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In the early 1900s, cholesterol deposition in atherosclerosis was
considered a passive, degenerative, inevitable and end-stage
process of ageing. After decades of research, it is now recognized
as an active, regulated, treatable and preventable disorder
related to deposition and oxidation of lipoprotein components.
Similarly, in the past few decades, vascular calcification also has
been considered a passive, degenerative, inevitable, and end-
stage process of ageing. But, after recent clinical and laboratory
findings, there is increasing recognition that vascular calcification
is an active, regulated process related to oxidized lipids that may
be treatable and preventable.

The fact that complete bone tissue forms within the athero-
sclerotic artery wall has been known since at least the 1800s. In
1863, Virchow observed that vascular calcium deposits were not
mere calcification, but ossification.1 In 1908, investigators
reported red marrow elements in bone tissue within athero-
sclerotic plaque.2,3 Experimental models of atherosclerosis also
have cartilage and marrow within plaque.4

As an overview, vascular calcification in general, and coronary
calcification in particular, increase with ageing, are present in
almost all subjects over age 65, are more frequent in diabetics,
less common in African-Americans, and extremely common in
end-stage renal disease. Current studies of coronary calcification
utilize electron beam computed tomographic scanning (EBCT).
This method has been described as an ‘inaccurate’ predictor of
stenosis severity. While this is not incorrect, it may leave the
wrong impression since EBCT is accurate when used to predict
the presence of significant coronary artery disease, and the
degree of plaque burden.5

Mechanism of vascular calcification
The mechanism of vascular calcification is under investigation.
There may be more than one mechanism, since atherosclerosis
itself occurs by several different mechanisms, and also because
atherosclerotic calcification, which primarily involves the
intimal layer of the arteries, appears to be in a different category
than medial calcification (also known as Monckeberg’s medial
calcinosis), which is particularly common in diabetic patients.6,7

Such a determination is difficult, though, because EBCT does
not identify the layer of the artery affected.

Investigators in the 1980s recognized bone-like features of
vascular calcification including the mineral hydroxyapatite and
matrix vesicles. Similarities between artery and bone at the
molecular level were identified by Giachelli et al.8 who dis-
covered a bone matrix protein, osteopontin, expressed in
immature vascular cells. Schor et al. demonstrated that micro-
vascular pericytes were capable of producing mineralization 
in vitro.9 The possibility that atherosclerotic calcification occurs
by the same molecular mechanism as embryonic bone
formation was proposed by Bostrom et al. who demonstrated
expression of the potent embryonic bone differentiation factor,
BMP-2, in human calcified plaque.10 A variety of bone proteins
were then found in atherosclerotic lesions.11–16

Vascular calcification can be studied in tissue culture models.
A subpopulation of cells from the aortic medial layer
spontaneously produce bone mineral (hydroxyapatite) in tissue
culture.10 These calcifying vascular cells (CVC) recapitulate the
sequence of molecular events defining osteoblastic differentiation
including co-ordinate expression of alkaline phosphatase,
collagen I, osteopontin, osteonectin, and osteocalcin.17,18 Key
mechanisms of vascular calcification include genetic determin-
ation, inflammatory mediators, apoptosis, matrix components,
and homeobox genes.19–24

Clinical significance of vascular
calcification
Measurement of vascular calcification

Aortic calcification is often measured by visual indexes of simple
lateral roentgenography, though it is more accurately measured
by quantitative computed tomographic (CT) scanning, since
apparent density depends on penetration and technique.
Coronary calcification is most often measured by EBCT, which
differs from ordinary CT scanning in that images are acquired
rapidly enough to minimize heart motion artefacts. Some
groups are now attempting to validate routine CT scanning
coupled with ECG gating to substitute for the more expensive
EBCT. Coronary calcification is also measured by intravascular
ultrasound, which detects mineral by sound reflection at the
inner edge of the mineral deposit.
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Coronary events

The degree of coronary calcification by EBCT is a sensitive and
specific predictor for future cardiac events. The earliest evidence
for this was limited by the need to include ‘soft’ endpoints to
achieve sufficient numbers of events,25 such as interventional
or surgical treatment, which could be influenced by the results
of the EBCT scan. Other early studies suggested that there was
not a relationship with hard endpoints at early follow-up.26

As follow-up time has increased, the correlation between EBCT
results and the hard endpoints, myocardial infarction and
coronary death, has remained positive.27 However, patients
with the least circumferential extent of coronary calcification,
measured by intravascular ultrasound, have more occasions 
of acute coronary syndrome.28 These findings are difficult to
reconcile with those of EBCT, suggesting that the circum-
ferential extent of calcification is not related to calcium score 
by EBCT, and that the circumferential versus longitudinal
distribution have different implications.

