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We present a statistical method for intercalibration of fishery surveys methods, i.e. determining the difference in catchability and size selectiv-
ity of two methods, such as trawl gears or vessels, based on data from paired fishing operations. The model estimates the selectivity ratios in
each length class by modelling the size distribution of the underlying population at each station and the size-structured clustering of fish at
small temporal and spatial scales. The model allows for overdispersion and correlation between catch counts in neighbouring size classes. This
is obtained by assuming Poisson-distributed catch numbers conditional on unobserved log-Gaussian variables, i.e. the catch is modelled using
log-Gaussian Cox processes. We apply the method to catches of hake (Merluccius paradoxus and M. capensis) in 341 paired trawl hauls per-
formed by two different vessels, viz. the RV Dr Fridtjof Nansen and the FV Blue Sea, operating off the coast of Namibia. The results demon-
strate that it is feasible to estimate the selectivity ratio in each size class, and to test statistically the hypothesis that the selectivity is
independent of size or species. For the specific case, we find that differences between size classes and species are statistically significant.
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Introduction
Fishery independent surveys are of pivotal importance for fish

stock assessments, where they provide a relative abundance index,

as well as for basic biological research (Millar, 1992). While the

objective of a survey is to assess the abundance of the underlying

population, it only provides a filtered view, specified by the selec-

tivity of the operation. The vessels, riggings, and gears applied in

these surveys often develop or shift over time, as do fishing meth-

ods by captains (Weinberg and Kotwicki, 2008), leading to

changes in size selectivity and overall catch efficiency (Miller,

2013; Thorson and Ward, 2014). To maintain as long-time series

as possible, it is often desireable to combine information from

different operations. However, differences in selectivity of vessel–

gear combinations must be accounted for before time series and

spatial distribution data can be combined and synthesized, which

can be problematic (Axelsen and Johnsen, 2015). To this end,

dedicated experiments may be performed, involving two or more

vessel–gear combinations, with the objective of calibrating these

combinations against each other, i.e. intercalibration. Here, the

difference in catch rates are investigated by performing pairwise

near-simultaneous hauls in the same area, so as to minimize the

time-space variation of the fished population between the hauls.

With such data, the selectivity ratios, which measure the effi-

ciency of the two vessel–gear combinations against each other,

can be estimated for each species and each size class. Then, these

selectivity ratios can be used as calibration factors by adjusting

catches from one type of operation so that they are comparable

with the catches from the other operation (Kotwicki et al., 2017).

Multiple calibration procedures have been proposed and ap-

plied over time, in particular differing in how the size dependency

in selectivity ratios is modelled and estimated. When considering

the selectivity curve of a single gear, a common choice is to re-

strict attention to a parametric family of curves; for example lo-

gistic functions for towed gear and Gaussian functions for gill
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nets (Millar and Fryer, 1999). When comparing two gears, a typi-

cal choice has been to use polynomials in length to describe the

ratio between the two selectivity curves (Lewy et al., 2004; Millar

et al., 2004; Holst and Revill, 2009; Kotwicki et al., 2017). The

coefficients in these polynomials may be estimated in a GLM

framework, but a point of particular importance is to allow for

overdispersion relative to Poisson counts (Lewy et al., 2004). This

overdispersion arises for many reasons, including between-haul

variation in the selectivity (Millar, 1993). If this effect is ignored,

and catches from different hauls are pooled, it will lead to over-

confidence in the accuracy of estimates; a remedy is to use a dou-

ble bootstrap to assess the accuracy of estimates (Millar, 1993;

Sistiaga et al., 2016). An alternative is a GLMM approach where

the relative selectivity curves are allowed to vary between hauls;

either non-parametrically using autoregressive processes

(Cadigan et al., 2006) or parametrically in terms of shifting and

scaling slope base curves (Cadigan and Dowden, 2010).

Alternatives to fixed polynomials include orthogonal polyno-

mials, GAMs, or smooth-curve mixed models (Fryer et al., 2003;

Miller, 2013). A typical problem of these data is the large number

of zero catches; therefore Thorson and Ward (2014) considered

delta-GLMM’s, where the probability of zero catch is explicitly

modelled. Kotwicki et al. (2017) compared three models, two of

which included polynomials to account for the dependence on

length, and one which used GAM’s to this effect, and advocated

cross-validation techniques to select the best fitting model for a

given data set.

When the original assumption is that the catch in each size

class and in each haul is Poisson-distributed conditional on the

abundance, a common approach is to condition on the total

catch in each size class. Then, the catch in the individual haul is

binomially distributed (Millar, 1992). Conceptually, a related ap-

proach is the beta regression, in which a ratio of catches per unit

effort in each size class is assumed to be beta distributed

(Kotwicki et al., 2017).

