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A general spatio-temporal abundance index model is introduced and applied on a case study for North East Arctic cod in the Barents Sea.
We demonstrate that the model can predict abundance indices by length and identify a significant population density shift in northeast di-
rection for North East Arctic cod. Varying survey coverage is a general concern when constructing standardized time series of abundance indi-
ces, which is challenging in ecosystems impacted by climate change and spatial variable population distributions. The applied model provides
an objective framework that accommodates for missing data by predicting abundance indices in areas with poor or no survey coverage using
latent spatio-temporal Gaussian random fields. The model is validated, and no violations are observed.
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Introduction
Scientific trawl surveys are conducted worldwide to assess and

understand changes in abundance, population structure, and geo-

graphical distribution of fish and zooplankton populations

(Gunderson, 1993; Wiebe and Benfield, 2003). The surveys are of-

ten repeated annually following standard protocols to produce

time series, which are used to assess the state of commercially im-

portant fish stocks (Gunderson, 1993; Nielsen and Berg, 2014;

Miller et al., 2016). In a changing climate, ecosystems and stock

distributions are often affected by warming (Richardson, 2008;

Fossheim et al., 2015), which is challenging for planning of full

survey coverage, and makes it difficult to produce unbiased time

series using traditional parametric survey estimation techniques.

Lack of survey capacity, changing species distributions, and

weather limitations impose a general need of providing abun-

dance predictions in areas with variable and poor survey

coverage.

The high North and the Barents Sea is one of the regions which

has been dramatically changed by global warming in the last

decades (Fossheim et al., 2015; Lind et al., 2018), and the species

distribution and biodiversity are largely impacted (Fossheim

et al., 2015; Stenevik and Sundby, 2007). As the largest cod stock

in the world the North East Arctic (NEA) cod (Gadus morhua) is

one of the top predators in this ecosystem, and several studies

have shown how the distribution of this cod stock has changed

with time in the Barents Sea (Ottersen et al., 1998; Drinkwater,

2005).

A standardized Norwegian-Russian swept area survey has been

carried out in the Barents Sea every year since 1981 in January–

March (the Barents Sea Winter Survey) (Jakobsen et al., 1997).

The survey provides crucial fishery-independent input data for

the stock assessment of cod and other fish stocks in the Barents

Sea (ICES, 2020). However, the global warming with ensuing spa-

tial shifts in cod distribution and changes in ice coverage has

been challenging for a full survey coverage and for survey estima-

tion. In addition, resource limitations and weather conditions

have resulted in varying survey coverage between years. Here, we

apply a general spatio-temporal model to estimate overall
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abundance of cod in the Barents Sea with a focus on predicting

abundance with uncertainty in areas with shifting and poor sur-

vey coverage. The case study is ideal for testing the applicability

of the model due to the shifts in cod distribution and lack of full

survey coverage in some years. The model is developed to be ap-

plicable for any other swept area surveys.

The applied latent spatio-temporal Gaussian model shares

similarities with the commonly used VAST model (Thorson,

2019; Thorson et al., 2020) and the delta-gam model (Berg

et al., 2014). The model is particularly similar to VAST, as it

uses the same latent spatial Gaussian structure with the sto-

chastic partial differential equation (SPDE) procedure

(Lindgren et al., 2011), and includes other dimensions in the

latent effect by assuming separability. We therefore highlight

that the basic idea behind the model is not new, and our work

contributes to broaden the research basis for utilizing spatio-

temporal structures in fishery science. Differences between our

model and VAST are elaborated in Discussion section. A key

difference between our model and the delta-gam model (Berg

et al., 2014) is that we include spatio-temporal structures with

latent random Gaussian fields.

The main objective of our work is to present and test a sta-

tistically sound procedure for survey estimation which accom-

modates for variable survey coverage over time. The procedure

can further be used to identify spatial-temporal dynamics in a

changing ecosystem. The article is divided into five sections.

Methods section defines the model and abundance prediction

procedure. In Inference section, we elaborate the inference

procedure. In Case study section, we apply the model in a case

study (abundance index of NEA cod based on bottom-trawl

data from the joint Russian-Norwegian Barents Sea Winter

Survey), investigate an abundance shift, and validate the

model. Finally, Discussion section provides discussion and

concluding remarks.

Methods
The aim of our research is to predict, with uncertainty, abun-

dance indices in any area of a survey domain at any given time.

In particular, we want to predict indices in areas with poor or no

coverage at any given time within the survey temporal coverage.

In this section, we introduce the applied model, and elaborate the

prediction procedure.

