by

Greenland halibut, the ACCs developed here were examined in

relation to those estimated for other species with more standard

determinate oocyte development patterns (e.g. Sebastes spp.,

European plaice, Atlantic cod and Atlantic herring—data from

Witthames et al., 2009).

Results
The observed range of MD was variable among areas, ranging

from 803 to 1388 mm for the FC, 710–2153 mm for the GB, 981–

2143 mm in the Gulf St Lawrence, and 820–1483 mm SNF d.

Observed OPD ranges were 469–1840 oocytes�g�1, 129–2673 oo-

cytes�g�1, 113–900 oocytes�g�1 and 473–1616 oocytes�g�1 for FC,

GB, GSL, and SNF, respectively.

In all areas, a negative power function provided a significant fit

to the relationship between OPD and MD (Figure 3a).

Parameters of ACCs from each area are shown in Table 2. Not

surprisingly, the best fits correspond to those areas with the high-

est sample size and largest range of MD, i.e. GB and GSL.

Regional differences in ACCs were statistically significant. This

was true regardless of whether comparisons were based on the

full range of observed oocyte diameters (r2 ¼ 0.96, AIC: �147.8,

df ¼ 151. Figure 3a) or only the overlapping range (r2 ¼ 0.88,

AIC: �115.3, df ¼ 93) (Figure 3b). Post hoc analysis showed no

significant difference in ACCs between the FC and GB (p > 0.05).

However, these two areas were statistically different from the GSL

(p < 0.01) and SNF (p < 0.01) and those two areas differed from

each other as well (p < 0.01. Table 2 shows ACC based on com-

bined data from FC and GB).

PF–L relationship estimated based on the autodiametric

method (a ¼ 0.05, b ¼ 3.2901) did not differ significantly

(p > 0.05) from those based on the gravimetric method (a ¼
0.03, b ¼ 3.4272), that means any Greenland halibut fecundity es-

timation based on the autodiametric method can be compared

with previous estimations based on the gravimetric method. All

the results presented below are focused on autodiametric esti-

mates. Mean PF (i.e. total number of oocytes per individual) is

much lower for Greenland halibut in the GSL relative to the other

areas examined (Table 3). However, these estimates are con-

founded by differences in fish length as fish sampled from the

GSL were much smaller than those collected from other areas.

Examining PF in relation to fish length revealed a significant

power relationship in all areas (Table 2). Comparison of PF–L re-

lationships suggested no difference in fecundity-at-length among

areas (Figure 4a). Low fecundities observed in the Gulf St

Lawrence were simply due to the smaller size of fish.

Discussion
Greenland halibut have determinate fecundity but differ from

those species for which the autodiametric method has been cali-

brated in that there is a potentially confounding second group of

vitellogenic oocytes, developing for the subsequent year. This

study demonstrates that, despite the unusual oocyte development

strategy, ACCs can still be fitted to estimate fecundity of

Greenland halibut based on the most advanced cohort of oocytes

(G1).

Surprisingly however, Greenland halibut from the various

areas examined here demonstrated spatial differences in ACCs,

with packing density at a given oocyte size being significantly

lower in the GSL than other areas and significantly higher in the

SNF area than in the other areas. To our knowledge, this is the

Figure 2. Whole mount gonad sample. G1, cohort to be released in
the current spawning season (>1000 mm) and G2, cohort to be
released in the next spawning season (<1000 mm). Oocytes between
700 and 1000 mm are opaque and were also included in the ACC
when G1 oocytes were not evidently present. Reference bar
correspond to 1 mm.
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first time that differences between autodiametric curves of the

same species but from different areas have been reported

(McElroy et al., 2013). The reason(s) for these spatial differences

are not certain but could be related to (i) the unusual oocyte de-

velopment pattern, (ii) spatial differences in oocyte biochemistry,

or (iii) differences in sampling methodology used by labs working

in the respective areas.

In the first instance, it is possible that the spatial differences in

ACCs are due to the complex nature of the oocyte development

pattern for this species. Whether expressed as weight or volume

fraction, the changes in gonad size that occur during develop-

ment are attributed primarily to the extensive growth of vitello-

genic oocytes. Other components of the ovaries, including

immature oocytes, tunica, germinal epithelium, connective tissue,

vascular system, glands, melanomacrophage bodies, atretic

oocytes, etc. (Guraya, 1986, 1994; Kurita and Kjesbu, 2009 and

references therein) are thought to have only a minimal influence

(Kurita and Kjesbu, 2009; Schismenou et al., 2012). Indeed, the

relative contribution of vitellogenic oocytes gets even higher as vi-

tellogenesis proceeds. Nevertheless, the relative contribution of

other gonad components may depend on the oocyte recruitment

strategy and may be more variable, e.g. in species with indetermi-

nate fecundity (Kurita and Kjesbu, 2009; Korta et al., 2010;