A common phenomenon for size structures in catches is that

not only are the numbers in each length group overdispersed, but

there is also strong tendency for positive correlations between

nearby size classes in the same haul (Pennington and Vølstad,

1994; Kristensen et al., 2014). If not taken into account, this phe-

nomenon means that fluctuations across size classes in raw selec-

tivity ratios will be over-interpreted. Pragmatically, the

consequence of this is that estimated selectivity ratio curves

should be smoothed, but preferrably, the size correlations should

be included in the statistical model structure. This ensures that

the model describes the fluctuations in data adequately which is a

prerequisite for the statistical analysis to be valid.

Overdispersion and correlation in count data are, in general,

conveniently modelled using compound Poisson distributions.

These are hierarchical models, where it is assumed that the ran-

dom data are generated through a two-stage procedure: In the

first stage, a random intensity is generated for each data point. In

the second stage, this intensity is used as the mean value for

Poisson variables which constitute the count data. With this con-

struction, the variance of the random intensity yields overdisper-

sion relative to Poisson data, while the correlation structure of

the intensity cascades to the count data. A recent example of such

a model structure is Miller et al. (2018). A particular framework

of interest is that of log-Gaussian Cox processes (Diggle et al.,

2013), where the log-intensity is a Gaussian process. Since a

Gaussian process is fully described by its mean and covariance,

this framework is highly operational and lends itself readily to

computations. Log-Gaussian Cox processes have previously been

applied to the spatio-temporal modelling of size-structured pop-

ulations, where it has elucidated distributions of cod (Gadus

morhua) in the North Sea (Lewy and Kristensen, 2009; Kristensen

et al., 2014), of whiting (Merlangius merlangus) in the Baltic

(Nielsen et al., 2014), of the larvae and juveniles of mackerel

(Scomber scombrus) in the North Sea (Jansen et al., 2012, 2015),

and of shallow-water hake (Merluccius capensis) (Jansen et al.,

2016) and deep-water hake (M. paradoxus) (Jansen et al., 2017)

in the Benguela current system.

Since log-Gaussian Cox processes proved suitable for these

applications, it is natural to ask if the framework is also suitable

for the problem of estimating selectivity ratios. The article

addresses this question. When applying the framework of log-

Gaussian Cox processes to the selectivity ratios, the unobserved

size-dependent phenomena include the selectivity ratios, which is

the primary object of inference, but also the local abundance pre-

sent for each pair of operations, as well as aggregations that are

specific to the individual operation. Each of these phenomena is

characterized by a covariance structure, which describes both the

magnitude of fluctuations and their persistence across size ranges.

The construction is a fairly simple application of the log-

Gaussian Cox framework, and has the appeal that we can specify

the properties of the various processes affecting the catch, from

which the properties of the log-intensity follow automatically.

In this article, we describe the framework and the resulting

method. We demonstrate the method using data from a case

where the objective was to investigate differences between two

vessels which used gear with the same specifications: The RV Dr

Fridtjof Nansen and the FV Blue Sea, which have been used for

surveying the stocks of hake in Namibian waters. The objective of

the analysis is to estimate the selectivity ratios between the two

vessels, including confidence intervals, and to test if the ratios de-

pend on size and the particular hake species. In addition, we per-

form a simulation experiment to verify the model, test for

significance of certain specific model components, and compare

the full model with a simplified model where inference is condi-

tional on total catch at length for each station.

Methods
Statistical model
Our method for intercalibration is based on a statistical model

for the selectivity ratios which explains the size composition of

the catch in survey operations, and in particular differences in

this composition between operations conducted differently on

the same fish population. For ease of reference, we refer to these

operations as “hauls”, whether the gear involved is, e.g. trawls,

longlines, or gill nets. Similarly, we refer to differences between

“gear”, even if the actual differences between operations could

also involve different vessels, personel, or procedures. The model

is a non-linear mixed effect model involving both fixed effects

parameters and random effects. We conduct inference in the

model using numerical maximum likelihood estimation, employ-

ing the Laplace approximation (Kristensen et al., 2016) to inte-

grate out random effects.

The observed quantities are count data, Nijk, which represents

number of individuals caught at station i ¼ 1; . . . ; ns, with gear

j¼ 1, 2, and in length group k ¼ 1; . . . ; nl. Thus, at each station i,
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two operations have been performed; one with each gear j, and

the size distribution of the catch has been measured.

We assume that these catches depend on swept area Aij (or a

similar measure of effort) and three sets of random variables,

which all depend on the size class k: First, Uik which for a given

station i characterizes the distribution across size of the popula-

tion encountered by both hauls j. Second, haul-specific fluctua-

tions Rijk in the size composition which we will term the “nugget

effect” with a reference to geostatistics (Cressie, 1993; Petitgas,

2001) and elaborate on the following. Third, the relative selectiv-

ity Sjk which is specific to the gear. Given these random variables

U, R, S, we assume that the count data are Poisson distributed:

Nijk jU;R; S � PoissonðAij � expðSjk þ Uik þ RijkÞÞ

The swept area Aij is a known input to the model. This is Cox

model of catches, also referred to as a doubly stochastic Poisson

model, in that the mean values for the Poisson variates are them-

selves random. The joint distribution of the processes S, U, and R

is Gaussian, so that the entire model is a log-Gaussian Cox pro-

cess (Møller et al., 1998; Diggle et al., 2013). We now describe the

details of the processes S, U, and R (Figure 1).

