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Fisheries independent surveys support science and fisheries assessments but are costly. Evaluating the efficacy of a survey before initiating it
could save costs. We used the NORWECOM.E2E model to simulate Northeast Atlantic mackerel and Norwegian spring spawning herring dis-
tributions in the Norwegian Sea, and we ran vessel transects in silico to simulate acoustic-trawl surveys. The simulated data were processed us-
ing standard survey estimation software and compared to the stock abundances in the ecosystem model. Three existing real surveys were
manipulated to demonstrate how the simulation framework can be used to investigate effects of changes in survey timing, direction, and cov-
erage on survey estimates. The method picked up general sources of biases and variance, i.e. that surveys conducted during fish migrations
are more vulnerable in terms of bias to timing and changes in survey direction than during more stationary situations and that increased ef-
fort reduced the sampling variance.
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Introduction
A central part of a fisheries management system is monitoring

programmes supporting the advice process (Hilborn and Walters,

2013). Depending on the fish stock, these programmes support

assessments of a range of fish stocks, including full-fledged ana-

lytical age-based assessments. Regardless of the specific case, opti-

mizing the available effort is a key challenge for any monitoring

programme. Several measures exist to assess the efficacy of a

monitoring programme in relation to the objectives, including

sampling variance estimates, internal consistency between years,

the goodness of fit to assessment models, etc. When several inde-

pendent data series are available, the relative goodness of fit for

these series to the assessment model is often used as an indication

of performance (Hilborn and Walters, 2013; Berg and Nielsen,

2016). This provides valuable feedback to the agencies when

prioritizing their effort, but there is an obvious caveat: The ap-

proach requires the data collection to be carried out for several

years before any evaluation is possible, which is highly expensive.

Also, there is often a reluctance to cancel a monitoring pro-

gramme that has run for several years because the earlier effort

will be lost, and, if the signal-to-noise ratio is low, the programme

may still prove its worth when the duration of the time series is

sufficient.

One approach to evaluate survey designs without prior data

collection is to simulate the data. This requires a model that is fit

for purpose and can be done on several scales, from small-scale

features (Holmin et al., 2012) to larger-scale distribution patterns

(Gimona and Fernandes, 2003). Spatial distribution models or

mechanistic ecosystem models can be used to simulate fish abun-

dance and distribution, and this can be coupled with an
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observation model to simulate survey data (Handegard et al.,

2013). This is like an observation system simulation experiment

(OSSE) used in physical oceanography (Lahoz et al., 2005;

Francis et al., 2018). Questions on the sensitivity of monitoring

programmes to shifts in time or coverage, or different designs,

can be addressed, and methods where auxiliary information may

be used can also be included.

For the simulation approach to be useful, the ecosystem model

should be able to project plausible, spatiotemporally explicit dis-

tributions of fish abundance, biomass, and size for the near future

(e.g. the following survey season). A more practical aspect is that

building such a model for this specific purpose is expensive, and

utilizing existing infrastructure is a requirement. In our case, the

spatiotemporally explicit distributions of fish abundance are

modelled using individual based models (IBMs) (Grimm and

Railsback, 2005) coupled to an ocean circulation model. The

NORWegian ECOlogical Modeling system End-to-End

(NORWECOM.E2E) is a fully coupled 3-dimensional physical,

chemical, and biological model system (Aksnes et al., 1995;

Skogen et al., 1995; Skogen and Søiland, 1998) that contains sev-

eral IBM modules, including Northeast Atlantic (NEA) mackerel

(Scomber scombrus), Norwegian spring spawning (NSS) herring

(Clupea harengus), blue whiting (Micromesistius poutassou), and

Calanus finmarchicus (Huse and Fiksen, 2010; Hjøllo et al., 2012;

Utne et al., 2012a). The NORWECOM.E2E model has previously

been applied to model distributions of NSS herring, NEA mackerel,

and blue whiting in the Norwegian Sea (Utne et al., 2012b). The

IBMs include the full life cycle of each species and provide informa-

tion on, e.g. growth, mortality, reproduction, movement, and

trophical interactions at a high spatial and temporal resolution.

Collecting survey data is costly, and if we could efficiently uti-

lize other platforms, we could improve the data collection under-

pinning the management decisions.

The objectives of this article are (A) to present a framework

where we (A1) use the NORWECOM.E2E model to simulate the

spatially explicit NEA mackerel and NSS herring distributions in

the Norwegian Sea, (A2) develop the method to run a trawl survey

and acoustic-trawl survey in silico based on the NORWECOM.E2E

model, (A3) estimate the abundance based on the simulated data

using standard software (StoX), and (A4) develop a method to

compare the estimates with that of the model state and (B) to test

the framework by simulating three major pelagic surveys in the

Norwegian Sea targeting NSS herring and NEA mackerel, estimat-

ing the effect of changes in timing and coverage.