Model
The intuition behind the model is fairly simple, and we will

first provide an intuitive interpretation of the model before we

introduce it mathematically. All structures are included

through a parameter which provides the expected number of

fish caught in a haul in year y at location s with length l (later

referred to as lðy; s; lÞ). Note that length can be replaced with

age if such data is available. Covariates are included to accom-

modate for differences in both catchability and abundance.

Latent effects in four dimensions are included to accommodate

for that observations close to each other in spatio-temporal-

length space are typically more similar. The latter part provides

the model flexibility to include spatio-temporal-length struc-

tures, and by including it as latent Gaussian random fields, we

are able to predict abundance by length with uncertainty in

areas and years without coverage.

We will now define the model mathematically. Let Bðy; s; lÞ
be the number of fish in length group l caught at location s in

year y. We assume that Bðy; s; lÞ is Poisson distributed, i.e.:

PðBðy; s; lÞÞ ¼ PoisðBðy; s; lÞ; lðy; s; lÞÞ: (1)

Here, Poisð�; lÞ represents the Poisson distribution with expec-

tation l. We further assume that

log lðy; s; lÞ ¼ by;l þ
X

i

fiðxy;s;iÞ þ aðs; lÞ þ cðy; s; lÞ þ wðy; s; lÞ þ log dðy; sÞ: (2)

Here, by;l is a year and length dependent intercept coeffi-

cient, xy;s;i is the ith covariate associated with the haul in year y

at location s, and fi is a function of the corresponding covari-

ate. Furthermore, a and c are latent spatial-length and spatio-

temporal-length mean zero Gaussian random effects. Finally, w

is a latent mean zero Gaussian random haul effect (a nugget ef-

fect) with correlation structure across length within hauls, and

dðy; sÞ is an offset providing the distance trawled.

The latent effect a in (2) is intended to accommodate for a sta-

tionary spatial-length field, and c accommodates for time varying

fluctuations around the stationary spatial-length field. We assume

that both these effects are latent Gaussian with separable covari-

ance structures. The corresponding correlation structures are fur-

ther assumed to be stationary Matern in space (Stein, 2012) and

with separate first order auto regressive (AR1) structures in both

time and length. The latent haul effect w is intended to accommo-

date for an unexplained variation within each haul (intra haul

correlation), and is included with an AR1 correlation structure in

length dimension. The correlation structures of the latent effects

are thereby expressed as:

Covðaðs1;l1Þ;aðs2;l2ÞÞ¼qjl1�l2j
a;l

r2
a

2��1Cð�Þ
�ðjajjs1�s2jjÞ�K� jajjs1�s2jjð Þ

Covðcðy1;s1;l1Þ;cðy2;s2;l2ÞÞ¼qjy1�y2j
y qjl1�l2j

c;l

r2
c

2��1Cð�Þ
�ðjcjjs1�s2jjÞ�K� jcjjs1�s2jj

� �
Covðwðy1;s1;l1Þ;wðy2;s2;l2ÞÞ¼

r2
wqjl1�l2j

w;l ; if s1¼s2 and y1¼y2;

0; else:

(

(3)

Here, qy, qa;l ;qc;l , and qw;l are autocorrelation parameters,

r2
a;r

2
c , and r2

w are marginal variances, ja and jc are spatial scale

parameters, jj � jj is the Euclidean distance measure in km, � is a

smoothing parameter and K�ð�Þ is the modified Bessel function of

the second kind. We fix �¼ 1 since this value is typically poorly

identifiable (Blangiardo and Cameletti, 2015, page 194).

The covariates are included with two different types of splines.

For a covariate that we believe the corresponding effect has a co-

sine shape, we include it with a Fourier approximation (Lay,

2006) with one basis function. The Fourier approximation is de-

fined as:

f ðxÞ ¼ b1 sinðxÞ þ b2 cosðxÞ; (4)

where x 2 ½0; 2pÞ represents the covariate and b1 and b2 are

parameters estimated. The other covariates are included with p-

splines. The applied p-spline procedure includes the regression
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coefficients as latent variables and includes one penalization pa-

rameter k (Wood, 2017, p. 239).

Predicting indices
The predicted indices are obtained by integrating lðy; s; lÞ over

the area of interest. Meaning that the predicted index in area A is

IA;y;l ¼
jAj
ni

X
s�2fAg

lðy; s�; lÞ; (5)

where fAg is the set of all ni integration points in A and jAj is the

area of A. Supplementary Figure S1 illustrates the evenly distrib-

uted integration points applied in our case study. When predict-

ing indices, the offset in (2) is set to one, meaning that l in (5) is

the predicted catch per unit effort.