First, the selectivity (on the log scale) Sjk of gear j in size group

k is the main object of interest. Since we do not know the actual

size distribution of the stock, we cannot estimate the absolute

selectivities S1k and S2k of the two types of gear, but only the rela-

tive selectivity, i.e. S1k � S2k . We therefore require

S1k ¼ �S2k ; (1)

which allows us to focus on S1k . This symmetric choice ensures

that Ni1k and Ni2k are identically distributed, which ultimately

implies that the estimated selectivities Sjk simply change sign if

the gears are relabelled.

We note an alternative would be to enforce S1k ¼ 0 and esti-

mate S2k . This would be reasonable when the first gear is a refer-

ence gear that we measure the second gear against. In that case

the variance on Ni1k would then be smaller than that on Ni2k ,

since Ni2k would contain the extra variance component S2k . This

asymmetry would cascade to the estimates, so that the estimated

relative selectivities depend on which gear is considered the refer-

ence gear. In the present study, we have no reason to consider the

one gear a reference, and therefore we prefer the symmetric

choice S1k ¼ �S2k .

To interpret the selectivities Sjk, it is useful to momentarily dis-

regard the nugget effect R. Then, conditional on U and S, the

expected catches at station i and in size class k with the two types

of gear are Ai1 expðUik þ S1kÞ and Ai2 expðUik � S1kÞ, respectively.

Thus, expð2S1kÞ is the ratio between the expected catch per unit

effort with the two types of gear:

expð2S1kÞ ¼
EfNi1k=Ai1jU; Sg
EfNi2k=Ai2jU; Sg

: (2)

This ratio is termed the selectivity ratio (Kotwicki et al., 2017).

Since this ratio must be positive, and since we do not assume a

particular parametric form, it is convenient to represent it on the

log scale, i.e. in terms of the process S. We model S1k as a random

walk in size k, i.e.

S1ðkþ1Þ � S1k � Nð0;r2
SÞ for k ¼ 1; . . . ; nl � 1

and assume independence between increments. To ensure that

the log-selectivity ratio S is a well-defined stochastic process, we

complement this recursion with initial conditions Sj1 � Nð0;r2
1Þ

where r1 is fixed at a “large” value 10, which from a practical

point of view implies that the level of the estimated log-sensitivity

ratio S is not dictated by the prior model but rather by data.

Next, Uik is a log-density which describes the size distribution

of the fish caught at station i. Specifically, Aij expðUikÞ is the

expected number of fish caught in size group k at station i with a

hypothetical gear which averages the two gears j¼ 1 and j¼ 2, in

absence of nuggets (R¼ 0).

We assume independence of size distributions at different sta-

tions, i.e. Uik and Ui0k0 are independent for i 6¼ i0. At each station

i, we assume that the log-density of the size distribution is a ran-

dom walk over size groups, i.e.

Uiðkþ1Þ � Uik � Nð0;r2
UÞ for k ¼ 1; . . . ; nl � 1;

and that these increments are independent. Thus, the prior on

the log-density U is a standard random walk which enforces con-

tinuity; the most probable density is flat. We add initial

conditions

Ui1 � Nð0;r2
1Þ

with the same “large” standard deviation r1 ¼ 10, so that the

overall level of U is not dictated by the prior model but rather by

the total catch. The parameter r2
U is estimated. Since we assume

independence between stations, we do not attempt to model any

large-scale spatiotemporal structure of the population. We note
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Figure 1. Example of data and model components. Estimated
density expðUÞ of the size distribution at one particular station
(thick solid lines). Different nugget effects R apply to the two hauls
and results in different size structures encountered by the two hauls
(thin solid and dashed lines). The relative selectivity S modifies the
expected catch in each size group and for each haul (not shown).
Observed counts N in each size group and in each haul are shown
with “o” and “þ”, respectively. Note log scale on the count axis; zero
catches are not shown.
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that this is the main difference between this model and the

GeoPop model (Kristensen et al., 2014), where emphasis is exactly

on this spatiotemporal structure.

