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1Quantitative Ecology and Resource Management, University of Washington, Ocean Teaching Building, Suite 300, Seattle, WA, Box 357941 98195,
USA
2School of Aquatic and Fishery Sciences, University of Washington, Seattle, WA, Box 355020 98195, USA

*Corresponding author: tel: 917-880-9738; e-mail: lcroninfine@gmail.com.

Cronin-Fine, L. and Punt, A. E. There is no best method for constructing size-transition matrices for size-structured stock assessments.
– ICES Journal of Marine Science, 77: 136–147.

Received 20 June 2019; revised 14 October 2019; accepted 18 October 2019; advance access publication 22 November 2019.

Stock assessment methods for many invertebrate stocks, including crab stocks in the Bering Sea of Alaska, rely on size-structured population
dynamics models. A key component of these models is the size-transition matrix, which specifies the probability of growing from one size-
class to another after a certain period of time. Size-transition matrices can be defined using three parameters, the growth rate (k), asymptotic
size (L1), and variability in the size increment. Most assessments use mark-recapture data to estimate these parameters and assume that all
individuals follow the same growth curve, but this can lead to biased estimates of growth parameters. We compared three approaches: the
traditional approach, the platoon method, and a numerical integration method that allows k, L1, or both to vary among individuals, under a
variety of scenarios using simulated data based on golden king crabs (Lithodes aequispinus) in the Aleutian Islands region of Alaska. No estima-
tion method performed best for all scenarios. The number of size-classes in the size-transition matrix and how the data are generated heavily
dictate performance. However, we recommend the numerical integration method that allows L1 to vary among individuals and smaller size-
class widths.
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Introduction
Crustaceans are a highly valuable fisheries resource. For example,

the crab fisheries in the Bering Sea and Aleutian Islands region of

Alaska produced an estimated gross ex-vessel revenue of $259.3

million in 2016 (Garber-Yonts and Lee, 2018). Crab fisheries, in-

cluding those in the Bering Sea, use stock assessment models

to support management. These models estimate the size and

trend of a population as well as reference points, status relative to

reference points, and provide information needed to apply har-

vest control rules. Finfish assessments typically use some version

of an age-structured population dynamics model, which rely

on age-composition data. However, the moulting of crustacean

exoskeletons on an irregular basis removes potential indicators of

age, making it difficult to obtain such data.

Stock assessment of hard-to-age species can be based on size-

structured population dynamics models. These models track

groups within the population by size instead of age, which allow

population dynamic processes, such as mortality, to vary with

size. A wide variety of data types are used to estimation parame-

ters (e.g. size-composition of the annual catches and tag-

recapture data; Punt et al., 2013). Many fisheries use size-

structured stock assessment methods for assessment [e.g. crab

stocks in the Bering Sea and Aleutian Islands region of Alaska,

American lobster (Homarus americanus) in the Atlantic, rainbow

abalone (Haliotis iris) off New Zealand, and tiger and endeavour

prawns off Australia; ASMFC, 2015; Buckworth et al., 2015;

Szuwalski and Turnock, 2016; Marsh and Fu, 2017].

A central aspect of a size-structured population dynamics

model is the size-transition matrix (X). This matrix specifies the

probability of an individual growing from one size-class to an-

other after a certain period of time. Equation (1) is an example of

a size-transition matrix with four size-classes:
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X ¼
X1; 1 X1; 2 X1; 3 X1; 4

0 X2; 2 X2; 3 X2; 4

0

0

0 X3; 3

0 0

X3; 4

X4; 4

2
664

3
775; (1)

where Xi;j represents the probability of an individual transitioning

from size-class i to size-class j after one time step. In Equation

(1), the rows represent the starting size-class and the columns the

ending size-class. The lower triangle portion of the matrix is all

zero since we assume individuals cannot shrink. The modeller

chooses the range of sizes defining each size-class. Each row of

the size-transition matrix sums to one, since individuals must fall

into one of the size-classes after growth.