Centre of gravity
A spatial shift in abundance is investigated with the centre of grav-

ity (COG) measure, which is a widely used measure for spatial

distribution shifts (Thorson and Barnett, 2017; Thorson et al.,

2016; Pinsky and Palumbi, 2014). Several studies indicate that

Arctic fish species have lately shifted north in the Barents Sea

(Frainer et al., 2017; Eriksen et al., 2017; Fossheim et al., 2015;

Jakobsen and Ozhigin, 2011). The COG for a given length and

year is defined as:

COGy;l ¼
P

s�2fSg lðy; s�; lÞlons�P
s�2fSg lðy; s�; lÞ ;

P
s�2fSg lðy; s�; lÞlats�P

s�2fSg lðy; s�; lÞ

 !
;

(6)

where fSg is the set of all integration points and ðlons� ; lats� Þ is

the Universal Transverse Mercator (UTM) coordinates of integra-

tion point s�.

Inference
The model is implemented with use of the R-package TMB

(Kristensen et al., 2016) and the optimization routine nlminb in

the R-package stats (R Core Team, 2019). TMB is a freely avail-

able R-package and is well suited for performing fast inference

with latent Gaussian models. TMB automatic differentiates the

likelihood and utilizes Markov structures to efficiently integrate

over the latent variables with the Laplace approximation.

To perform fast inference with high dimensional Gaussian ran-

dom fields, it is essential to represent their precision matrices as a

sparse matrices efficiently. Note that the covariance structures in

time and length dimension are AR1, and the corresponding

sparse precision matrix can be found in e.g. Cressie and Wikle

(2011, p. 170). The spatial correlation structure is obtained with

the SPDE-procedure introduced in Lindgren et al. (2011). This

procedure introduces nodes in a relatively fine discretization in

space and represents an approximate Matern covariance structure

between the nodes with a sparse precision matrix. How many

spatial nodes that are needed depends on the spatial range in the

specific case study (the distance in which the correlation is ap-

proximately 0.1). Figure 1 shows the spatial resolution of the

mesh used in our case study, and the nodes are the corners of

the triangles (144 nodes). The latent effect at any location inside

the triangles are defined as a convex combination of the effects at

its corners (standard linear interpolation) (Lindgren et al., 2011).

Key structures from R-INLA (Rue et al., 2009) are used when cal-

culating the sparse spatial precision matrix in TMB. Effects on

results by applying a finer spatial resolution are discussed in

Discussion section, and the effects are observed to be minor in

our case study.

Even though we utilize sparse structures, the spatio-temporal-

length (c) and the spatial-length (a) effects are computationally

demanding to estimate. To reduce computation complexity, we

therefore represent these latent effects with a lower length resolu-

tion compared to in observation space. The representation is con-

structed by defining both c and a with the structure (3) at a set of

knots in length dimension. We further define a latent effect be-

tween two knots by standard linear interpolation. Note that a

similar procedure is conducted in space where the spatial discreti-

zation is illustrated in Figure 1. By representing c and a with such

an approximation, computation complexity is reduced because

the number of latent effects that are integrated over with the

Laplace approximation within the inference procedure is reduced.

In our case study, we include every third length group as a knot

(starting at the shortest group). Effects on results by not conduct-

ing this approximation is discussed in Discussion section, and the

effects are observed to be minor in our case study.

Indices (5) and COG (6) are defined as non-linear functions of

the random effects. Estimates of these quantities may be substan-

tially biased if predicted random effects are inserted directly

(Thorson and Kristensen, 2016). The bias correcting routine

(Thorson and Kristensen, 2016) implemented in TMB is therefore

applied when providing point estimates of indices and COG. In a

geostatistical case study for predicting abundance indices investi-

gated in Thorson and Kristensen (2016), it was observed an ap-

proximately constant correction factor across years. In our case

study, however, we observe a time varying correction factor.

Uncertainty intervals are calculated by standard Gaussian approx-

imations of log-indices, COG, and internally represented model

parameters. Internal representation of model parameters are pro-

vided in Table A1 in the Appendix. The bias correction routine

Figure 1. Mesh used when approximating the spatial correlation
structure. The map is shown with projection UTM 35.
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for the variance estimates (Thorson and Kristensen, 2016) is not

conducted because of computational reasons.

Case study
As a case study, we predict abundance indices by length for NEA

cod based on data from the joint Russian-Norwegian Winter

Survey. The main objective in this research is to predict indices in

areas without coverage, and there are several years with poor cov-

erage in this survey time series.

Data
Survey data for the period 1994–2019 are analysed in this study.