Finally, the haul-specific fluctuations Rijk are akin to the nug-

get effect in spatial statistics; i.e. they describe variability in the

catch data on very small spatial and temporal scales. While the

term “nugget” originates in applications to mining, where re-

peated measurements on the same location may hit or miss a

nugget, the envisioned mechanism in survey operations is that

the gear may hit or miss aggregations of fish such as schools or

shoals, that have limited range in space and quickly form, move,

dissolve, and regroup. Since the two hauls at one station have

been performed at slightly different locations and times, they will

encounter different aggregations, and therefore Rijk and Ri0 j0k0 are

independent unless ði; jÞ ¼ ði0; j0Þ, i.e. the same haul. Thus, at a

given station i and in a given size class k, Uik models the popula-

tion that is common to the two hauls, while Rijk models indepen-

dent components which are distinct to each haul. We think of the

aggregations giving rise to the nugget effect Rijk as size structured,

and therefore, for a given haul (i, j) and as a function of size k,

the nugget effect arises as the sum of a white noise process and a

zero-mean first-order autoregressive process. Specifically,

Rijk ¼ RWN
ijk þ RAR

ijk

where RWN
ijk � Nð0;r2

WNÞ and are independent. In turn RAR
ijk �

Nð0;r2
ARÞ and are independent for different stations i or gear j,

but correlated between size classes at a given station i and gear j

so that EðRAR
ijk RAR

ijk0 Þ ¼ r2
ARqjk�k0 j. The white noise component

allows overdispersion relative to Poisson without correlation,

while the autoregressive component models the size-specific clus-

tering: If a particular size group is more abundant in the haul

than expected, we would expect the same to apply to nearby size

groups but not necessarily to very different size groups. We note

that this same model structure was used by Cadigan et al. (2006)

with the same motivation, but also that the effect could equally

well represent other differences between the individuals hauls, e.g.

differences in the way the gear is deployed, or combinations of

such differences.

The model has five fixed effects parameters which are esti-

mated, viz. the variance parameters r2
S; r2

U r2
WN; r2

AR, and the

correlation q. In addition there are a large number of random

effects: U has nsnl variables, S has nl, and R has ns2nl.

Implementation
The statistical model in the previous section defines the joint

distribution of the count data, N, and the unobserved random

variables U, R, S, for given parameters rS, rU, rWN, rAR, and q.

The unobserved U, R and S are integrated out using the Laplace

approximation, to yield the likelihood as a function of the five

parameters. The likelihood function is maximized to yield esti-

mates of the five parameters, after which the posterior modes of

the random effects U, R, and in particular S are reported.

The computations are performed in R version 3.1.2; we use the

Template Model Builder (TMB) package (Kristensen et al., 2016)

for evaluating the likelihood function and its derivatives, and in

particular for integrating out unobserved random variables using

the Laplace approximation. Typical run-times for the models

considered in this article, where there are 77 680 random

effects, are 25 s on a standard laptop computer. The code is

available at GitHub in package github.com/Uffe-H-Thygesen/

Intercalibration.

The code and the statistical model are verified by simulation.

Briefly, we simulate 1000 realizations of random effects and data

sets, adjusting the mean of the size distributions U so that the to-

tal catch in the simulated data sets are approximately 17 000 fish,

which corresponds to the total catch in the case described in the

following. For each realization, we re-estimate the parameters in

the model and the log-selectivity ratios. The variance parameters

r2
S; r2

U, r2
WN, and r2

AR are estimated on the log scale. We con-

struct 1r confidence intervals for each of the five parameters us-

ing the estimated standard deviation as computed from the

Hessian of the log-likelihood. Theoretically, these confidence

intervals should contain the true parameters for 68% of the simu-

lated data sets; we find that they do so for between 66% and 71%

of the simulated data sets, except for the parameter log r2
U, where

the coverage is only 48%. For this parameter, the low coverage is

explained by a bias in the estimates: The mean estimate is 0.07

smaller than the true value, which should be compared with an

estimated standard deviation which is also 0.07. While negative

bias is not uncommon for maximum likelihood estimates of vari-

ance parameters, it could possibly be reduced with restricted

maximum likelihood (REML) (Pawitan, 2001). We also con-

structed 2r confidence limits, which should contain the true

value in 95% of the runs, and find that they do so for between

86% and 96% of the simulated data sets. The relative uncertain-

ties on the variance parameters r2
S and r2

AR (measured from the

standard deviation on estimates) are 13% and 7%, respectively,

with a bias which is an order of magnitude smaller. The relative

uncertainty on q is 2% with a bias of 0.2%. In roughly half the

simulations, the model cannot identify the white noise compo-

nent in the residuals and consequently estimates r2
WN to be very

low (r2
WN=r

2
AR < 10�5); in these cases, also the estimated vari-

ance on log r2
WN is very large (i.e. >10) so that the confidence

intervals still cover the true value. While the white noise compo-

nent is effectively removed from the model through the estima-

tion for these simulated data sets, the reduced model is estimated

well. We note that such problems of estimating separate variance

components in hierarchical models are not uncommon (Auger-

Méthé et al., 2016). With this caveat, the simulation experiments

verifies the code and the model.