The values within the size-transition matrix are determined us-

ing an underlying growth function. A variety of growth functions

are available (e.g. Francis, 1988; Turnock and Rugolo, 2013; Punt

et al., 2016). Stock assessments commonly use the von Bertalanffy

growth curve [Equation (2); Punt et al., 2016]:

l2 ¼ l1 þ L1 � l1ð Þ 1� e�ktð Þ; (2)

where l1 is the initial size, L1 is the asymptotic size, k is the

growth rate, t is the number of time steps, and l2 is the ending

size after t time steps, i.e. expected size after growth is a linear

function of current size. In this article, the von Bertalanffy growth

curve is always the underlying growth curve, although the estima-

tion methods described below extend naturally to other func-

tional forms between current and eventual size. The following

function determines the values within the size-transition matrix:

Xi;j ¼
ðlþ

i

l�
i

ðlþ
j

l�
j

F l1i; l2j ; L1; k; h
0� �

dl2jdl1i; (3)

where i represents the initial size-class (which ranges from l�i to

lþi ), l1i is the initial size within size-class i, j represents the ending

size-class (which ranges from l�j to lþj ), l2j is the resulting size

within size-class j, F is the product of the probability distribution

functions (pdfs) for growth variation and the distribution of

individuals within the initial size-class, and h0 is a vector of

parameters that define the pdfs. The parameters needed to con-

struct the size-transition matrix are estimated using tag-recapture

data, which consists of three components for each individual:

the size-at-release (size when the individual is first tagged), the

size-at-recapture, and the time-at-liberty (how long an individual

was in the wild after being tagged).

A common issue when estimating size-transition matrices is

how to account for individual variation in growth. The tradi-

tional method assumes that the underlying growth curve repre-

sents the average growth of the population, with deviation from

the curve due to process error. Realistically, each individual in a

population follows their own growth trajectory. Punt et al. (2016)

and Sainsbury (1980) showed that assuming there is only a single

growth curve when there is individual variation in growth could

bias estimates of growth parameters.

A second (“platoon”) method addresses the assumption that

all individuals roughly follow the same growth curve by dividing

the population into a predetermined number of groups (e.g. 3 or

5), where each group has its own size-transition matrix. Each

size-transition matrix has its own growth curve by having either k

or L1 (with expected growth based on the von Bertalanffy equa-

tion) vary among groups. There is still process error around each

growth curve to account for individual variation within each pla-

toon. This method has been used to model finfish growth (e.g.

Punt et al., 2001, 2017; Methot and Wetzel, 2013). It allows for

multiple growth curves within the population, potentially im-

proving the ability to account for individual variation in growth.

However, within each group, individuals still follow one growth

curve.

A third method to account for individual variation in growth

is to allow individuals to have their own growth curves by allow-

ing either k, L1, or both to vary for each individual. This is ac-

complished by adding additional integrals to Equation (3)

depending on how many parameters vary. For example, if k and

L1 vary Equation (3) becomes:

Xi;j ¼
ð lþ

i

l�
i

ðlþ
j

l�
j

ð1
0

ð1
0

F l1i; l2j ; L1; k; h
0� �

dL1dkdl2jdl1i; (4)

where F is now the product of the pdfs for growth variation, the

distribution of individuals within the initial size-class and the

growth parameter distributions. Several methods exist that allow

either k or L1, but not both to vary among individuals when con-

structing a size-transition matrix (e.g. Troynikov, 1998; Wang

et al., 1995). We developed a new method that allows k, L1,

or both to vary among individuals by constructing the size-

transition matrix using numerical integration.

For this article, we conducted a simulation experiment to evalu-

ate the performances of the three methods for constructing size-

transition matrices. Past work also used simulation to evaluate

methods for constructing size-transition matrices (e.g. Wang et

al., 1995; Punt et al., 2009). Data generation was based on golden

king crabs (Lithodes aequispinus) in the Aleutian Islands region of

Alaska. We evaluated the performance of each method by estimat-

ing size-transition matrices using these methods and comparing

them to a “true” matrix using the differences between the “true”

and estimated matrix values and equilibrium size-structure.

Estimation methods
Method 1: Traditional
The first (traditional) method assumes that every individual in

the population follows the same growth function and thus has

the same growth parameter values. This assumption uses

Equation (3) to determine the values within the size-transition

matrix, but it can be difficult to solve. A common practice is to

assume that, before growing, all individuals have a size equal to

the midpoint of the initial size-class (Punt et al., 1997). This

modification changes Equation (3) to:

Xi;j ¼
ð lþ

j

l�
j

F l2j ; l i; h
0

� �
dl2j ; (5)

where l i is the midpoint of the size-class i. The function F is the

pdf for growth variation, with options such as the normal, log-

normal, and the gamma distributions. This article assumes a

gamma distribution for the pdf because it is used as the error

structure for assessments of golden king crab (Siddeek et al.,

2008). Therefore, F l2j ; l i; h0
� �

is:
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F l2j ; l i; h
0

� �
¼ ðl2j � l iÞai�1

e�biðl2j�l iÞ

CðaiÞbi
�ai

; (6)

where ai and bi are the parameters that define the gamma distri-

bution for the growth increment of individuals that were initially

in size-class i. The values for the parameters ai and bi are com-

puted from the expected growth increment of an individual ini-

tially of size l i (li), which is determined using Equation (2), and

the coefficient of variance for the growth increment (C.V.):

li ¼
ai

bi

ðli � C:V :Þ2 ¼
ai

b2
i

:
(7)

Therefore, there are only three estimable parameters: k, L1,

and CV for this method.