Older data are not included as the trawl selectivity changed in

1994 when the mesh-size in the cod-end was reduced from ap-

proximately 40 mm to 22 mm (Mehl et al., 2016). Data prepara-

tion was carried out using the survey estimation software StoX

(Johnsen et al., 2019) with the same data and setting as used for

the official survey time series (Mehl et al., 2016). The survey area

is divided into 26 strata, and bottom trawl haul positions are

depicted for 2007 and 2014 (Figure 2), which are examples of

years with poor and good coverage, respectively. The trawl posi-

tions in each stratum are decided using a fixed grid where the dis-

tance between stations is dependent on the historical fish density

distributions, see Mehl et al. (2016) for details. All hauls have

been carried out with a standard research bottom trawl, and stan-

dard tow duration was 30 min in 1994–2010, and 15 min thereaf-

ter (Mehl et al., 2016). Generally, the entire catch is sorted in

catch samples by species. For big catches, a sub-sample of the

catch is taken. The total length of cod is measured by cm for all

individuals in the catch sample. For large catch samples consist-

ing solely of small cod (<20 cm), 50 individuals are length mea-

sured. In our analyses, the response is number of cod by 5 cm

length groups. In accordance to the official survey estimation

procedure, the catches are adjusted for length dependent catch-

ability (Mehl et al., 2016). The adjustment scales the catch at

length with a constant (at cm level) and treats these numbers as

observed catches when producing indices used in the current as-

sessment of NEA cod (ICES, 2020). Our model needs the re-

sponse as integers, and the scaled catches are therefore rounded

off to the nearest integer. The length groups are defined from 20

to 100 cm, where the last group consists of all cod longer than or

equal to 100 cm. When referring to a length group, we refer to the

shortest length in the length group for brevity. Table 1 provides a

short description of the data. Trawl haul locations in all years are

provided in Supplementary Figure S2.

Covariates
Two covariates are included in our case study. It has been ob-

served that NEA cod behaviour changes during the day (Hjellvik

et al., 2002), and we therefore included sun altitude as a covariate.

It is reasonable that the effect of sun altitude has a cosine type of

shape, and we therefore included the effect with a Fourier ap-

proximation (4). The sun altitude covariate is defined between 0

and 2p, where both 0 and 2p represents the lowest possible sun

altitude at the given location and date, while p represents the cor-

responding highest altitude. Every value between 0 and p is a lin-

ear transformation of the sun altitude in the period the sun is

rising, and every value between p and 2p is a linear transforma-

tion of the altitude while the sun is setting. Note that sun altitude

is a covariate for catchability, index predictions provided are

standardized to the time of day when the sun is at its highest.

It has previously been observed that depth has a predictive ef-

fect for abundance of NEA cod (Fall et al., 2018). We therefore

included depth as a covariate with use of p-splines. The depth is

defined as the average of minimum and maximum depth ob-

served during the haul. We have truncated depth to be between

100 and 400 m to avoid including rare depths. The depth at each

integration point is assumed equal to the observed depth at the

closest station. Five basis functions are used in the p-spline

(Wood, 2017, p. 239).

Model selection
For model selection, the procedure recommended in Zuur (2009)

is used. First the correlation structures are selected using all rele-

vant covariates, followed by a selection of significant covariates

using the selected correlation structure. Table 2 shows AIC-values

with different combinations of latent effects. The option to in-

clude all random effects is favoured by AIC and is therefore used

further in our case study. Note that the option to include the spa-

tio-temporal-length effect without the length correlated haul ef-

fect is not in Table 2. With that option the spatial range in the

spatio-temporal-length effect is estimated much shorter, which

results in that the spatial mesh should to be defined in such a

high resolution that the model is not estimable within reasonable

computational time.

Two covariates, depth and sun altitude, are investigated.

Table 3 shows obtained AIC values with different combinations

of the covariates when using the selected covariance structure.

We see that both covariates are clearly favoured by AIC.

Results
Estimated sun altitude effect is illustrated in Figure 3a. All illus-

trated effects are for expected catch on log scale (2), meaning that

the difference of 0.4 observed in Figure 3a is equivalent with an

approximate ðe0:4 � 1Þ � 100% � 50% increase in catch rate from

night to day. A similar observation of higher catch rates during

Figure 2. Illustration of station locations in year 2007 (red triangles)
and 2014 (black circles). The polygons define the survey domain
with numbered strata.
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daytime has also been observed for NEA cod bycatch in the

Barents Sea shrimp fishery (Breivik et al., 2016a). This effect may

be caused by the tendency of zooplankton to aggregate closer to

the bottom (where the trawl is conducted) during daytime

(Jakobsen and Ozhigin, 2011) which may result in better food

conditions for NEA cod. Estimated depth effect is illustrated in

Figure 3b. The density of NEA cod is estimated to be highest at

depths of around 200 m and decreases in both directions. The lin-

ear predictor increases with approximately 1 when moving from

100 m to 200 m depth, meaning that expected catch rate increases

approximately ðe1 � 1Þ � 100% � 170%.