Material and methods
The simulation framework (objective A)
The ecosystem model (objective A1)
We used the NORWECOM.E2E (Skogen et al., 1995; Skogen and

Søiland, 1998) ecosystem model to model the distributions of

NSS herring (C. harengus) and NEA mackerel (S. scombrus).

The model is composed of several modules and is built on a

nutrients, phytoplankton, zooplankton, and detritus (NPZD)

model. Calanus finmarchicus, a key stone species in the

Norwegian Sea, is modelled separately using an IBM with 2-way

coupling to the NPZD model (Hjøllo et al., 2012; Huse et al.,

2018). A pelagic fish IBM (Utne et al., 2012b) is used to predict

fish distribution and abundance and is two-way coupled to the C.

finmarchicus IBM and the NPZD model. The two-way coupling

includes predator prey interactions, i.e. removal of zooplankton

biomass by fish predation in both the NPZD model and the C.

finmarchicus module. Increased zooplankton mortality also

decreases grazing pressure on phytoplankton. Bottom-up pro-

cesses impact biomass available at each trophic level. The NEA

mackerel and NSS herring modules are run separately, and any

interactions between these are not included. It has been hypothe-

sized that predation by NEA mackerel on NSS herring larvae can

be a significant mortality source for herring larvae (Skaret et al.,

2014), but although eggs and larvae are represented in the model,

the eggs and larvae were not included in the zooplankton pool.

This may affect the recruitment of NSS herring in multiyear

runs, but it will have little impact in the context of evaluating sur-

vey design.

The NORWECOM.E2E model was run in offline mode using

physical forcing (atmosphere and ocean) as inputs. The physical

forcing used by the model is wind and short-wave radiation,

ocean currents, salinity, temperature, water level, and sea ice,

taken from a downscaling (10-km horizontal resolution using the

ROMS model) of the Norwegian Earth System Model

(NorESM1_ME) climate model under a rcp4.5 emission scenario

(IPCC, 2013; Skogen et al., 2018). The model domain covers the

Norwegian Sea, the Barents Sea, and (parts of) the North Sea

(Figure 1). The simulation period was 2010–2012, but only results

from 2012, which were less influenced by the initial state, were

used. The climate model represents the statistics of the climate in

a period, and forcing is representative of present-day climate and

not the specific year.

The IBM modules include the full life cycle including

growth, mortality, reproduction, and movement for both C.

finmarchicus and the pelagic fish. Fishing mortality is included

for the pelagic fish where the official ICES harvest control rule

is applied. The fishing mortality is applied evenly across the

model domain, resulting in no spatiotemporal explicit fishery.

The IBMs are implemented using super-individuals (Scheffer

et al., 1995) where each super-individual s has a unique posi-

tion and represents Ns number of plankton or fish of a certain

age and size. The model has been validated by comparison

with field data in the Nordic and Barents Seas (Skogen et al.,

2007; Hjøllo et al., 2012; Utne et al., 2012b; Skaret et al.,

2014). The biogeochemical component is validated against

observations of chlorophyll a at station M in the Norwegian

Sea (Skogen et al., 2007), and the C. finmarchicus IBM fields

is compared to biomass, abundance, and the annual produc-

tion in the Norwegian Sea (Hjøllo et al., 2012). Movement

and the resulting horizontal distribution of NSS herring and

NEA mackerel are validated against observed distributions in

the period 1995–2006 (Utne et al. 2012b). The horizontal fish

distribution is constrained by temporal and spatial sampling,

and in this study, the feeding migration for both species was

driven by a generic migration routine based on temperature and

food niches (see Supplementary material S1 for details and vali-

dation and Supplementary materials S2 and S3 for a visualiza-

tion). The model was run for each fish IBM module separately,

either NSS herring or NEA mackerel. In addition, the C. fin-

marchicus IBM was included in all simulations. The NEA mack-

erel migrates in and out of the model grid in the southern part

of the model domain. This is modelled as a point source/sink

within the model domain (north of the Shetland Islands) and

may cause unrealistic distribution close to that singularity.