Schismenou et al., 2012). In Greenland halibut the presence of a

second group of vitellogenic oocytes is a complicating factor in

understanding the relative growth and contribution of various

ovary components. Oocytes in the G1 group are much larger than

those in the G2 group and should still have a much larger influ-

ence on packing density calculations than other ovarian compo-

nents. In fact, G1 influence would be higher the more developed

the gonad (i.e. the larger the G1 oocytes are); subsequently, ACCs

differences between studied areas could be caused by spatial dif-

ferences in maturity stage of the gonad (more or less advance in

the spawning season). A protracted spawning season for

Greenland halibut in the Northwest Atlantic has been reported

(Fedorov, 1968; Junquera and Saborido-Rey, 1995), and although

most of the gonad samples for the present study were taken in

summer, the stage of maturation was not necessarily the same for

all areas. The relative growth dynamics of G1 and G2 oocytes are

not fully understood and any potential for spatial differences in

this dynamic could lead to spatial differences in ACC such as

those observed here. Given the particular oocyte dynamics of this

species, more studies on the dynamics of G2 and successive co-

horts should be carried out to robustly apply the Oocyte Packing

Theory for estimating fecundity in Greenland halibut.

In addition to the relative numbers of the various oocyte clas-

ses, it is also possible that spatial differences in environmental

conditions have influenced the actual biochemical composition

(proteins, lipids, fatty acids, etc.) of those oocytes and hence

influenced their size and weight. It is well known that oocyte

composition varies in response to environment in order to guar-

antee egg development, buoyancy and survival (Nissling and

Westin, 1991; Nissling et al., 1994; Ospina-Álvarez et al., 2012;

Dominguez-Petit et al., 2013). In fact, oocyte characteristics re-

spond not only to maternal attributes (Vallin and Nissling, 2000),

Figure 3. (a) Relationship between OPD and MD in each area; (b) relationship between log-transformed variables considering only the range
between 900 and 1500 mm. Shaded area ¼ 95% CIs.

Table 2. Parameters of ACCs and fecundity–length potential
relationship for Greenland halibut from the different studied areas.

Area
Autodiametric curve Fecundity-length

a b RSE df a b RSE df

Flemish Cap 5.444 � 108 �1.901 163.5 22 0.1592 3.0310 25 470 21
GBs 1.032 � 1010 �2.322 145.7 54 0.3648 2.8288 18 680 54
GSL 7.795 � 109 �2.327 60.6 53 0.0016 4.0960 3644 52
SNF 1.282 � 108 �1.683 156.4 19 0.0779 3.1999 6934 19
FC and GB 6.233 � 109 �2.251 154.4 78 – – – –
All areas

combined
– – – – 0.0669 3.2223 15 460 152

a, intercept; b, slope; RSE, residual standard error; df, degrees of freedom.

Table 3. Range of values (average) of fish size and total fecundity,
estimated based on the autodiametric method, in each study area.

Area Fish size (cm) Total fecundity

FC 60–98 (78.2) 34 598–232 079 (90 133)
GB 51–95 (72.0) 14 854–153 799 (67 778)
GSL 38–73 (48.3) 6062–64 822 (15 029)
SNF 60–88 (70.5) 35 731–121 632 (66 612)

Autodiametric method applied to Greenland halibut fecundity 835

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/75/2/831/4096826 by guest on 24 April 2024

Deleted Text: 1
Deleted Text: 2
Deleted Text: 3
Deleted Text: for example
Deleted Text: ,


but also environmental factors like variations in water density

(temperature and salinity), the quality of available prey to females

and presence of pollutants or other metabolic stressors (Brooks

et al., 1997). Despite a large number of studies about environ-

mental and maternal effects on egg quality, most of them are fo-

cused on egg size and morphology, but few of them pay attention

on egg composition; Johnston and Leggett (2002) observed that

the relationship between egg dry mass and maternal length and

age varied among North American populations of walleye

(Stizostedion vitreum), while Pickova et al. (1997) reported differ-

ences in fatty acid composition of eggs of Atlantic cod from the

Baltic Sea and Skagerrak stocks, suggesting a strong influence of

genetics on egg lipid composition. Although variability of egg

composition among stocks of Greenland halibut has not been ex-

amined, studies on walleye and Atlantic cod support the hypothe-

sis that differences in ACCs of Greenland halibut from the

studied areas may result from differences in egg composition be-

tween stocks, which may be an adaptation to the characteristics

of the spawning habitat.