Table 4 shows estimated model parameters. Note that we find

clear evidence for correlation structures in all dimensions of the

latent effects. The spatial scale parameter in the spatial-length ef-

fect imposes a range of
ffiffi
8
p

0:0034
� 830 km, and in the spatio-tempo-

ral-length effect it imposes a range of
ffiffi
8
p

0:0088
� 320 km.

Figure 4 shows estimated spatio-temporal effect (c) for length

group 60 cm added to the corresponding yearly varying intercept

coefficients. We observe that the model estimates clear similarities

between years, which can be used when predicting abundance in-

dices in areas without coverage. Relative spatial differences in

catch rates between years can be calculated with the formula

ðeD � 1Þ � 100%, where D is the linear predictor difference.

The main objective of our research is to predict abundance in-

dices in areas without survey coverage. The eastern part of the

Barents Sea (strata 7, 8, 9, 10, 13, 14, 15, 16, 17, and 20) has in

several years not been fully covered, and Figure 5 shows the esti-

mated index per year for four length groups in this area. The sur-

vey coverage was particularly poor in the years 1997, 1998, 1999,

Table 1. Short summary of data used.

Data Description

Year Survey data are included for the years 1994–2019.
Stations (hauls) On average 338 stations every year, varies between 177

and 534.
Location The coordinates of each station.
Number of cod The number of cod observed in each length group at

each station
Depth The depth at each station. On average 263 m, with 94

to 438 m as 90% coverage interval.
Time in day Local start time for each haul, can be at any time in

day.

Table 2. Obtained AIC with different combinations of latent effects.

Random effects included Parameters AIC

No random effects 445 1966961
Spatial-length (a) 448 1422135
Haul (w) 447 464110
Spatial-length and haul (a and w) 450 447222
Spatio-temporal-length and haul (c and w) 451 438153
All random effects 454 438068

Lowest AIC is written in bold.

Table 3. Obtained AIC with different combinations of covariates.

Covariates Parameters AIC

No covariates 451 439127
Sun altitude 453 438868
Depth 452 438355
Sun altitude and depth 454 438068

Lowest AIC is written in bold.

(a) (b)

Figure 3. Estimated sun altitude effect (a) and depth effect (b). Intervals represent 95% confidence intervals.

Table 4. Estimated model parameters. Numbers in parentheses are
95% confidence intervals.

Parameter Estimate Parameter Estimate

ra 2.60 (2.01, 3.36) rc 1.55 (1.43, 1.68)
rw 1.12 (1.11, 1.14) ja 0.0034 (0.0026, 0.0044)
jc 0.0088 (0.0079, 0.0097) qa;l 0.96 (0.93, 0.97)
qc;l 0.89 (0.87, 0.90) qw;l 0.89 (0.886, 0.893)
qt 0.80 (0.77, 0.83) k 0.0099 (0.0027, 0.035)
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and 2007. We manage to predict the indices in years with poor

coverage, but typically with relatively larger uncertainty.

Figure 6 illustrates predicted abundance per length, where the

size of the bubbles are proportional to the index on natural scale.

Cohort-structures are visible, especially from a cohort entering

the system around year 2005. Since the index is per length, we

cannot say exactly which cohort this structure comes from, but it

is likely the 2004 and 2005 cohorts which are observed to be ex-

ceptionally strong (ICES, 2019, Table 3.16). Furthermore, a time

varying bias correction factor (Thorson and Kristensen, 2016) for

the indices (5) is observed, see Supplementary Figure S3 for an

illustration.

Spatial shift in abundance
Spatial shift in the NEA cod abundance is investigated with the

COG measure (6). Figure 7 shows 95% confidence areas for COG

in every second year for several length groups. We observe that

there is a clear significant spatial shift in northern direction for

the small cod, and in northeast direction for larger cod. No cova-

riates are included which can explain such a spatial shift, and the

result is purely data driven through the latent structure. Note that

we do not accommodate for geometric anisotropy, see e.g.

Thorson and Haltuch (2019), but the shape of the confidence

contours in Figure 7 varies because the estimated spatio-tempo-

ral-length effect varies between years.