A challenge of the NORWECOM.E2E model that is particu-

larly relevant for NEA mackerel is the implementation of the
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boundary conditions to the south and west. Since the mid-2000s,

NEA mackerel has extended its range westwards along the south

coast of Iceland towards the east coast of Greenland (Olafsdottir

et al., 2019). However, the model domain only partially covers this

area, and in the present study, the simulation of NEA mackerel is

only representative of the part of the population that migrates into

the Norwegian Sea and the area east of Iceland.

For both the NSS herring and NEA mackerel simulations, daily

position, weight, length, and abundance of all super-individuals

were stored. In addition, the super-individuals were interpolated on

the model grid to produce area density for each day. In the follow-

ing, we refer to the model simulations as the true abundance.

The in silico survey (objective A2)
The output from the NORWECOM.E2E model was used as input

to an acoustic-trawl survey simulator, which generates acoustic

and biotic data based on a specific survey design, such as parallel

transect lines. The acoustic-trawl survey simulator assumes two

inputs: the area density field providing the spatial distribution of

abundance, which is used to simulate the acoustic data, and the

set of super-individuals from which biological data (trawl data)

are simulated.

The area density from the NORWECOM.E2E model was inter-

polated at the centre positions of log-distances of length 0.1 nau-

tical miles along the simulated survey track, resulting in

interpolated area density qW in g m�2. The area density was con-

verted to nautical area scattering coefficient (NASC), which is the

standard acoustic output from acoustic-trawl surveys

(Maclennan et al., 2002). The associated trawl sampling was sim-

ulated by drawing a fixed number of fish with replacement from

super-individuals inside a radius of 10 nautical miles around ran-

domly selected log-distances. Eggs, larvae, and juveniles were ex-

cluded from the NORWECOM.E2E model to avoid artefacts of

spawning and migration of juveniles in and out of survey region.

Simulation of NASC
In the conversion from area density to NASC, the first step is to

convert to number density

qN ¼
qW

W0

;

where W0 is a reference weight of the fish in g. The reference

weight was modelled by a cubic length–weight relationship (Hile

1936) W0 ¼ a L0
b, where a defines the weight of a fish of length

1 cm, b defines the growth, and L0 is a reference length of the fish.

When b ¼ 3, there is an equal growth in all directions. The refer-

ence length L0 was estimated from the super-individuals inside

the survey region of each day by the square root of a weighted av-

erage of the square of fish length, i.e.

L0 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiX

s

Ls
2Ns=

X
s

Ns

r
;

where Ls is the fish length and Ns is the number of individuals

represented by each super-individual. In this estimate, the

squared fish length was applied to reflect acoustical backscatter,

which is proportional to cross-sectional area of the fish.

The parameters a and b were fitted to the super-individuals inside

the survey region of each day by a weighted log-linear regression

log Wsð Þ ¼ log að Þ þ b log Lsð Þ;

weighted by Ns , where Ws is the weight of super-individual s.

The NASC is defined as NASC ¼ 4pð1852Þ2sa (Maclennan

et al., 2002), where

sa ¼ qN rbs;0; (1)

given a reference backscattering cross-section rbs;0. The reference

backscattering cross-section was calculated by applying the refer-

ence fish length to the standard target strength of herring (Foote,

1987) and mackerel (Misund and Beltestad, 1996),

rbs ¼
10�7:19L0

2; for herring

10�8:65 L0
2; for mackerel

;

�

resulting in

Figure 1. The model domain and the spatially resolved integrated biomass estimates from the NORWECOM.E2E model in blue for NSS
herring in (a) January and (b) September–October and (c) for NEA mackerel in September. The red plus signs are the catches resolved in
each sub-area given by the Norwegian commercial catch journal. The size of the sign indicates the mean catch within each grid cell whereas
the intensity of the colour indicates the number of catches.
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rbs;0 ¼
4:71 � 10�5; for herring

1:29 � 10�6; for mackerel
:

�

Simulation of trawl samples
Acoustic trawl surveys typically rely on trawl sampling to estimate

population parameters like age, maturity ogive, etc. Biotic data

were simulated from the super-individuals by first drawing loca-

tions for trawl stations from the centre positions of the log-

distances along the survey track. The probability of selecting a

log-distance was a mixture of a constant probability for all log-

distances and a probability proportional to the simulated NASC.

These two probabilities were weighted equally, ensuring trawl sta-

tions also in areas with low densities of fish, as indicated by the

simulated acoustic data, resembling procedures used on actual

surveys. For each simulated trawl station z, a constant number

Nz ¼ 100 of fish were drawn with replacement from super-

individuals inside a radius of 10 nautical miles, with probability

proportional to the number of identical individuals of each

super-individual. Age, length, weight, and gender were stored for

each fish as input to the estimation.