The likelihood function is the sum over all recaptured individu-

als of the natural logarithm of the probability of an individual

tagged in size-class i growing to the recapture size-class j given

that it was at liberty for a time Dt (Moser et al., 2002). These are

the values within the size-transition matrix when accounting for

time-at-liberty (XDt using matrix multiplication). Raising the size-

transition matrix to the time-at-liberty accounts for growth during

the intermediate time steps. Individuals tagged but not recaptured

are not included since they do not provide information on growth.

The likelihood function is not based on Equation (2) since the goal

is to create a size-transition matrix that fits the data. Selectivity

is also included in the likelihood function to account for the

probability of catching an individual of a particular size, i.e.:

ln Lð Þ ¼
X

n

lnðS
l j;n

XDtn½ �
l
�

i;n; l
�

j;n

Þ; (8)

where S
l j;n

is the selectivity for the midpoint of the size-class

into which individual n fell when it was recaptured, l
�

i;n is the size-

class of release for individual n, and l
�

j;n is the size-class at

recapture for individual n. The selectivity function needs to be

pre-specified and is set, for this article, to that used to generate the

simulated data sets (outlined below). The time-at-liberties are inte-

gers representing years for this study because the assessment of

golden king crab focuses on annual growth (Siddeek et al., 2008).

Method 2: Platoon
The “platoon” method assumes that each individual follows one of

several (for this article three) growth curves. This framework is sim-

ilar to finite mixture models in that the population is divided into

sub-groups based on growth. For this article, each growth curve

has the same growth rate parameter (k), but a different asymptotic

size (L1; nominally “small”, “medium”, and “large”). There is a

separate size-transition matrix for each growth curve, i.e.:

Xp;i;j ¼
ðlþ

j

l�
j

Fp l2j ; l i; L1�p; k;rwithin � i

� �
dl2j ; (9)

where Xp;i;j is the probability of an individual in platoon p grow-

ing from size-class i to size-class j after one time step, rwithin � i is

the variance about the platoon-specific growth increment when

the initial size is l i , and L1�p is the asymptotic size for platoon p.

The values for L1�p are determined from the median L1 for the

entire population (L
�
1) and the standard deviation for L1 (rL).

The L1s for the “small” and “large” platoons are determined by

adding or subtracting one standard deviation from L
�
1. The L1

for the “medium” platoon equals L
�
1. If there were five platoons,

the additional two platoons would have L1’s that were 6 two

standard deviations from L
�
1. The pdf for growth variability

within each platoon (Fp) is assumed to be a gamma distribution.

Taylor and Methot (2013) argued that the total variance in

growth increment (r2
total�i) can be broken down into two parts:

the variance within platoons (r2
within�i) and the variance among

platoons (r2
between�i). r2

within�i defines the variance in the growth in-

crement from the underlying growth curve for each platoon while

r2
between�i defines the variation in the expected growth increment

among platoons. The values for the three variances are deter-

mined using q; which equals rwithin�i=rbetween�i
. Details on how this is

done can be found in Supplementary Appendix 1. The value of q
controls the extent to which the platoons overlap. This parameter

is pre-specified because it is difficult to estimate (sensu Taylor

and Methot, 2013). We explored the sensitivity to the pre-

specified value for q by setting it to 0.75, 1.5, 2, 2.5, or 4.

Three parameters are estimated when using the platoon

method; k, L
�
1, and rL. Equation (8) cannot be used to estimate

the parameters because the platoon structure is a theoretical con-

cept. The likelihood function needs to account for the probability

of an individual being in one of the three platoons. Therefore,

the parameters are estimated using:

L ¼
X

n

X
p

S
l j;n

sp XDtn
p

h i
l
�

i;n;l
�

j;n

; (10)

where sp is the proportion of recruits that settle to platoon p and

XDtn
p is the size-transition matrix for platoon p raised to the

time-at-liberty. Multiplying each platoon’s size-transition matrix

by the proportion of new recruits to that platoon addresses the

uncertainty related to which platoon a tagged individual belongs.