Data
We apply the method to a case study involving two vessels, the

Norwegian fisheries research vessel Dr Fridtjof Nansen and the

commercial trawler F/V Blue Sea, conducting hake surveys in

Namibian waters.

Following independence of Namibia in 1990, abundance of

Namibia’s hake stocks was monitored by trawl surveys conducted

by the R/V Dr Fridtjof Nansen. From 2000 the Ministry of

Fisheries and Marine Resources in Namibia (MFMR) conducted

the surveys using the F/V Blue Sea. In 1998 and 1999, before the

shift, extensive experiments were performed by completing the

entire annual survey in parallel with both vessels. The two vessels

used Gisund fishing gear and rigging following the same specifica-

tions; nevertheless, some difference in the performance of the

gear must be anticipated (Weinberg and Kotwicki, 2008). The sta-

tions are mapped in Figure 2.

Catch data collected from these surveys were extracted from the

NAN-SIS database in November 2014 (Strømme, 1992).
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The analysis was based on 341 of the 365 pairs of trawl hauls. A total

of 24 pairs were excluded because the trawl durations were less than

15 min and/or the difference in trawl durations exceeded 10 min.

Catch in numbers per length group and the hauling distance

were available for each haul. Figure 3 shows all catches, summed

over all stations, for the two species M. paradoxus (deep-water

hake) and M. capensis (shallow-water hake). Since the two species

have different preferred habitats but are morphologically very

similar (Jansen et al., 2016, 2017), a question of particular rele-

vance is if the two species have the same selectivity.

Results
Figure 4 shows the selectivity ratio from Equation (2), i.e.

expð2S1kÞ, between the RV Dr Fridtjof Nansen and the FV Blue

Sea. Index 1 corresponding to FV Blue Sea, so that a ratio above 1

indicates that the FV Blue Sea has higher expected catch than the

RV Dr Fridtjof Nansen. Estimated parameters, including standard

errors derived from the Hessian of the log-likelihood function,

are shown in Table 1. Since the gears used on the two vessels have

the same specifications, a reasonable hypothesis is that there is no

size structure in these calibration factors. This hypothesis could

be accepted for M. capensis (a likelihood ratio test of the hypothe-

sis rS ¼ 0 has critical significance level p � 0:08) but is rejected

strongly for M. paradoxus (p < 10�9). These p-values have been

computed with the standard asymptotic v2-distribution of the

log-likelihood ratio, which does not strictly apply since the null

hypothesis rS ¼ 0 is on the boundary of the parameter space, so

that the correct p-values may be somewhat smaller. It holds for

both species that the FV Blue Sea is more efficient at catching

larger hakes than the RV Dr Fridtjof Nansen. The size depen-

dency is more pronounced for M. paradoxus, where the FV Blue

Sea is less efficient in the small size classes. The selection of small

M. capensis is similar for the two vessels. The estimated relative

selectivity appears to fluctuate more between neighboring size

classes for M. paradoxus than for M. capensis. This may be be-

cause the smaller catches of M. capensis imply less statistical cer-

tainty, so that the smooth prior is more visible in the estimates. It

could also be connected to the observation that the estimated cor-

relation q is closer to 1 for M. paradoxus than for M. capensis so

that small-scale fluctuations in the data are attributed to the nug-

get effect for M. capensis but, to a larger degree, to fluctuations in

the relative selectivity for M. paradoxus.

Since there is no clear prior explanation why the selectivity

curves for the two species would differ, a reasonable hypothesis is

that they are identical. This hypothesis appears to be strengthened

by the qualitative similarity between the estimated curves in

Figure 4. This suggests to estimate a combined selectivity ratios

for the two species, see Figure 5. In this combined model, we as-

sume that the size distribution and the nugget effect applies to

the two species separately, i.e. the small-scale clustering of fish is

species specific. Since each fit yields a likelihood, it is possible to

select between the two models (i.e. the two species have the same

relative selectivity curve, or two different curves) using an infor-

mation criterion such as that of Akaike, the AIC. The log-

likelihood of the combined model is 258 less than that of the orig-

inal model; this decrease results from the reduction of the num-

ber of parameters (fixed effects) from 10 to 5. Thus, the AIC will

prefer strongly the model where the two species have separate se-

lectivity ratios; for a likelihood ratio test, the critical p-value

would be 10�108. We note that since the primary objective of in-

ference is on the relative selectivity curves, which are random

effects in the model, one could argue that model selection should

be performed with the conditional AIC (Vaida and Blanchard,

2005). While the computation of the conditional AIC is a non-

trivial task in our settings, a bound can be obtained by including

the random effects in the degrees of freedom; this holds because

each random effect in the cAIC framework is associated with a

non-integer degree of freedom between 0 and 1. Then, the differ-

ence in log-likelihood should be compared with a maximum dif-

ference of 76 in the degrees of freedom, which would still favour

strongly separate selectivity ratios for the two species. We con-

clude that the differences between the two species are statistically

significant, even if the relative selectivity curves for the two spe-

cies show similar qualitative features.