Survey estimation (objective A3)
The simulated survey estimates were generated using the standard

survey estimation tool StoX (Johnsen et al., 2019), which is used

for processing several Northern European pelagic and demersal

fish surveys, including the surveys used as case studies in this arti-

cle. For each simulated survey, a StoX project was generated,

which (i) reads acoustic and biotic data (trawl stations), (ii) cal-

culates the frequency distribution of fish in length intervals for

each trawl station (length distribution), (iii) links the average

length distribution in each stratum with the acoustic data, (iv)

converts the acoustic data to fish density by dividing by the back-

scattering cross-section (1) for each length interval, (v) multiplies

the fish density with the stratum area to obtain the survey abun-

dance estimate, and (vi) estimates the variances of the survey esti-

mates using a non-parametric bootstrap routine provided with

StoX. In the bootstrap routine, biotic stations and acoustic trans-

ects are resampled with replacement in each stratum. This was re-

peated 100 times, and the 5% and 95% quantiles were used to

estimate the 90% confidence interval of the survey estimates.

Comparison to the true biomass (objective A4)
The survey estimates with estimated 90% confidence intervals

were divided by the true biomass to represent the ratio of ob-

served vs. true biomass, referred to as relative estimates. The true

biomass was calculated as the average of the total biomass B tð Þ
over all days tEnd; . . . ; tStart of the survey,

BTRUE ¼
1

tEnd � tStart þ 1

XtEnd

tStart

BðtÞ;

where B tð Þ is the sum of the weights of all super-individuals in-

side the survey region. The weight of a super-individual was cal-

culated as the product of the number Ns of individuals and the

weight of each (identical) individual within the super-individual.

Significant deviances from 1 in the survey estimate over true bio-

mass would imply bias in the simulated survey. If BðtÞ changes

throughout the survey, e.g. due to migration in or out of the sur-

vey region, and the majority of the observations is made in a

period when BðtÞ differs markedly from BTRUE , the relative esti-

mate may be biased.

Application of the simulation framework (objective B)
An R (R Core Team, 2013) package (available at https://github.

com/Sea2Data/pelfoss) was developed for the survey estimation

described in objectives A2–A4, utilizing StoX and the associated

R package Rstox (Johnsen et al., 2019). The package defines three

seed values controlling the random number generation of the

simulator: (i) one for the starting point of the survey track, (ii)

one for the random selection of trawl stations, and (iii) the seed

value used by the bootstrapping performed by StoX to estimate

the variance in the survey estimate.

Three surveys for NSS herring and NEA mackerel were used as

test cases. These are the International Ecosystem Survey in the

Nordic Seas (IESNS) in May (ICES, 2015) and the North Atlantic

Spring Spawning Herring Survey (NASSHS) in February, primar-

ily targeting NSS herring, and the International Ecosystem

Summer Survey in the Nordic Seas (IESSNS) in July (ICES,

2015), primarily targeting NEA mackerel. Each of these surveys is

conducted using multiple vessels, with contributions from multi-

ple nations in the case of the IESNS and the IESSNS surveys. The

corresponding simulated surveys were labelled Herring_IESNS,

Herring_NASSHS, and Mackerel_IESSNS. An additional in silico

survey-labelled Mackerel_IESSNS_sept was simulated by moving

the Mackerel_IESSNS survey to September to coincide with the

fishery. The IESSNS is a surface trawl survey, but here we have

simulated it as a conventional acoustic-trawl survey. All simulated

surveys are listed in Table 1.

To test how changes in coverage and survey timing affected the

results, we shifted the timing for the test surveys by �30, 0, and

þ30 days (��1, 0, and þ1 month) and ran the surveys in both

directions, e.g. from south to north and north to south. Similar

survey effort as in the actual surveys was used in the simulations.

Each case was repeated twice, for two different seed values, re-

ferred to as seeds 1 and 2, where each seed was used to generate

the survey track, the trawl stations and the variance estimate

obtained by bootstrapping.

The simulated surveys were conducted using one vessel, con-

trary to the real surveys, where multiple vessels are used. To

achieve comparable survey coverage as for the real surveys, a ref-

erence vessel speed of 7 knots was adjusted by factors correspond-

ing to the number of vessels of the real surveys and rounded off

to the vessel speeds 15, 20, and 30 knots (�2, 3, and 4 vessels) for

the IESNS, NASSHS, and IESSNS, respectively. The rationale for

using only one vessel was to demonstrate the effects migration

may have on the survey estimates more cleanly than with multiple

vessels potentially moving in different directions relative to the

migration. Using only one vessel may thus have exaggerated

Table 1. List of test case survey (left) and model runs (right).