The values for sp are 16%, 68%, and 16% to the “small”,

“medium” and “larger” platoons since we assumed that new

recruits are randomly assigned to each platoon such that the dis-

tribution of recruits is approximately normal and mirrors how

L1 is divided between platoons. This ensures that the average

of each individual’s size-transition matrix across all platoons is

approximately the average size-transition matrix across all indi-

viduals if there were no platoons.

Method 3: Numerical integration
This method assumes that individuals follow their own growth

curve. A single size-transition matrix is created, but instead of fo-

cusing on variation around a single curve, this method focuses on

the variation in the values for the growth parameters by allowing

either k, L1, or both to vary for each individual. For our

work, we assume L1 �lognormal L1 ;rL1

� �
, k �

lognormal k ;rk

� �
and that their values and distributions are in-

dependent. This is a simplifying assumption that ignores underly-

ing ecological process that suggests the two growth parameters

may be correlated (e.g. Pilling et al., 2002), although the method

can be extended to allow for such correlation. The values within

the matrix are determined using Equation (4). However, the pdf

for growth variation cannot be written down in closed form when
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all individuals grow according to their own growth curves.

The size of an individual after one-time step depends on its

growth parameters and initial size. Thus, there is no potential

variation in the ending size of an individual. To calculate the

probability of growing into a particular size-class, we force the

range over which one of the growth parameters is integrated in

Equation (4) to depend on the other. Three variants of this

method (Methods 3a, 3b, and 3c) differ in terms of whether k,

L1, or both vary for each individual. The likelihood function

used in Method 1 [Equation (8)] is used for Method 3.

Supplementary Appendix 2 provides technical details on how the

numerical integration method is implemented in this article.

Simulation evaluation
The methods described above, each with different assumptions

about individual variation in growth, result in nine candidate

methods (Table 1, with accompanied abbreviations that will be

used henceforth). The formulae for the variation in the growth

increment for each method are listed in Supplementary Table S3.

We evaluated these methods using pseudo tag-recapture data

generated using an individual-based operating model with bio-

logical characteristics mirroring golden king crab in the Aleutian

Islands (100 simulated data sets for each scenario). The assess-

ment of golden king crab is based on a linear relationship

between initial and ending size, which matches the assumptions

of von Bertalanffy growth curve. Previous analyses used similar

techniques for simulating tag-recapture data to evaluate methods

for estimating size-transition matrices (e.g. Kanaiwa et al., 2008;

Punt et al., 2009). Two operating models are used. In the first op-

erating model (OP1), each individual follows the same underlying

growth curve, with deviations in growth increment due to process

error. In contrast, individuals in the second operating model

(OP2) have their own k and L1 values. The number of data

points could impact the performance of each estimation method.

The golden king crab fishery has approximately 1500 tag-

recapture data points (Siddeek et al., 2016). Thus, we considered

pseudo tag-recapture data sets with 500, 1500, 3000, and 4000

data points to explore the impact of sample size.

The width of the size-classes represents a trade-off between

computational burden (quicker to have larger size-classes) and

biological precision (smaller size-classes allow more detail to be

captured). Szuwalski et al. (2014) showed that increasing size-

class width could increase estimates of abundance. Therefore, the

nine estimation methods constructed size-transition matrices

with size-class widths of 5, 10, or 15 mm for each data set.

Changing the size-class width results in changes to the number of

size-classes. A size-class width of 5 mm has 18 size-classes, 10 mm

has 9, and 15 mm has 6.

We simulated tag-recapture data by representing aspects

of golden king crab life history, such as natural mortality and

removal by the fishery, as a series of Bernoulli trials

(Supplementary Figure S1). The first step is to obtain a value for

the size-at-release for an individual. That individual is projected

forward until it is recaptured, dies in the wild, or it is at liberty

for more than the maximum time-at-liberty for golden king crab

(7 years). For every yearly time step, the individual must first sur-

vive the year. The most recent assessment of golden king crab as-

sumed that natural mortality (M) is the same for all individuals

regardless of size (i.e. 0.18 year�1; Pengilly, 2016). If the individ-

ual survives, it grows according to Equation (2), where t equals 1.

In OP1, all individuals follow the same growth curve, with varia-

tion in the growth increment due to process error, which is

gamma distributed, i.e.:

GI ¼ ðL1 � l1Þð1� e�kt Þ
GI � Cða1; b1Þ

l2 ¼ l1 þ GI

; (11)

where GI is the mean growth increment for an individual with

initial size l1, GI is the growth increment with process error

and a1 and b1 define the gamma distribution whose values are de-

termined using Equation (7) with GI replacing li . In OP2, each

animal follows its own growth curve, with k and L1 randomly

chosen from lognormal distributions.