It is also possible that the observed differences in ACCs are re-

lated to differences in sampling methodology. Although all labs

used 4% buffered formaldehyde as fixative, there were differences

in methodology that influenced the size of the sample being fixed

and such differences could differentially influence oocyte sizes.

NAFC used micropipettes to take a fresh sample of gonad that

was then fixed while IML and IEO fixed a large portion or even a

whole lobe of gonads to take fecundity subsample afterwards.

Formalin-fixation results in an increase in oocyte size, with the

influence of fixation on oocyte size increasing inversely to sample

size (Klibansky and Juanes, 2008; Schismenou et al., 2012). Hence

the weight of micropipetted samples as well as diameter of large

oocytes could be more affected by the fixative than the rest of

samples. Fixed-fresh gonad weight relationship was calculated to

minimize this effect, and no significant differences in results were

observed when fix or fresh sample weight was used to estimate

OPD. On the other hand, ACC based on samples taken in 3 L

area by both IEO and NAFC with the two different methods were

compared and no significant differences were observed (p >
0.05). Unfortunately, the whole range of sample weights was not

available to estimate the influence of fixation depending on

sampling procedure (micropipette vs. large portion), so the com-

parison was not as robust as desirable. However, the results of

fixed-fresh gonad weight relationship and the comparison be-

tween ACCs from IEO and NAFC, indicate that spatial differences

observed are mainly due to biological reasons rather than meth-

odological differences. Nevertheless, the present results should be

interpreted with caution because differences between ACCs from

each area could be higher or lower than those reported in this

study.

In the case of Greenland halibut, the previously described

biases could be minimized by adjusting sampling protocols. For

that purpose, we recommend (i) to select ovaries as close to the

onset of the spawning season as possible, when the influence of

pre- or early vitelogenic oocytes on volume fraction of advanced

yolked oocytes is low (Kurita and Kjesbu, 2009) and (ii) fixing a

large piece of ovary and taking the subsample for estimation of

OPD afterwards (Klibansky and Juanes, 2008) to reduce the im-

pact of fixation on both oocyte diameter and sample weight.

In general, compared with other species, Greenland halibut

shows low OPD at MD (Figure 5), independently of the study

area; more specifically at low MD (<1200 mm), the number of

oocytes per gram of ovary in Greenland halibut is much lower

than expected for some other species. For example, in an ovary

with MD ¼ 1000 mm, expected OPD in Greenland halibut would

be between 800 and 1150 oocytes�g�1 while for the other species

would be between 1540 oocytes�g�1 of European plaice and 1830

oocytes�g�1 of Atlantic herring (Figure 5). At larger oocyte MD

(>1200 mm), the OPD of Greenland halibut is similar to that of

another flatfish species, the European plaice. Differences in ACCs

at smaller oocyte sizes are likely related to the particular oocyte

dynamics of the species, more specifically to the volume fraction

of G2 and previtelogenic cohorts. As oocyte maturation pro-

gresses, the volume fraction of G1 probably becomes so high that

small oocytes volume have an insignificant effect, because of this

no differences are found between Greenland halibut and

European plaice OPD when oocytes are >1200 mm.

Despite differences on ACCs between areas, no differences in fe-

cundity at length were observed, except for slightly lower values for

specimens from GSL. Probably, these differences are due to differ-

ences in female size more than reproductive potential variations

Figure 4. Relationship between log-transformed PF, estimated based on the autodiametric method, and length for (a) each studied area and
(b) all areas combined. Shaded area ¼ 95% CIs.
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because sampled females from GSL are significantly smaller than

those from the other areas. Dwarfism has been recently reported in

other species from the GSL as epigenetic adaptation to climate con-

ditions of the habitat (Lighten et al., 2016). These changes in gene

expression probably affect not only growth but also other physio-

logical aspects like maturation, aerobic capacity or even behaviour.

No studies on the influence of female size on oocyte packing ca-

pacity have been carried out. Similarly, there are no studies on the

effect that female physiology could have on the dynamics of G2

and successive cohorts in Greenland halibut. Investigation of these

aspects could clarify the reasons behind differences of ACCs and fe-

cundity in Greenland halibut from the studied areas.

The main conclusion of this study is that the autodiametric

method can be applied to estimate fecundity in Greenland hali-

but, although the calibration curve should be stock-specific. The

effect of the dynamics of G2 and successive cohorts on the vol-

ume fraction of G1 cohort and, subsequently, on the reliability of

fecundity estimations is still unknown, and because of this, we

recommend using samples with mean oocyte diameter >1200 mm

in order to increase consistency of fecundity estimations and re-

duce bias. In any case, more research on the dynamics of all oo-

cytes cohorts as well as factors (endo- or exogenous) determining

oocyte packing capacity of females and potential habitat-

adaptations of oocytes density would be necessary to understand

geographical differences.
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