Plaque rupture

Cardiac events are often the result of plaque rupture or
ulceration.29 Plaque disruption may be prevented or promoted
by calcium deposits because they may strengthen the plaque
against circumferential mechanical stress,30 but they also
introduce solid shear stress concentration where the non-
distensible mineral interfaces with distensible tissue. Under
mechanical stress induced by balloon angioplasty, calcified plaque
is more likely to rupture than non-calcified plaque,31 and the
rupture occurs along the interface between the calcium deposit
and soft tissue.32 Thus, the ratio of surface area to volume in
calcium deposits may determine whether they are harmful or
protective. The presence of calcium deposits also correlates with
adverse outcomes,33 and restenosis34 in coronary interventional
procedures.

Loss of the Windkessel effect in aortic calcification

Mineralization of the aorta may have greater significance than
of the coronaries. The normal aorta, with its multiple layers of
elastin, is highly resilient. This resilience serves a pump
function, known as the Windkessel effect. During systole, the
aorta distends which reduces the work of the heart by reducing
afterload. During diastole, the aorta recoils, with an energy that
propels blood throughout the vasculature, particularly into the
coronary tree, which depends on this diastolic aortic recoil for
most of its perfusion. When the aorta calcifies and becomes
rigid, it loses its Windkessel function,35 the work of the heart
increases,36 and coronary flow is reduced37 leading to left
ventricular hypertrophy, congestive heart failure and coronary
insufficiency in patients with coronary disease.38–41 Congestive
heart failure and myocardial infarction are major health
problems in the over 65 age group. Aortic calcification, present
in the vast majority of these individuals,42 is considered a factor
in both.43–46

Cardiac valve calcification

Calcific valvular stenosis is responsible for significant cardio-
vascular morbidity and mortality. For decades, valvular stenosis
was considered independent of atherosclerosis and its risk
factors. However, it is now known that cardiac valvular

calcification shares risk factors with atherosclerosis47 and it has
many features of bone.48–50 In addition, its progression is
reduced in response to lipid lowering therapy.51

Accelerated vascular calcification in
dialysis patients
In haemodialysis patients, vascular calcification develops early
and progresses rapidly,52 paralleling their high rate of premature
cardiovascular disease.53 These patients often receive treatment
with vitamin D and warfarin. At high doses, vitamin D promotes
vascular calcification,39,54 and warfarin, a widely-used anti-
coagulant, blocks vitamin K dependent carboxylation55 which
is critical for the function of some proteins in the clotting cascade
and two involved in mineralizing tissue, osteocalcin and matrix
GLA protein (MGP). Matrix GLA protein is expressed in the
artery wall, and it regulates in vitro vascular calcification,56 and
mice deficient in MGP develop complete ossification of the aorta
and all its branches. There is now evidence that MGP binds and
inhibits bone morphogenetic protein (BMP-2),57,58 the level of
which determines the lineage to be taken by mesenchymal
progenitor cells. Hence, in the MGP null mouse, where BMP-2
activity would be unopposed, the high level of activity would be
expected to direct medial cells along an osteoblastic rather than
smooth muscle lineage, thus accounting for the phenotype.
Since MGP function depends on gamma-carboxylation, warfarin
treatment may interfere with its protective function in the
vasculature. This raises the question of whether warfarin treat-
ment contributes to the accelerated vascular calcification in
dialysis patients.59

Vascular calcification and osteoporosis
Osteoporosis treatment efficacy is often assessed by bone
densitometry of the lumbar vertebrae. In this technique, an 
X-ray beam is projected through the abdominal wall and
lumbar spine. Since the amount of beam attenuation cor-
responds with the amount of calcium mineral in the beam path,
the density of mineral in the vertebrae can be calculated.60

However, it is often unappreciated that this beam path includes
the abdominal aorta, a prominent and early site of vascular
calcification. Thus, a treatment that increased only aortic
calcification would also increase lumbar densitometric beam
attenuation, potentially leading to its incorrect identification as
successful osteoporosis treatment.