Survey
Model run

Name Timing Species

Herring_IESNS 1/5–29/5 Herring
Herring_NASSHS 15/2–25/2a Herring
Mackerel_IESSNS 1/7–29/7 Mackerel
Mackerel_IESSNS_sept 1/9–29/9 Mackerel
aThe first year of this survey time series (1988–2008) was performed
2–3 weeks later.
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effects of migration, but contrarily, the increased vessel speed will

reduce the effects of migration.

Herring_IESNS
The IESNS in May is a key acoustic-trawl survey for the assess-

ment of NSS herring. It is a multinational survey coordinated

through the Working Group of International Pelagic Surveys at

the International Council for the Exploration of the Sea (ICES,

2015). The survey has participation from Norway, Faroe Islands,

Iceland, Russia, and Denmark, and the strata system covers a

large area of the Norwegian Sea (Figure 1a). The survey is con-

ducted during the feeding season for NSS herring in the

Norwegian Sea, and the fish is typically distributed over a large

area. No significant fishery coincides in time with the IESNS sur-

vey, and we did not use the fisheries allocation method for this

survey. The order of the strata (4, 3, 1, 2) was optimized for mini-

mal transport between strata, with approximately south–north di-

rection in all surveys except stratum 3, which was surveyed

approximately north–south.

Herring_NASSHS
The NASSHS in February is a Norwegian acoustic-trawl survey

that was initiated in 1988 and discontinued between 2008 and

2015. The latter period of the survey (2015 and onwards) has a

different timing than the former period (see Table 1), and the ef-

fect of this is unknown. The survey is run during the spawning

season along the Norwegian coast (Figure 1b). Timing of the sur-

vey is a challenge, since it coincides with the migration of NSS

herring to and from the spawning grounds. In addition, the trans-

ects are shorter than for the IESNS and the distribution is patch-

ier, which leads to higher sampling variance. The order of the

strata (3, 2, 4, 5, 6, 7, 8, 17, 10, 9, 11, 13, 14) was optimized for

minimal transport between strata, with approximately south–

north direction in all strata except strata 3 and 10, which were

surveyed approximately north–south, and stratum 8, which was

surveyed approximately east–west.

Mackerel_IESSNS
The IESSNS is an international pelagic trawl survey with main

objective to map the abundance and distribution of NEA mack-

erel in the Nordic Seas. The strata system covers a large part of

the Norwegian Sea (Figure 2d). For the test case, the strata west

of Iceland and one stratum along the Norwegian coast were re-

moved from the analysis since the NORWECOM.E2E model did

not extend to those regions. Otherwise the survey design was like

the real survey, both in extent and timing. Although the IESSNS

is a trawl survey, we simulated it as an acoustic trawl survey for

consistency with the other simulated surveys. The order of the

strata (3, 2, 1, 7, 9) was optimized for minimal transport between

strata, with approximately south–north direction in strata 3, 1,

and 7 and approximately north–south direction in strata 2 and 9.

Mackerel_IESSNS_sept
Based on the catch diary from 2012, 73% of the catches of NEA

mackerel were registered in September. Since the fisheries did not

coincide with the IESSNS survey, the second Mackerel_IESSNS sur-

vey, Mackerel_IESSNS_sept, was simulated by shifting the survey 2

months from July to September (Figure 2e). The Mackerel_IESSNS

survey shifted by þ30 days roughly coincides with the

Mackerel_IESSNS_sept survey shifted by �30 days (August).

Results
The simulation framework was used to evaluate different survey

designs, both in time and space. The effect of shifting a survey 1

month back or forth or changing the direction of a survey varies

between surveys and stocks (NSS herring and NEA mackerel)

depending on the stationarity of the stock and the areal extent of

the survey. The relative estimates with 5 and 95 percentiles from

the bootstrapping are presented for all six cases (Figure 3).

Figure 3 also includes the coefficient of variance (C.V.) based on

the bootstrapping of each run.

In general, changing the seed of the simulations had only a

moderate effect on the relative estimates compared to the confi-

dence intervals, with average absolute change in the estimate be-

tween seed 1 and seed 2 of 0.047.

Herring_IESNS
The IESNS occurs during the feeding season, when the distribu-

tion of NSS herring is spread across a large region of the

Norwegian Sea (Figure 2a). The large extent of the distribution is

expected to lead to a high variance in the survey estimates. This

was verified by relatively wide 90% confidence intervals

(Figure 3a) and the average C.V. of 0.18.