To illustrate the importance of the correlation between the dif-

ferent size classes, we fit a new model to this combined data set,

Figure 2. Map of the study area.
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Figure 3. Density (total catch divided by swept area) by size, summed over all hauls. Left panel: M. capensis. Right panel: M. paradoxus.
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Figure 4. Relative selectivity (vessel calibration factor), comparing catches of M. capensis (left) and M. paradoxus (right) with Gisund gear on
RV Dr Fridtjof Nansen and FV Blue Sea. Large values indicate that the FV Blue Sea has higher selectivity. Solid curve: Estimated relative
selectivity (posterior mode). Grey region: Marginal 95% confidence intervals for the relative selectivity, computed as 1.96-r-intervals on the
log scale.

Table 1. Parameter estimate for the two species separately and combined, with estimated standard deviations. Included is also the negative
log-likelihood and the number of parameters (fixed effects) of the model.

Species log rU q log rWN log rAR log rS � log L DF

M. capensis �0:1560:02 0:9560:01 �0:4160:02 �0:0560:04 �4:1760:50 44 940 5
M. paradoxus �0:2560:02 0:9860:01 �0:9560:03 0:0660:05 �3:2960:24 34 607 5
Sum 79 547 10
Combined �0:1960:01 0:9660:01 �0:6160:01 0:0160:03 �3:6860:24 79 805 5
Combined w/o q �0:1860:01 �0:1060:01 �3:8760:27 82 417 3
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in which the autoregressive component of the nugget effect has

been removed, so that the nugget effect acts independently at

each size class (Figure 5, right panel). Removing this component

from the model results in a decrease in the maximum log-

likelihood of 2612 while decreasing the numbers of parameters by

2; thus this autoregressive component is extremely significant

(p � 10�1134). Nevertheless, the estimates from this reduced

model agree qualitatively with the those from the model that

includes autocorrelation in the nugget effect (compare Figure 5,

left panel), although some minor differences are noticeable.

Moreover, omitting the autocorrelation decreases the estimated

variance associated with the selectivity ratio curves, so that the

simpler model indicates higher accuracy than warranted.

Since several previous studies including Millar (1992), Lewy

et al. (2004), and Cadigan and Dowden (2010) have considered a

conditional approach, where inference is conditional on the total

catch at length at each station, Appendix 1 compares such a con-

ditional model with the model as described in “Statistical model”

section. The two models give qualitatively similar results, but the

estimated selectivity ratios from the unconditional model are gen-

erally closer to 1. The unconditional model has slightly narrower

confidence intervals and is slightly more demanding in terms of

computing time.

Discussion
We developed a statistical method for intercalibrating survey gear

and vessels, based on estimating the selectivity ratios from paired

hauls. The method is directly available through an R package on

GitHub. The envisioned application of our method is to adjust

data obtained from multiple surveys, thus allowing them to be

combined to yield a longer time series which may enter into a

stock assessment. The adjustment would take place by multiply-

ing the one series with the estimated selectivity ratios. The uncer-

tainties on the estimated selectivity ratios would then propagate

to the adjusted time series, for example using the delta method as

implemented in TMB (Kristensen et al., 2016). While one could

envision integrated stock assessment models that use multiple

raw survey indices as well as data from paired fishing operations,

the preliminary step of adjusting and combining surveys appears

to be preferable at least in the foreseeable future.

Our model is based on log-Gaussian Cox processes, which

have been used earlier in the context of fisheries surveys to map

spatiotemporal dynamics of stocks (Kristensen et al., 2014; Jansen

et al., 2016), but not in the present way for comparing selectiv-

ities. The framework uses a non-parametric model for the relative

selectivity and allows for overdispersion relative to the Poisson

distribution, as well as correlations between size groups in paired

trawl catches. These features all contribute to larger variability in

data, and the Gaussian structure of the components simplifies

analysis and computations. If the statistical analysis is based on

models which fail to include such variance contributions, there is

a risk that the confidence in the results are inflated, e.g. in the

sense that confidence intervals appear narrower than justified.

Such phenomena of overconfidence are well known, both in gen-

eral statistics and in the specific context of selectivity studies

(Fryer, 1991). They can be seen as a manifestation of the general

bias-variance trade-off. Previous methods to address between-

haul and within-haul variation include bootstrap (Millar, 1993;

Sistiaga et al., 2016) in addition to mixed effects models (Cadigan

et al., 2006). In the present study, an example of such overconfi-

dence is seen in Figure 5, comparing the two panels, where the

right panel is based on a simplified model in which the autore-

gressive component of the nugget effect has been removed.