In general, postmenopausal women are advised to take
calcium supplements to prevent or treat osteoporosis, implying
that bone loss is due to insufficient dietary calcium. Yet, in
many patients with osteoporosis, loss of bone tissue from the
skeleton occurs at the same time as formation of bone in the
artery wall. This paradox suggests that dietary calcium is not 
the limiting factor. The association of osteoporosis with vascular
calcification has been reported widely,61–66 and it may67 or
may not68–70 be explained by their mutual correlation with
ageing. In rodents, vascular calcification and osteoporosis co-exist
under at least three conditions: deficiency of osteoprotegerin,
an osteoclast inhibitory factor,71 deficiency of dietary essential
fatty acids72 and hyperlipidaemia.
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Lipids and biomineralization

In vitro and in vivo studies show that oxidized lipids not only
promote mineralization of vascular cells but they also inhibit
mineralization of bone cells.73 Low density lipoprotein (LDL)
levels correlate with both coronary and aortic valve calcification
progression,74 and LDL proteins accumulate in calcified aortic
valves.75 Hyperlipidaemia is associated with rapid progression
of coronary calcification,76 and lipid-lowering therapy reduces
progression of both coronary and valvular calcification.51,77

Oxidized lipids induce osteoblastic differentiation in vascular
cells in vitro,78 and hyperlipidaemia reduces bone mineral
density in vivo in mice.79

The paradox of simultaneous osteolysis and 
ectopic ossification

One possible unifying theme explaining this paradox is that
accumulation and oxidation of lipid deposits in tissue may
mimic chronic infection and stimulate immune responses that
promote hardening of soft tissue and the softening of hard
tissue. The bacterial cell wall contains lipids, and they are
modified by oxidizing factors released by phagocytic cells, such
as superoxide radical and nitric oxide from macrophages. Thus,
oxidized lipids in general may trigger the immune system to
respond as it does to persistent bacterial infection. It is well
known that the immune response to longstanding infection or
inflammation in bone is osteolysis,80 which would dissolve a
substrate for bacterial infectious growth. It is also well known
that the immune response to longstanding infection or inflam-
mation in soft tissue is heterotopic bone formation around the
site, which would wall off any infectious organism. Tuberculous
granulomata result from this process. Thus, lipid accumulation
and oxidation may lead to a reversal of the normal regional
control of biomineralization, promoting calcification of soft
tissue and osteolysis of bone, accounting for the paradox of
bone formation in the arteries of patients who are losing bone
from their skeletons.

Additional epidemiological considerations

In a case-control study from Thailand, serum biomarkers of
osteoporosis and coronary heart disease were compared. No
statistically significant difference was found in bone turnover
markers between 118 coronary artery disease patients versus
control subjects.81 Since a reduction in osteogenesis is not
always accompanied by changes in turnover, however, such
measures may not detect an association between coronary
disease and reduced bone formation. If accurate markers of
bone differentiation/formation are developed in the future, this
type of study, comparing degree of vascular calcification with
serum markers of bone differentiation or formation may help
determine whether such a relation exists.

From a mechanical standpoint, whether calcium deposits in
arteries are circumferential versus longitudinal may influence
stability. These assessments are difficult to make by EBCT
because of resolution limitations, and they are difficult by
intravascular ultrasound because calcium deposits reflect the
echoes allowing assessment only of the edge of the deposit
closest to the tranducer. Beckman et al. compared the extent of
cirumferential calcification (not longitudinal), and found that
patients with acute coronary syndromes had less cirumferential

extent than those with stable angina.82 Although there are
potential confounding effects in this study, it raises the
possibility that circumferential calcification has a stabilizing
effect.

Although long-term warfarin use in atrial fibrillation, by
reducing function of MGP, would be expected to promote
arterial calcification, clinical events are generally reduced in
treated patients. The likely reason, of course, is warfarin’s direct
effect on blood coagulation and its contribution to thrombosis,
the major event in atrial fibrillation. It also remains possible that
calcification could stabilize plaque as well as reduce clot
formation.

It remains controversial whether coronary heart disease risk
factor profiles (e.g. the Framingham score) have a greater
predictive value if the extent of arterial calcification is included.
Arad et al. determined the areas under the receiver-operator
characteristics curves as 0.84 and 0.86 for predicting non-fatal
myocardial infarctions and deaths from coronary calcification
score.83 Overall, the view is that calcification scores make a
small improvement in predictive value.

Coronary calcification and osteoporosis have been associated
with presence of infectious agents, such as Chlamydia
pneumoniae and Helicobacter pylori, as well as markers of chronic
infection, such as C-reactive protein. While this most likely
suggests that arterial calcification is a chronic inflammatory
process, it remains possible that inflammatory processes in bone
alter the serum bone regulatory factor levels, resulting in
indirect effects on vascular calcification.
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