When the survey is shifted by þ30 days, there is a slight in-

crease in the estimated biomass for the normal survey direction

compared to the surveys shifted by �30 or 0 days and, corre-

spondingly, a slight decrease for the reversed survey direction

(Figure 3a, values of blue triangles are larger than those of red

and green triangles, and values of blue circles are smaller than

those of red and green circles). A reason for these differences may

be the north-eastward migration of NSS herring in the

NORWECOM.E2E model starting in the middle of July

(Supplementary materials S1 and S2). This migration coincides

with the normal survey direction in strata 1 and 2, resulting in a

longer time of exposure of the fish to the research vessel. For the

survey shifted by þ30 days in the reversed survey direction, fish

are migrating out of strata 3 and 4 at the time when the research

vessel observes the NSS herring in these strata, which may explain

the lower relative estimate.

The differences between the different cases are generally within

the 90% confidence intervals obtained by the bootstrapping, con-

firming the general notion that the fish has a wide, but fairly sta-

tionary distribution.

Herring_NASSHS
The NASSHS coincides in time with the migration and spawning

of NSS herring south-westwards along the Norwegian coast. In

the NORWECOM.E2E model, NSS herring migration is mim-

icked by a modified direction vector: westward migration starting

around 20 March from the southern strata (strata 2–6) and

north-eastward migration in July–August. Compared to the

Herring_IESNS, the survey region of the Herring_NASSHS is

smaller (Figure 2b vs. Figure 2a), implying higher effort and

expected lower variance in the survey estimates, which is con-

firmed by the average C.V. of 0.07, which is markedly lower than

that of the Herring_IESNS simulations (C.V. ¼ 0.18).

The surveys conducted in the normal survey direction propa-

gate opposite to the south-westward migration. Based on this, we

should expect larger relative estimate in the reversed survey direc-

tion, since moving along the migration should lead to longer ex-

posure to the research vessel. The relative estimate increases only

slightly for the surveys shifted by �30 and 0 days (0.89–0.95 and

1.03–1.08, respectively) and decreases when shifted by þ30 days

(1.18–0.82). The decrease for the latter survey can be explained
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by the westward migration starting half way through the survey,

which leads to less fish present in the southern strata in the re-

versed survey direction (north-east to south-west) than in the

normal survey direction when the vessel enters these strata before

the westward migration.

Mackerel_IESSNS
The Mackerel_IESSNS covers a large area (Figure 2d), analogous

to the Herring_IESNS (Figure 2a). The width of the estimated

90% confidence intervals are similar between these surveys, and

all contain value 1 (Figure 3d vs. Figure 3a). The average C.V. of

the estimates is 0.13, which is comparable to the Herring_IESNS

(C.V. ¼ 0.18).

Timing has only minor effects on the relative estimates. In con-

trast, all relative estimates for the reversed survey direction are

lower than any of the estimates for the normal direction, with an

average decrease of �17.5% (Figure 3d, triangles vs. circles of the

same colour). This may be caused by the modelled northward

migration of NEA mackerel during months June–August, which

spans the three timings of the survey (Supplementary material

S3). This migration is particularly strong in strata 1 and 7, where

the normal survey direction is northward, along the migration.

This leads to more exposure and consequently larger relative esti-

mates for the normal vs. the reversed survey direction.

Mackerel_IESSNS_sept
The Mackerel_IESSNS_sept is shifted 2 months in time relative to

the Mackerel_IESSNS. The timing of the Mackerel_IESSNS_sept

coincides with the migration of NEA mackerel in the

NORWECOM.E2E model from a wide distribution to a concen-

trated distribution in the southern part of stratum 1, starting at

the beginning of September. The two simulated IESSNS surveys

overlap largely in time for the month August, resulting in similar

relative estimates (blue symbols in Figure 3d vs. red symbols in

Figure 3e). The correspondence is not exact since adding 30 days

to July is not identical to subtracting 30 days from September.

Figure 2. The strata systems, survey track lines, and modelled biomass distribution for the surveys listed in Table 1; (a) Herring_IESNS and
(b) Herring_NASSHS for NSS herring and (c) Mackerel_IESSNS and (d) Mackerel_IESSNS_sept for NEA mackerel. The strata systems are
shown as coloured patches and the distribution of modelled biomass is shown as blue dots for values >1 g m�2. Survey lines are shown as
red lines overlaid with black dots with size proportional to NASC, above a threshold of 10�3. Locations of simulated trawl stations are shown
as red stars.
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The C.V. varies markedly from �0.1 for the surveys shifted by

�30 or 0 days (August or September) to �0.45 when shifted by

þ30 days (October). The large C.V. in the latter case is related to

the concentrated distribution of NEA mackerel of the model,

which induces skewness in the estimated abundance per transect

and, consequently, high variability when transects are boot-

strapped to estimate the C.V.