After growing, the individual encounters the fishery. The prob-

ability of an individual being caught is dictated by the selectivity

curve and fishing effort (q). An individual is considered caught

by the fishery (and hence included in the tag-recapture data set)

if a random draw from U[0, 1] is less than the selectivity corre-

sponding to the size of the individual multiplied by fishing effort.

The assessment for the golden king crab assumes logistic

selectivity:

S ¼ 1þ exp �ln 19ð Þ l2 � h50

h95 � h50

� �� 	�1

; (12)

where h50 is the size-at-50%-selectivity and h95 is the size-at-

95%-selectivity. We assumed that the values for the selectivity

parameters are known when applying the estimation methods.

Four variants of the operating models are considered depend-

ing on how the initial sizes for individuals are selected (using

actual data or a uniform distribution) and the maximum time-at-

liberty (1 or 7 years). Tag-7 is a base-case as it is the closest

Table 1. Methods for constructing a size-transition matrix and associated estimable parameters.

Method Method abbreviation Description Parameters estimated

Method 1 Fixed Individuals follow a common curve k, L1, r2

Method 2a Plat 0.75 Platoon with q ¼ 0.75 k, L
�
1 , rL

Method 2b Plat 1.5 Platoon with q ¼ 1.5 k, L
�
1 , rL

Method 2c Plat 2 Platoon with q ¼ 2.0 k, L
�
1 , rL

Method 2 Plat 2.5 Platoon with q ¼ 2.5 k, L
�
1 , rL

Method 2c Plat 4 Platoon with q ¼ 4.0 k, L
�
1 , rL

Method 3a Vary k Variation in k L1, k , rk

Method 3b Vary Linf Variation in L1 k, L1 , rL1
Method 3c Both Variation in L1 and k L1 , rL1 , k , rk
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representation of the actual gold king crab tag-recapture data.

Uniform-7 explores the impact of the tagged animals representing

a larger range of sizes compared to the distribution in Tag-7

(Supplementary Figure S2). Tag-1 explores reducing the conflict

between discrete (size-transition matrix) and continuous

(von Bertalanffy) growth since the number of time steps has been

reduced to one. Uniform-1 combines the factors that constitute

Uniform-7 and Tag-1, and would be expected to lead to the

best performance because it provides the most informative

data (broad range of sizes-at-release) and avoids dealing with the

distinction between continuous and discrete growth. We used

864 scenarios to explore the impact of sample size, size-class

width, initial size distribution, and maximum time-at-liberty

(Supplementary Table S4).

The parameters of the operating model, their associated values,

and the information on which those values are based are given in

Supplementary Table S5. Fishing effort was chosen so that the

distribution of the time-at-liberty resembles the actual

distribution of the time-at-liberty for golden king crab

(Supplementary Figure S3).

Evaluation
Three methods are used to evaluate the performance of the esti-

mation methods. The first determines how well each method

mimicked the simulated data. This involved first creating a distri-

bution for the simulated sizes-at-recapture. The model-estimate

of this distribution was computed by: (i) grouping the simulated

data by size-class-at-release and time-at-liberty, (ii) multiplying

the number of individuals in each of these groups by the row of

XT (where T is the time-at-liberty) representing their predicted

size-classes-at-recapture, and (iii) summing the predicted size-at-

recapture distribution over all recaptures. We visually compared

these values and the number of size-at-recaptures for each size-

class from the tag-recapture data produced through simulation

when estimating the size-transition matrix.

EQ−IV EQ−NV

X−IV X−NV

Fixe
d

Plat 0.75
Plat 1.5

Plat 2
Plat 2.5

Plat 4
Vary k

Vary L
inf

Both
Fixe

d

Plat 0.75
Plat 1.5

Plat 2
Plat 2.5

Plat 4
Vary k

Vary L
inf

Both

0

2

4

6

8

10

12

0

2

4

6

8

10

12

Lo
w

es
t m

ed
ia

n 
di

ag
no

st
ic

 v
al

ue
 c

ou
nt

Scenario
Uniform−1
Unifrom−7
Tag−1
Tag−7

Value
0
3
6
9

12

Figure 1. Counts for the number of times the median value, over 100 runs, of a particular diagnostic for an estimation method was among
the lowest (meaning performed best) for a particular scenario. Methods were considered not appreciably different from the lowest value for
the matrix diagnostic if the difference in median values was less than 0.1 from that of the lowest. For the equilibrium diagnostic, the
discrepancy threshold was 0.01. The colours represent how the initial size was generated (“Uniform”—uniform distribution, “Tag”—actual
tag-recapture data) and the maximum time-at-liberty (1—one year or 7—seven years). The counts arise from the options for sample size
(four options) and size-class width (three options) with a maximum possible value of 12 for each colour for each estimation method.
The titles indicate the diagnostic (X—matrix diagnostic, EQ—equilibrium diagnostic) and whether there is individual variation in growth in
the operating model (IV—Individual Variation; OP2, NV—No Individual Variation; OP1).
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The second performance metric, the matrix diagnostic, com-