Figure 4. Estimated latent spatio-temporal effect added the yearly varying intercept coefficient for length group 60 cm in year 1994–2019.
Blue points illustrate station locations within each year.
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Validation
One-step ahead (OSA) residuals (Thygesen et al., 2017) are inves-

tigated to identify model assumption violations. Figure 8a illus-

trates standard normal quantile plot of OSA residuals and we

observe no model assumption violations (e.g. prediction bias or

wrong prediction uncertainty). Figure 8b illustrates empirical au-

tocorrelation of the OSA-residuals, and we observe no unex-

plained correlation structures. Figure 8c and d shows similar

plots when the random effects (3) are neglected, and we observe

clear model assumption violations. The violations observed when

neglecting the random effects confirm the importance of includ-

ing the latent structure. For computational reasons, the OSA

residuals are only calculated for the most resent 50 hauls, which

consists of 850 observations in year 2019. The OSA calculation

procedure provides an ordering of the observations, and sequen-

tially predicts one observation given all previous observations

(Thygesen et al., 2017). We have chosen to first predict the obser-

vation corresponding to the shortest length in a haul, then pro-

ceed to observations from the same haul in increasing length

order. The next observation is further chosen from a haul that is

typically close in both space and time.

A simulation experiment is performed to confirm that the

model is able to estimate itself. The simulation experiment is

performed by fixing the model parameters to their maximum

likelihood estimates, and simulate realizations of the latent spa-

tial-length, spatio-temporal-length, and nugget effect. We further

simulate realizations of observations through (1). Supplementary

Figure S4 shows parameter estimates obtained with ten simulated

data sets. We observe that the model is able to estimate itself.

Sensitivity to starting values is investigated by fitting the model

with different initial values, and comparing the obtained indices,

parameters, and likelihood with the corresponding values

obtained in Results section. The different starting values are se-

lected as those applied in Results section with an independent

mean zero Gaussian random variable with standard deviation 0.2

added to each internal parameter (including latent effects). We

fitted the model ten times with different starting values, and the

maximum difference between both log indices and log likelihood

was approximately 10�5. This indicates that the results are stable

with respect to starting values. The indices compared are not bias

corrected for computational reasons. The largest difference ob-

served for the effects in the linear predictor (2) and parameters in

the correlation structures (3) was approximately 10�3, which

indicates that the global maximum likelihood estimates are

found.

A leave-out study is performed to validate if spatio-temporal-

length structures improve prediction. The study is conducted by

sequentially leaving out all observations in the eastern area (strata

7, 8, 9, 10, 13, 14, 15, 16, 17, and 20) in each year. Catch per

length group in test sets are predicted with the bias correction

procedure (Thorson and Kristensen, 2016). Two of the model

formulations are compared: including only the haul nugget effect

vs. including all random effects. Figure 9 shows predicted log

mean catch per length group in each year obtained with the sim-

plified and full model. We observe that the model including all

random effects clearly has more predictive power. Corresponding

mean sum of square residuals are 0.82 and 0.45 with the simpli-

fied and full model, respectively.

Computational features
Computational complexity is a challenge when performing infer-

ence with high dimensional latent Gaussian fields. Even though

we utilize sparse structures in the precision matrices, the inference

is time consuming. The inclusion of the spatio-temporal-length

random field implies that we need to solve a 144 � 26 � 7 ¼ 26208

dimensional integral several times with the Laplace approxima-

tion, which is the models computational bottle neck. Estimating

the selected model takes approximately 4 h in our case study

(with use of an Intel Zenon E4-2630 2.4Ghz, and utilizing one

core). We want to highlight that the computation time is

Figure 5. Predicted log indices with 95% prediction intervals in the
eastern part of the Barents Sea for length group 20, 40, 60, and
80 cm. Vertical dashed lines illustrate years with particularly poor
coverage in the eastern part of the survey area.

Figure 6. Predicted indices at length, size of bubbles are
proportional to the predicted index.
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dependent on the linear algebra library R uses. Microsoft R Open

3.5.1 (https://mran.microsoft.com/open) was used when per-

forming inference within 4 h. We further want to highlight that

all regression coefficients are estimated in the inner optimization

with the profile functionality in TMB, this procedure was

conducted because it provided faster inference. Providing bias

corrected indices based on the estimated model took approxi-

mately 3 h.

Discussion
In this research, we applied a general latent spatio-temporal-

length Gaussian model for predicting abundance indices. In par-

ticular, we predicted indices in areas without survey coverage. We

illustrated that the model finds significant structures in the data,

which can be used to provide abundance predictions in areas

without coverage. The model output is not limited to abundance

indices used for assessment purposes, it can equally well be used

to estimate the centre of gravity by length. In accordance with

previous studies (Fossheim et al., 2015; Eriksen et al., 2017), we

found a significant northeasterly shift in the distribution of NEA

cod, and the magnitude and direction of the spatial shift differ

between length groups. The model was validated, and no clear

warning was observed.