The Mackerel_IESSNS_sept displays a large effect of reversing

survey direction. For the normal timing, the relative estimates av-

eraged across seeds increased from 0.87 to 1.71 when reversing di-

rection (Figure 3e, green triangles vs. circles). This discrepancy

can be explained by the southward migration of NEA mackerel in

the NORWECOM.E2E model coinciding in time and space with

the southward survey direction in stratum 1 for the simulated

survey in the reversed direction, thus leading to longer exposure

of the NEA mackerel to the research vessel. For the surveys con-

ducted in October, reversing direction leads to a decrease from

1.06 to 0.14 (Figure 3e, blue triangles vs. circles). This decrease

can be explained by the NEA mackerel migrating out of the sur-

vey region. When reversing survey direction, the survey reaches

the concentrated distribution at a later time than for the normal

direction, and more NEA mackerel has had time to exit the sur-

vey region.

Discussion
The objectives of this study were to develop a framework to simu-

late pelagic fish surveys using an ecosystem model (A) and apply

the framework on surveys supporting the management of NSS

herring and NEA mackerel (B). With the study, we have devel-

oped a link between the ecosystem model and the conventional

survey estimation methods facilitating, e.g. the prediction of the

outcome of a survey and the evaluation of different survey strate-

gies and designs. Furthermore, we have built the system on top of

already established models and methods, thus utilizing the effort

that has already been invested. When there is an existing survey,

the sampling variance in the survey can be analysed to get an idea

whether you oversample or not. However, considerations like this

cannot be done for new surveys or if the sampling needs to shift

in time, and this is the major advantage of the OSSE.

The simulation framework
Quality of observations is largely affected by two components: the

data quality assurance and the sampling scheme. OSSEs have al-

ready been used to optimize monitoring programmes and design

observational networks in both coastal (De Mey-Frémaux et al.,

2019) and open oceans (Fu et al., 2011; Majkut et al., 2014;

Charria et al., 2016; Garcı́a-Garcı́a et al., 2019), to analyse the im-

pact on forecasts by including or excluding assimilation of virtual

observations (Oke and O’Kane, 2011), and to reconstruct obser-

vations to give a synoptic map by correcting the station positions

for advection by adding the mean flow from a circulation model .

The present OSSE was developed using the NORWECOM.E2E

model to produce spatially varying NEA mackerel and NSS her-

ring distributions in the Norwegian Sea and thereafter run vessel

transects in silico to simulate acoustic-trawl surveys. The simu-

lated data were run through the standard software for survey esti-

mation, and the estimates were compared to the true stock

abundances from the ecosystem model. Several factors should be

considered when developing and applying OSSEs.

First, any OSSE will depend on the model skill of the underly-

ing model. However, the diversity of ecosystem models highlights

that there is not any universally appropriate, or intrinsically
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superior model, but rather a diversity of models with strengths

and weaknesses (Spence et al., 2018). In this study, the migration

model was parameterized based on available survey and environ-

mental information and using primarily reactive mechanisms un-

der a relatively simple framework. The exact mechanisms driving

fish migration and distribution are however poorly understood

and include both reactive and predictive mechanisms (Neill,

1984), probably with multiple impacts by several environmental

factors (Secor, 2015; Huse, 2016).

Consequently, there is a need to identify the appropriate model

tailored to the actual question to aid decision-making as the

results depend on how the migration is parameterized. It is worth

noting that the generating model does not have to cover all the

parameters and processes governing the migration and distribu-

tion but should provide realistic distributions similar to those of

the real populations. If one wish to use the framework presented

in this study to predict the outcome of a real survey, e.g. for

implementation into survey design practices, the validity of the

ecosystem model is crucial. On the other hand, surveys are very

expensive and it takes many years to establish a time series.

Therefore, an OSSE with a good simulation ability could be a nat-

ural component in all survey planning, especially in the

establishment of new monitoring systems as the design of an

optimal observational network requires some existing knowledge,

which in turn will rely on data from other networks or

models. Therefore, survey design is a two-way and reciprocal

problem.