Recalling that a hypothesis test rejected this simplification, and

noticing that the reduced model produces estimated confidence

intervals which are considerably narrower, we can conclude that

these confidence intervals give an overoptimistic view on the ac-

curacy of estimates. This overoptimism can be attributed to the

omission of an important variance component.

As another example of possible overconfidence, selectivity

ratios can be modelled as constants which apply to all size classes,

as size-dependent functions using parametric forms, or
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Figure 5. Left panel: Relative selectivity, as in Figure 4, for the two species combined. Right panel: Same, but without the autoregressive
component in the nugget effect.
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non-parametrically as we have done here. While specific paramet-

ric families of functions are convenient in the analysis, it is diffi-

cult to hypothesize a reasonable functional form prior to seeing

the data. If a specific functional form is postulated, then it is likely

that parameters in this form can be estimated with seemingly

high accuracy. However, the sensitivity of the results to mis-

specification of the functional form needs to be taken into con-

sideration which is not straightforward. As a result, we would be

prone to overestimate our confidence in estimated selectivity ra-

tio curves, by the same reasoning as in the previous paragraph.

Thus non-parametric curves, such as the ones we provide in this

study, involve the smallest number of assumptions and are the

most conservative choice in the sense of not risking overinterpre-

tation of data. For some applications it is convenient to report

parametric forms. This would be a minor extension, technically,

but a subsequent step of model validation needs to ensure that

the parametric family is suitable. On the other hand, non-

parametric estimates require some regularization to avoid erratic

fluctuations in the estimated curves. Here, we have obtained this

smoothness by using a random walk prior to the relative selectiv-

ity curve, which is a minimal way of enforcing continuity. An al-

ternative is to use smooth basis functions or smoothing splines

(Miller, 2013).

The core of our approach is to take into consideration the co-

variance between different size classes, both in the selectivity ratio

curves that we aim to estimate, and in the catch data. Neglecting

this covariance would require that data are binned into large size

bins with sufficiently high catch numbers, so that we can estimate

the selectivity in each bin without borrowing information from

neighbouring bins. If the true selectivity ratios vary with size, this

would lead to a classical trade-off between bias and variance of

the estimates. Specifying the fluctuations between size classes, as

we have done, bypasses this trade-off and will give consistent

results regardless of how small-size bins are chosen. The crux of

this approach is the correct specification of the covariance struc-

ture. Here, we have taken a conservative approach in that we

model the log-densities U and the relative selectivity S as random

walks across size, which amounts to enforcing continuous depen-

dency on size. In turn, the nugget effect is an autoregressive pro-

cess. The effect of this structure is that large catches across size

groups in a specific haul is attributed to high selectivity (S) or to

high density at the station ðUÞ, whereas an isolated peak in catch

numbers at a given size range in a specific haul is attributed to

size-specific shoaling aggregations, i.e. the nugget effect R.

In our model, the random walks have unbiased and identically

distributed steps. One would expect that the selectivity ratios fluc-

tuate more in those size classes, where the selectivity curve of

each gear changes the most, and less for the large-size classes

where both gears have full selectivity. Similarly, we would expect

that the size distributions are skewed toward the smaller size clas-

ses. Thus, our model structure relies on simplifying assumptions,

and we do not expect the model to fully describe all variability in

the data. Nevertheless, our simulation study indicates that the

model structure allows estimation of the selectivity ratios which is

the objective of the model.

Inspecting the appearance of the nugget effect in the model, we

see that it could equally well be interpreted as a factor that modi-

fies the selectivity of the gear in the operation, although we inter-

pret it as a factor affecting the local abundance. Such random

fluctuations in selectivity have been considered previously (Fryer,

1991; Miller, 2013). Based on the information in data sets such as

the present, the two effects are confounded (Cadigan and

Dowden, 2010): It is not possible to tell if a high catch in one par-

ticular operation was because the gear encountered an aggrega-

tion, or because the gear functioned better than average in that

operation. In both cases, the net effect is a larger variability be-

tween repeated hauls.

A key question that the model aims to answer is if the gear (or

vessel) effect can be assumed to be identical for all size classes,

and it is interesting to notice that this does not appear to be the

case for M. paradoxus. Similarly, it is interesting that the two spe-

cies appear to have different selectivity ratios. Although there is

no single clear biological explanation for this, there will always be

several minor differences in the nets, the rigging, and the way the

hauls are performed, which can contribute to such differences

(Weinberg and Kotwicki, 2008), keeping in mind the numerous

processes that interact and influence the catchability. At the same

time caution most be exercised: The results indicate that the size

structure in the catches would be extremely improbable if the

gear effect acted identically on all size classes, or identically to the

two species, under the assumptions in the model. The result

therefore hinges on the model representing the variability in

catches correctly. While informal model checks suggest that this

is the case, we have not performed a stringent model validation

using, e.g. the techniques in (Thygesen et al., 2017), as the com-

putations would be prohibative. Thus, there is a risk that some

overdispersion in the data is not included in the model, and that

the apparent differences between size classes and species are arti-

facts of this overdispersion.