pares the “true” and estimated values for the size-transition ma-

trix. The “true” matrix for both operating models is constructed

using simulation. For OP1, values for l1i are randomly drawn

(U[l�i , lþi ]) and inserted into the first line of Equation (11) (with

t¼ 1) to determine the expected growth increment using the L1
and k values from OP1. This value, and the CV from OP1 are

used to determine a gamma distribution from which a random

value is drawn, added to l1i (representing the ending size) and

recorded. This process is repeated 30 000 000 times. The propor-

tion of ending sizes that fall within each size-class determines the

“true” size-transition matrix. In contrast, the creation of the

“true” matrix for OP2 draws new values for L1 (lognormal distri-

bution [L1, rL1]) and k (lognormal distribution [k , rk]) for

each l1i. These values are inserted into Equation (2) (with t¼ 1)

to determine the ending sizes. The remaining steps match those

used for constructing OP1’s “true” size-transition matrix after

obtaining the ending sizes.

The matrix diagnostic is the sum of the absolute differences

between the estimated and “true” values of the size-transition

matrix divided by the number of positions in the upper triangu-

lar portion of the size-transition matrix times 100 (equation

shown in Supplementary Appendix 3). This diagnostic is

not based on relative errors because some of the entries of

the size-transition matrix can be very small. Relative errors

can make the differences between small values seem inappropri-

ately important. When comparing the platoon method to the

“true” matrix, the values within each platoon matrix are multi-

plied by the proportions of recruits added to that platoon and

summed up to get a single estimated value. Differences in the

matrix diagnostic below the second decimal place, which

represents the fourth decimal place for the values in the size-

transition matrix, were not considered “appreciable” since the

“true” matrix values were only repeatable to the third decimal

place.

The third performance metric, the equilibrium diagnostic,

compares the equilibrium size distribution between two theoreti-

cal population, each with a mortality rate of 0.18 year�1 (assumed

rate of natural mortality for Aleutian Islands golden king crab)

that used either the “true” or estimated size-transition matrix.

We assumed that all recruits in these theoretical populations

enter the first size-class. The equilibrium size-structure is deter-

mined by taking the right eigenvector of the product of the size-

transition matrix and a matrix with the exponentiated mortality

rate on the diagonals. The estimated and “true” equilibrium size-

structures are compared using the average of the sum of the
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absolute error times 100 for each simulation (equations shown in

Supplementary Appendix 3).

Results
The estimation methods were able to mimic the simulated data

sets well (Supplementary Figure S4). Fits improved with a smaller

number of size-classes. Increasing the sample size also improved

fits (Supplementary Figure S5). The simulated distribution of

sizes-at-recapture depends on whether the initial sizes were gener-

ated from the actual tagging data versus a uniform distribution.

However, this did not affect the estimation methods’ ability to

mimic the data (Supplementary Figure S6).

No estimation method was consistently among the best or

worst performing for all scenarios for either the matrix or the

equilibrium diagnostic (Figures 1 and 2; see Supplementary Table

S6 for a tabular summary) except for Plat 0.75, which was always

the worst for the equilibrium diagnostic (Figure 2). Estimation

method performance was not consistent between diagnostics. For

example, Plat 0.75 and Plat 1.5 performed well for the matrix di-

agnostic (top panels of Figure 1), especially when there was indi-

vidual variation in growth (OP2; upper left panel of Figure 1) but

they almost were never among the best methods for the equilib-

rium diagnostic (bottom panels of Figure 1).

Boxplots of the matrix and equilibrium diagnostics were used

to explore the differences in performance among estimation

methods (medians of the boxplot distributions listed in

Supplementary Tables S7–S10). In general, increasing sample

size reduced the among-simulation variation in the diagnostics

while differences in performance between estimation methods

remained relatively consistent. Consequently, our boxplots

only show results for a sample size of 1500 (this is approximately

the tag-recapture sample size for golden king crab; see

Supplementary Figures S7–S10 for the full set of boxplots show-

ing all sample sizes).