Second, the migration model predicts a smooth fish distribu-

tion, but pelagic fish may form dense schools that will cause a

patchy distribution of acoustic values (see, e.g. Gimona and

Fernandes, 2003). When patchiness is not accounted for in the

simulation, sampling variance may be underestimated. To ad-

dress this, the observation model could be further developed to

simulate the fish school distributions based on the correlation

structures in real data superimposed on the smooth model fields.

This would potentially lead to more realistic simulated data for

the estimation step.

Third, there are several causes of biases in acoustic-trawl sur-

veys (Løland et al., 2007). These include, e.g. larger-scale biases

like coverage of the stock, smaller scale processes like bottom and

surface blind zones (Totland et al., 2009), avoidance (De Robertis

and Handegard, 2013), and depth-dependent target strength

(Ona, 2003). In our simulation, we chose to look only at the fish

from the model domain that were inside our survey area assum-

ing that coverage was perfect. We did this since the migration

model was not explicitly validated on the borders. This is particu-

larly relevant for the NEA mackerel migration west of Iceland.

However, we did assume that the model allowed us to compare

different designs within the strata system. We also used the same

target strength for both the simulation and the estimation steps,

which removed any potential biases in applying erroneous target

strength. In the model, the fish is vertically distributed, but the

distribution is randomized and based on observations. Therefore,

the model does not predict the depth distribution and no depth-

dependent target strength was included. This ignores biases re-

lated to the depth-dependent target strength for, e.g. herring

(Ona, 2003), but, unless the vertical distribution changes between

years, this is less of a concern since the estimates are used as rela-

tive indices in the assessment models. Biases that vary between

years are not addressed in this implementation. To do this, multi-

year simulations are needed and the model must be able to

predict realistic between-year variability in distribution patterns.

This is an important next step in the development.

Application of the framework
The study illustrates how abundance estimates vary when surveys

are shifted in time and/or direction and how the design also has

an impact on the variance and estimated error. Of the simulated

cases (Figure 3), three (A, B, and D) are already existing trawl

surveys used in stock assessment, while the other (C) is a theoreti-

cal survey, designed to coincide with the fisheries. Focusing on

the precision of the estimates, the existing cruises were robust

with a small sensitivity to a shift in time and direction. Except for

the forward shift in timing for Herring_NASSHS (B), the true

abundance was within the 5 and 95 percentiles. For case A, the

NSS herring IESNS survey, there is wide confidence intervals and

high coefficient of variation for especially the early surveys, due

to wide distribution of the NSS herring during feeding season.

Several platforms are today capable of carrying acoustic sen-

sors, including vessels of opportunity, fishing vessels (Fassler

et al., 2016), autonomous surface vehicles (Mordy et al., 2017),

autonomous underwater vehicles (Fernandes et al., 2003; Patel

et al., 2004), etc. It remains, however, an open question how to

optimally use these platforms. As an example, for operations us-

ing fishing vessels, they typically operate in a smaller area with

higher effort (c.f. Figure 1) than the more dispersed effort from

the research vessel-based surveys. The OSSE can be used to simu-

late surveys associated in time and space with the fishing opera-

tions. To address the skew sampling, the fishing vessels could

deploy unmanned surface vehiclesto run random transects in the

vicinity of the fishing operation and the catch data could be used

to obtain the biological parameters. Initial simulations indicate

that a concentrated survey strategy might be worth considering

for populations that are known to migrate through a specific re-

gion and also illustrate that survey designs based on the fishing

fleet have a large bias due to the limited regional coverage of the

stock. Our OSSE could be further developed to include the costs

associated with the different platforms, allowing us to search for

more cost-efficient approaches to survey the various components

of marine ecosystem.

Concluding remarks
An OSSE combining an ecosystem model with conventional sur-

vey estimation methods has been used to illustrate how such a

system can be used to investigate the sensitivity of monitoring

programmes to shifts in time or coverage. In addition, this ap-

proach would also allow us to optimize surveys in time and space,

provided that the model simulations are realistic. The model ex-

ercise has been done through an estimation of the abundance of

NSS herring and NEA mackerel from simulated acoustic trawl

surveys using different survey designs. The realism of the simu-

lated survey data depends largely on the skill of the migration

model. As the model skill of the migration model is further im-

proved, we could more reliably use the model framework to allo-

cate survey effort. The next steps in this process are to explore

multiyear ecosystem model runs, further expand the observation

model to support swept area trawl surveys, including an im-

proved catch-sample simulator (to adequately address the NEA

mackerel surveys), allow for more boats in the survey design, and

model the along track distributions to mimic the high-resolution

variability along the track. The goal is to have a better tool to
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reduce the uncertainty in fish stock assessments by optimizing

survey effort.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.
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