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Markov Chain Monte Carlo (MCMC) methods are increasingly
popular among epidemiologists. The reason for this may in part
be that MCMC offers an appealing approach to handling some dif-
ficult types of analyses. Additionally, MCMC methods are those
most commonly used for Bayesian analysis. However, epidemiolo-
gists are still largely unfamiliar with MCMC. They may lack
familiarity either with he implementation of MCMC or with inter-
pretation of the resultant output. As with tutorials outlining the
calculus behind maximum likelihood in previous decades, a
simple description of the machinery of MCMC is needed. We pro-
vide an introduction to conducting analyses with MCMC, and show
that, given the same data and under certain model specifications,
the results of an MCMC simulation match those of methods based
on standard maximum-likelihood estimation (MLE). In addition,
we highlight examples of instances in which MCMC approaches
to data analysis provide a clear advantage over MLE. We hope
that this brief tutorial will encourage epidemiologists to consider
MCMC approaches as part of their analytic tool-Kkit.

Introduction

Markov Chain Monte Carlo (MCMC) methods are
increasingly popular for estimating effects in
epidemiological analysis."® These methods have
become popular because they provide a manageable
route by which to obtain estimates of parameters for
large classes of complicated models for which more
standard estimation is extremely difficult if not
impossible. Despite their accessibility in many software
packages,” the use of MCMC methods requires basic
understanding of these methods and know-
ledge of how to determine whether they have func-
tioned appropriately in a particular application.
Simulation-based methods, such as MCMC methods,
offer a fundamentally different approach from
maximume-likelihood-based methods for obtaining the
distribution of parameters of interest. Transitioning

from maximume-likelihood to simulation-based meth-
ods requires some explanation of their similarities
and differences. Additionally, determining whether an
MCMC algorithm has converged to the ‘correct answer’
is quite different than determining whether standard
algorithms used in maximume-likelihood estimation
have converged. The use of MCMC methods requires
that researchers be comfortable in reading visual
output that suggests whether or not MCMC results
can be considered reliable.

In this paper we address both of these issues. First, we
offer a brief overview of Monte Carlo integration and
Markov Chains. Next, we provide a simple example to
illustrate that, in some model specifications, MCMC
and asymptotic maximum-likelihood approaches can
return similar results for samples of moderate size.
Through this example, we explain how to set up an
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MCMC analysis and recognize convergence in an
MCMC model; we focus on 3 visual plots that are stand-
ard for assessing convergence with MCMC models, and
offer guidance on how to read these plots. Markov
Chain Monte Carlo methods are a potentially useful
complement to the standard tools used by epidemiolo-
gists for estimating associations, albeit a complement
that is often more computationally intensive than
maximum-likelihood approaches. We hope that this
brief tutorial will ease the path to simulation-based
MCMC approaches to data analysis.

Markov Chain Monte Carlo: more
than a tool for Bayesians

Markov Chain Monte Carlo is commonly associated
with Bayesian analysis, in which a researcher has
some prior knowledge about the relationship of an
exposure to a disease and wants to quantitatively inte-
grate this information. The task of incorporating this
prior knowledge can yield a suitably complex model in
which the exact distribution of one or more variables is
unknown and estimators that rely on assumptions of
normality may perform poorly. This limitation often
leads researchers to implement their Bayesian models
with MCMC, because it is quite effective at handling
complex models; however, this does not mean that
MCMC is equivalent to Bayesian analysis. Rather,
MCMC is simply a tool for estimating model parameters
that has been proven to be effective for handling com-
plex problems. Even though MCMC is often treated as a
synonym for ‘Bayesian,” it can just as readily be used in
frequentist analyses.'® Similarly, although asymptotic
maximization techniques are often considered akin to
frequentist analysis, these methods are used in
Bayesian analysis as well.'!"'* The appeal of MCMC is
that it can handle more complex models by design,
whereas maximization techniques can be more limited
in their ability to do so. This is shown in recent work by
Cole et al., who utilize a technique for obtaining
Bayesian posterior distributions without Markov
chains, but conclude that when models become more
complex, MCMC procedures provide a clear benefit over
approximation techniques for Bayesian analysis."’
Recent papers offer a number of compelling examples
of regression models implemented in an MCMC frame-
work. For example, Hamra ef a/. use MCMC to formally
integrate evidence from experimental animal and
cellular research into an epidemiologic analysis with
a constraint of order."* MacLehose et al. used MCMC
to inform the estimation of multiple, highly correlated
exposures using semiparametric priors and a Dirichlet
process before the clustering of effects into groups for
more efficient estimation'’; Richardson et al. used
MCMC to conduct time-window analyses of the rela-
tionship between occupational exposures and
lung-cancer risk when a second-stage was specified
as a parametric latency model®; and the MCMC frame-
work has proven useful for estimating the excess

relative risk created by interaction and estimation in
log-binomial models.*” This is not to say that asymp-
totic estimators are not useful. In fact, when the avail-
able data are large and the models less complex,
MCMC may provide little or no benefit relative to
standard estimating procedures. However, when faced
with complex models, which are increasingly common
in epidemiologic inquiry, the researcher may find
benefit in MCMC.