Ability to match the true size-transition matrix
(matrix diagnostic)
Figures 3 and 4 show the distributions for the matrix diagnostic

for OP1 and OP2, respectively. Low values imply better perfor-

mance. In general, more size-classes resulted in lower values with

a few exceptions such as Uniform-1, OP2, Plat 0.75 when com-

paring 6 vs. 9 size-classes. The best performing method varied
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Figure 3. Boxplots of the matrix diagnostic for OP1. The colours indicate how the initial size was generated (Uniform—uniform distribution
or Tag—actual tag-recapture data) and the maximum time-at-liberty (1 or 7 years). The letters in the upper right-hand corner indicate the
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based on scenario and number of size-classes. Estimation meth-

ods performed best when the tag-recapture data were generated

from a uniform distribution with a few exceptions such as when

comparing Uniform-7 to Tag-1 for the numerical integration

methods using 18 size-classes for OP2. The impact of the maxi-

mum time-at-liberty varied based on the initial size distribution.

With a Uniform distribution, a 1 year time-at-liberty generally

performed better than 7 years at liberty. However, the difference

in performance between the maximum time-at-liberties was very

small for 9-size-classes and OP1. The 7 year maximum time-at-

liberty performed better for most scenarios using actual tagging

data for OP1. However, for OP2, the difference between time-at-

liberties depended on the number of size-classes with 7 years do-

ing better with fewer size-classes and 1 year better with more size-

classes.

Calculation of the equilibrium size-structure
(equilibrium diagnostic)
Figures 5 and 6 show the distributions for the equilibrium diag-

nostic for OP1 and OP2, respectively. The lowest value (i.e. best)

occurred with more size-classes, although the best performing

method again depended on the number of size-classes and sce-

nario. A uniform initial size distribution generally resulted in a

better performance except when comparing Tag-1 and Uniform-

7 with OP2 and 18 size-classes. The influence of the maximum

time-at-liberty varied based on the initial size distribution. A

1 year time-at-liberty performed best on average with a uniform

distribution, with the exception of OP1 with 6 size-classes where

there was barely any difference between the maximum time-at-

liberties. When the tagging data were based on the actual tagging

data, a 7 year maximum time-liberty performed better with fewer

size-classes but the difference between the maximum time-at-

liberties decreased as the number of size-classes increased.

This trend resulted in 1 year time-at-liberty performing best when

there were 18 size-classes, with OP2.

The poor performance of the plat 0.75 method
The poor performance of Plat 0.75 for the equilibrium diagnostic

(Figure 2) was unexpected and relates to q. Small q values imply

a large rbetweeni and small rwithini , leading to less overlap in growth

curves between platoons. Determining the equilibrium size-

structure for the platoon method involves calculating the equilib-

rium size-structure for each platoon then combining them using

the proportion of recruits to each platoon. The forced separation

of growth trajectories with small q values is amplified when the

equilibrium size-structure is calculated, leading to larger
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Figure 4. As for Figure 3, except that the operating model is OP2.
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differences between the “true” and estimated equilibrium size-

structures. Reversing the order of operation by combining each

platoon’s size-transition matrix first improves the ability to esti-

mate the equilibrium size-structure. However, this ignores the

platoon growth structure. Increasing q produces a similar effect

because there is more overlap between the size-transition matrices

(Supplementary Figure S11). This explains why platoon methods

with higher q values occasionally perform best in terms of the

equilibrium diagnostic (Figure 1). Unfortunately, estimating q is

not an option because it is strongly negatively correlated with rL

(results not shown).

Discussion
No estimation method consistently performed best across all fac-

tors considered in the analyses. The number of size-classes, maxi-

mum time-at-liberty, and how size-at-release was generated

influenced performance. In addition, the matrix and equilibrium

diagnostic metrics occasionally produced contradictory conclu-

sions in terms of which estimation method performs best.

Although no method performed best, the goal of this work was to

determine which estimation method was most robust, and best

for general use.

A surprising result is the conflicting outcomes between the ma-

trix and equilibrium diagnostics. Specifically, Plat 0.75 and Plat

1.5 were amongst the best methods for the matrix diagnostic yet

were almost never the best in terms of the equilibrium diagnostic.

In fact, Plat 0.75 had the poorest performance for the equilibrium

diagnostic for all scenarios. The difference in performance be-

tween the two metrics occurs in part because different size-

transition matrices can produce the same value for the matrix di-

agnostic, but not for the equilibrium diagnostic. This is due in

part because the diagonals of the size-transition matrix heavily in-

fluence the equilibrium diagnostic.