The northern and eastern shift in the cod distribution illustrated

in Figure 7 is purely data driven through the latent spatio-tempo-

ral-length effect. A reasonable explanation for the observed shift is

(a) (b)

(c) (d)

Figure 7. Estimated 95% confidence areas for COG in every second year for length group 20 cm (a), 40 cm (b), 60 cm (c), and 80 cm (d).
Coloured lines illustrate corresponding point estimates.
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climate change and warming of the Barents Sea. In winter (when

the survey is conducted), the distribution of cod is mainly

concentrated at temperatures above 1�C (Jakobsen and Ozhigin,

2011, p. 227), and it is argued that cod biomass will increase be-

cause of climate change due to higher plankton production in a

sea with less ice (Jakobsen and Ozhigin, 2011, p. 796). A reason-

able causal hypothesis is therefore that the spatial change in plank-

ton production due to changing ice conditions has provided better

living conditions for cod in the northeastern part of the Barents

Sea.

The nugget effect, w, is included with correlation across lengths

within hauls to accommodate for intra haul correlation struc-

tures. If w is replaced with a length independent nugget effect, the

spatial range in the spatio-temporal-length effect is estimated

much shorter in our case study. It is intuitive that the spatial

range in the spatio-temporal-length effect decreases if we remove

the correlation in the nugget effect. The model then sacrifices

structures between hauls to include structures within hauls

through the spatio-temporal-length effect.

The correlation structure in space is approximated with the

SPDE procedure (Lindgren et al., 2011), with use of a mesh

consisting of 144 nodes (see Figure 1). Ideally, the results should

be unaffected by applying a finer spatial resolution. This is how-

ever not computational feasible, the applied mesh is based on a

weighted selection of computation speed and how detailed the

Matern covariance structure is represented. We investigated the

effect of increasing the spatial resolution to 275 nodes (see

Supplementary Figure S5). The computation time then increased

from 4 h to approximately 17 h. Corresponding obtained model

parameters are provided in Supplementary Table S1. We observe

that the estimates are only slightly affected. The corresponding

mean difference between log bias-corrected indices across all

length groups and years is 0.0075, and the mean absolute differ-

ence is 0.025. The small differences for both parameter estimates

and abundance indices provide a strong case for that the applied

spatial resolution is satisfactory in our case study.

The correlation structure in length dimension is included with

an AR1 structure. To reduce computation complexity, we repre-

sented the spatio-temporal-length and spatial-length effects with

lower resolution in length dimension compared to in observation

space. We have investigated the effect of not applying such an ap-

proximation, and thereby marginalizing overall length groups in

(a) (b) (c) (d)

Figure 8. Normal quantile–quantile plot of one-step ahead (OSA) residuals with final model (a) and without latent effects (c). Empirical
correlation between OSA residuals with final model (b) and without latent effects (d). Blue dashed lines are 95% confidence intervals when
assuming independence.

(a) (b)

Figure 9. Predictions vs. observations of log mean catch per length group within each test sets with simplified model (a) and full model (b).
Lines illustrate where predictions are equal observations.
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the inference procedure with the Laplace approximation. The

computation time then increased from 4 h to approximately 45 h.

The corresponding mean difference between log bias-corrected

indices across all length groups and years is �0.0030, and the

mean absolute difference is 0.020. Corresponding obtained model

parameters are provided in Supplementary Table S2. We observe

that the model parameters are slightly affected. The small differ-

ences between parameter estimates and indices indicate that the

approximation has minor effects on our results. In our case study,

the estimated autocorrelation parameters in length dimension are

0.89 and 0.96 for c and a, respectively. Since the model detects

such strong correlations in length dimension, we find it intui-

tively reasonable that the results are minor affected by represent-

ing the latent spatio-temporal-length and spatial-length effects

with a lower length resolution.

All covariates included in the model are length independent,

meaning that the effect is equal for all length groups. For each co-

variate, we investigated including one effect for the shortest fish,

and one for the longest fish, and apply linear interpolation to de-

fine effects of length in between. Supplementary Figure S6 illus-

trates the effect for the shortest and longest cod. Both covariates

are observed to have an approximately similar effect across

length. We therefore do not include length dependent covariates

in (2), and highlight that it is possible within the modelling

framework.

We investigated including an additional zero-probability as

p0ðs; y; lÞ ¼ Poisð0; bðpÞ0 þ bðpÞ1 lðs; y; lÞÞ, where bðpÞ0 and bðpÞ1 are

parameters estimated and l is the expectation parameter in (1).