While our main motivation for investigating the relative selec-

tivity is scientific surveys, another important area of application

is the selectivity of commercial gear. Here, trade-offs between effi-

ciency and environmental impact is one concern that motivates

comparative studies of the selectivity of different gear (Sistiaga

et al., 2015; Vogel et al., 2017).

An underlying assumption behind our analysis is that the two

operations at a given station do not affect each other. This as-

sumption conflicts somewhat with the requirement that the two

operations are performed close to each other, both in space and

time, so that it is plausible that they encounter the same popula-

tion. In contrast, Lewy et al. (2004) focused on the disturbance ef-

fect that a first haul has on the local fished population, and the

implications for the second haul. In the present study, none of

the pairs in the available data set are exceedingly close, so it would

be superfluous to include such effects. Nevertheless, when apply-

ing the method to other data sets, it would be possible to parame-

trize such an effect and include it in the model. A logical

extension would be to let the variance on the nugget effect in-

crease with the distance between the two operations in space and

time; however, it may be difficult to identify such structures reli-

ably. The limiting case of unpaired fishing operations (Sistiaga

et al., 2016) is straightforward to analyze with our present frame-

work but we have not investigated the quality of the resulting

estimates.

Several previous similar studies have used a conditional ap-

proach along the lines in Appendix 1. In the present study, we

found that the estimates from the conditional and unconditional

model differed somewhat with estimates from the unconditional

model generally being closer to 1. The conditional model has

fewer random effects, but computing times are becoming less im-

portant thanks to the efficiency of Template Model Builder. The

unconditional model has the advantage that it is applicable also
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to data sets with unpaired, or partially paired, hauls, but it is con-

ceivable that the prior model for the size distribution in the pop-

ulation (U) is more critical in such situations and would require

further scrutiny.

Conclusion
We have demonstrated the feasibility of estimating size-specific

selectivity ratios from paired fishing operations, using conditional

Poisson distributions while overdispersion and the covariance

structure is modelled using unobserved random fields. These

fields represent stock size composition, small-scale size-structured

clustering, and gear selectivity. The Laplace approximation,

implemented in TMB, allows us to integrate out the many unob-

served random variables so that the model is computationally fea-

sible. The model allows testing of various hypotheses using the

likelihood ratio principle, and model selection using for example

AIC. The model, of which an R implementation is publically

available, yields non-parametric selectivity ratios, including confi-

dence regions, which can be used to integrate survey catches

obtained with different vessels or gear configurations.
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Appendix

Conditioning on the total catch at length and
station
We compare the model as described in “Statistical model” section

with a variant where we condition on the total catch at length and

station. Specifically, let Ni�k ¼ Ni1k þ Ni2k be the total catch at sta-

tion i in length group k. Then the conditional distribution of the

catch in the first haul, Ni1k given this total catch Ni�k is binomial:

Ni1k jU;R; S;Ni�k � Binom

Ni�k ;
Ai1 expðS1k þ Ri1kÞ

Ai1 expðS1k þ Ri1kÞ þ Ai2 expðS2k þ Ri2kÞ

� �
(3)

In turn, the probabilities of the total catches Ni�k are

Ni�k jU;R; S � PoissonðAi1 expðUik þ S1k þ Ri1kÞ
þ Ai2 expðUik þ S2k þ Ri2kÞÞ (4)

The joint density as developed in “Statistical model” section

could therefore alternatively be written as a product of these

binomial probabilities [Equation (3)], the Poisson probabilities

[Equation (4)], and the prior density of the Gaussian processes

U, R, S. We may now condition the inference on the total catch

Ni�k and thus remove the term in the joint density that originates

from the total catches Ni�k , i.e. the terms [Equation (4)]. Since the

size distributions U do not enter into the conditional probabili-

ties [Equation (3)], they only appear in the joint density through

their prior distribution. Thus, the size distributions U vanish after

integration, so they can be removed from the model.

Figure 6 shows the result from this modified model. The figure

should be compared with Figure 4, which shows the correspond-

ing results for the original model. Notice that the estimates of the

selectivity curves are not completely identical, since the omitted

term [Equation (4)] does depend on the selectivities, but still

fairly similar. The estimates from the unconditional model are, in

general, closer to 1, and the marginal confidence intervals are

somewhat wider when conditioning on the total catches. This is

not surprising, since this model excludes the information in the

total catches. The conditional models has 20% less random

effects, which allows faster computations, although our code does

not fully exploit this.
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Figure 6. As Figure 4, but based on the model where we condition on the total catch in each length group, i.e. without the terms [Equation
(4)] in the likelihood.
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