What influences performance?
A goal of this work was to determine which estimation method is

the most robust; unfortunately, there is no simple answer to this

question. In general, the lowest value for the matrix and equilibrium

diagnostic occurred with Uniform-1, with the largest number of

size-classes having the smallest values overall (top boxplot of Figures

3–6). When the “true” matrix had individuals following a common

growth curve, the Fixed method performed best (Supplementary

Tables S7 and S9) and when individuals followed their own growth

curves, Vary k performed best (Supplementary Tables S8 and S10).

Decreasing the number of size-classes resulted in other estimation
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Figure 5. As for Figure 3, except that the metric is the equilibrium diagnostic.
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methods performing best. A possible reason for this is that fewer

size-classes lead to an increase in size-class width causing the source

of growth variability to be more difficult to detect. In addition,

the assumption that individuals are uniformly distributed within a

size-class is violated to a greater extent for wide size-classes.

The best estimation method also depends on the time-at-

liberty. Size-transition matrices assume that growth is a discrete

process. Thus, the distribution of size after two or more years for

a given initial distribution of sizes is the product of the size-

transition matrix two or more times. Likelihood Equations (8)

and (10) rely on the assumption that the distribution of size

within each size-class is uniform for all time steps, even post-

growth. This is not the case, and the assumption becomes increas-

ingly more violated each time the size-transition matrix is

multiplied.

The numerical integration method assumes that initial size is

uniformly distributed, while the traditional and platoon methods

assume the initial size for individuals is the midpoint of the start-

ing size-class. Consequently, the numerical integration estimation

methods are more consistent with the operating model when the

initial sizes are generated from a uniform distribution (at least for

a time-at-liberty of 1 year). The actual tagging data have a bell-

shaped distribution over the entire size range (Supplementary

Figure S2), which could explain why having a greater number

of size-classes performs better since the distribution of sizes

within smaller size-class widths more accurately mimic a uniform

distribution.

The bell-shaped distribution of tag-recapture data does not

always adequately represent all size-classes. Some size-classes,

typically the larger ones, can have fewer data points. This reduces

the contrast in the data making it more difficult to determine the

size-transition matrix values associated with the data poor size-

classes.

Next steps
The next steps in this work relate to estimation methods and sce-

narios. Additional estimation methods could be considered such

as allowing k rather than L1 to vary among platoons for the

platoon method and allowing for other distributions of sizes

within the initial size-class. The number of years of tagging data

used to estimate the size-transition matrix had more impact than

anticipated. Analyses examining the trade-off between using fewer

tag-recaptures (perhaps only those tags at liberty for a year or

two) and reducing bias vs. using more tags and increasing bias

but reducing variance should be conducted. This trade-off will

likely depend on total sample size. Our analyses assumed that
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Figure 6. As for Figure 3, except that the metric is the equilibrium diagnostic and the operating model is OP2.

Size-transition matrices for size-structured stock assessments 145

D
ow

nloaded from
 https://academ

ic.oup.com
/icesjm

s/article/77/1/136/5637824 by guest on 25 April 2024

https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz217#supplementary-data
https://academic.oup.com/icesjms/article-lookup/doi/10.1093/icesjms/fsz217#supplementary-data


selectivity was known but there will always be some uncertainty

in this regard. Future analyses should also examine sensitivity to

errors in estimates of selectivity as well as assess how robust the

results are to the parameters that determine growth and natural

mortality. Many stock assessments that use size-structured mod-

els, including that for golden king crab, estimate the probability

of a crab moulting. Tests should be conducted to examine how

including moult probability influences the performance of the es-

timation methods.

Conclusions
This work has shown that numerical integration methods for esti-

mating a size-transition matrix are viable. However, it is difficult

to say which estimation method is the best due to confounding

influences from the number of size-classes, maximum time-at-

liberty, and the distribution of sizes at tagging. If we assume that

crabs in the wild follow their own growth curve then Tag-7 and

Tag-1 are the more realistic cases (non-uniform distribution of

initial sizes, actual tagging data used). Therefore, we recommend

Vary Linf as the default with smaller size-class widths and possi-

bly restricting the tagging data to only 1 year. Vary Linf is always

among the best-performing methods for Tag-1 for the matrix di-

agnostic (Figure 4; Supplementary Figure S12). For the equilib-

rium diagnostic, it is among the best performing when there are

fewer size-classes (Figure 6; Supplementary Figure S13). Vary Linf

was also never among the worst performing methods for Tag-1

(Figure 2). Plat 0.75 and Plat 1.5 dominate Tag-7, yet should be

avoided as their performance, particularly in terms of estimating

the equilibrium size-structure, is poor. However, other methods

can be valid alternatives depending on which characteristics inter-

est the analyst.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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