However, including such a structure introduced convergence

issues in our case study. By manually investigating the data, we

observed that zeroes almost always occur when neighbouring

observations are either zero or small. This observation indicates

that zero-observations typically occur when the expectation in (1)

is small, which provides a strong case for that an additional zero

probability is not of major importance in our case study. We do

not investigate the inclusion of such a structure further. However,

we want to highlight that it is possible to include an additional

zero-probability in the modelling framework, either through a

linear combination of the expectation parameter in (1) or

through a separate independent linear predictor (Thorson et al.,

2020).

Abundance indices used in the current ICES-assessment of

NEA cod (ICES, 2020) accommodate for poor survey coverage

(in a given year) by scaling the observed index in a subjectively se-

lected area that includes observations. The scaling factor is de-

fined as the ratio between the index in the uncovered area and in

the selected area in neighbouring years (Mehl et al., 2016). The

procedure is based on subjective decisions regarding which areas

to apply the procedure and what we define as neighbouring years.

By using the suggested model, we avoid including any year spe-

cific subjective assumptions.

The differences between our applied model and VAST are in

the details, both models apply separable latent Gaussian random

fields, and include these random effects through linear predictors

in standard observation distributions. Here, we list all features in

our model that to our knowledge have not been applied with use

of VAST. (i) A length dimension in the spatial and spatio-tempo-

ral correlation structure, see (3). For example, Thorson and

Haltuch (2019) include data on length, but without correlation

structures across lengths within these latent effects. Note that the

inclusion of length in the spatio-temporal effect increases the

computational complexity exponentially, we therefore included

the length dimension in these latent effects with a lower resolu-

tion compared to in observation space. (ii) A nugget effect is in-

cluded with correlation structure across length within each haul

(intra haul correlation). It was important to include such a nug-

get effect in our case study to satisfactorily accommodate for spa-

tio-temporal-length structures. (iii) Covariates are included with

use of Fourier approximations and p-splines. (iv) Separate spatial

scale parameters are included for the random effects, see ja and

jc in (3). Since these four differences are in the finer details, we

want to highlight that our work also validates the framework that

VAST is based on to predict abundance indices.

The correlation structures for the latent effects are assumed to

be AR1 in both time and length dimension. Note that this implies

a stationary assumption, and it may be the case that some pairs of

length groups are differently correlated even though they are

equally separated. Berg and Nielsen (2016) accommodate for pos-

sible different correlation between neighbouring ages by defining

the distances in between the ages as model parameters. We leave

for future research to investigate if non-stationary correlation

structures can improve the model.

Our work apply the introduced model for assessment pur-

poses, and we want to highlight that the model can be used in

other fields within fisheries science. By applying the model, we

have an approximation available for how a species of interest is

distributed in relatively fine spatio-temporal-length resolution,

and how catchability is affected by covariates. Breivik et al.

(2016b) applied a recruitment index as a covariate when predict-

ing bycatch of juvenile NEA cod in the Barents Sea shrimp fish-

ery. Our introduced model can be applied to e.g. provide a

spatio-temporal varying index covariate for bycatch prediction.

Furthermore, Jakobsen and Ozhigin (2011, p. 227) stated that

NEA cod avoids temperatures below 1–2�C during winter. Such a

hypothesis can be validated by including bottom sea temperature

in (2) if such data are available.

Currently, fish stock assessment is divided into two main parts.

The first part consists of producing time series of abundance indi-

ces, and the second part consists of including these time series in

an assessment model. Our research contributes to the first of

these two parts. For future research, it would be interesting to re-

place observations in assessment models with predictions from a

spatio-temporal index model and estimate both models simulta-

neously. As we see it, a computational challenge with such an ap-

proach is that the conditional independence structure between

latent effects (3) within a year and neighbouring years is no lon-

ger present because of the population dynamic structure.

Supplementary data
Supplementary material is available at the ICESJMS online ver-

sion of the manuscript.

Data availability
Code used to produce all results are available at https://github.

com/OlavNikolaiBreivik/ICESpaperSpatioTemporal2020. Only

data collected by Norwegian vessels are provided at GitHub.

Access to the Russian data set may be granted upon inquiry to

the Federal State Budget Scientific Institution “Russian Federal

Research Institute of Fisheries and Oceanography.”
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Appendix
Uncertainty intervals of model parameters are constructed by a

standard Gaussian approximations of its internal representations.

The transformations are provided in Table A1.

Table A1. Transformation used in the optimization routine, x refers
to the corresponding internal representation.

Parameter Transformation

ra; rc; rw; ja; jc and k log x
qa;l; qc;l; qw;l and qt

2
1þexpð�2xÞ � 1
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