Markov Chains and Monte Carlo
integration

Unlike deterministic maximume-likelihood algorithms,
MCMC is a stochastic procedure that repeatedly gen-
erates random samples that characterize the distribu-
tion of parameters of interest. This is distinct from
commonly practiced asymptotic maximum-likelihood
techniques, which are typically used to characterize
the sampling distribution of an estimator. The process
of generating the random samples in MCMC is the
role of the Markov chain. The process of generating
summary statistics from those random samples is the
role of Monte Carlo integration.

A Markov chain can be thought of as a directed
random walk through the parameter space that de-
scribes all the possible values of the parameter of
interest. A directed random walk implies that al-
though the next value drawn in the Markov chain
is random, some values are more likely to be drawn
than others; a well-constructed Markov chain will
sample from these more likely regions of the sample
space. The sampling of parameter values proportion-
ally to their probability (which is determined by the
information in the data and, in the case of a Bayesian
analysis, by any informative prior information the
user provides) allows the user to reconstruct the par-
ameter’s entire distribution. This is one of the more
remarkable results of modern statistics: although this
distribution of the estimator might not be available in
a form that can be easily written, random samples
can still be drawn from it. There are many algorithms
that produce these random walks through the param-
eter space, including the widely used Gibbs sampler
and the Metropolis—Hastings algorithm. The finding
by the algorithm of this distribution (known as the
stationary distribution of the chain) is referred to as
convergence of the MCMC procedure. We can then
draw as many samples from it as we like and sum-
marize them via Monte Carlo integration to obtain the
desired description of the distribution of the param-
eter of interest.

We can create a histogram of the random samples
produced from the Markov chain to characterize the
posterior distribution. However, we might also be inter-
ested in the mean of the random variable X or the mean
of a function of the random variables E[f(X)]. The
random variable and function could be the probability
of the outcome and a logarithm, respectively, of an
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odds ratio. There are two main ways to find E[f(X)]. The
first solution requires detailed algebra and calculus: we
could derive the distribution of f(X) and then integrate
f(X) over that distribution to obtain the expectation.
The second solution dispenses with the difficult math-
ematics and focuses on summarizing random samples
of X. If we draw x, .. .x, from this distribution and then
apply the function to each of these values, we obtain
f(xy)...f(x,); we can then simply calculate the mean of
these values to obtain our expectation. More formally,
this can be written as

EFOO1~ 3106,

This solution is known as Monte Carlo integration
and can be extremely powerful whenever deriving
the distribution of f(X) proves too cumbersome.
Combining Markov chains and Monte Carlo integra-
tion, we arrive at a process by which Markov chains
are used to draw random samples from a distribution
and Monte Carlo integration is used to generate sum-
mary estimates from those random samples. The tech-
nical details of Markov chain theory can be daunting;
however, there are many algorithms that produce
these ‘random walks’ through the parameter space.
For further detail, we recommend the seminal paper
by Gelfand and Smith, as well as the texts by Carlin
and by Louis, Gilks, and Richardson, or Gill."*™'®

Use of Monte Carlo integration does not necessitate
a major departure from the evaluation of parameter
estimates with which epidemiologists are most famil-
iar. In a frequentist analysis, if we know that a par-
ameter is normally distributed, with a mean p and
variance 6°, we can easily compute a 95% confidence
interval (CI) around the effect estimate of interest.
The same calculation can be done with Monte Carlo
integration, with the bonus of interpreting the distri-
bution in an intuitive way as discussed above. If, for
example, we draw 1000 random samples from the
normal distribution, the 2.5th and 97.5th percentile
values will correspond to the limits of a 95% CI;
additionally, we obtain the mean, median, and
mode, which paint a clearer picture of the parameter’s
distribution. In fact, in finite samples, the mean has
been shown to be more stable than the median or
mode.'” Markov Chain Monte Carlo will provide this
information by design.

Markov Chain Monte Carlo is not
magic: a simple example

To illustrate specification with an MCMC procedure
and the diagnosis of convergence of a model, we
use a simple example drawn from work by
Savitz et al. regarding a case—control study of the
association between residential exposure to a mag-
netic field (where X=1 for exposure and X=0 for
non-exposure) and childhood leukemia (where Y=1
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for cases and Y=0 for controls).""'*?° The
data were presented as a simple two-way table in
which n,, was the number of individuals in each
cell, with n;; =3, n;p=5, ng; =33, and nyy=193.
These data could be analyzed with a logistic-
regression  model of the form: Logit(Pr
(D=1))=8,+ Bix, where x identifies residential
magnetic-field exposure.

This simple regression model could be estimated
through MCMC methods. When we implement an
MCMC simulation, the process must begin at some
value for the parameter of interest. This starting
point, which can be user specified, should not con-
tribute to summarizing the posterior distribution of
interest. Thus, we specify a ‘burn-in’, which is a
grace period during which the Markov Chain wanders
to the most probable region of the sample space; in
fact, the samples obtained during the burn-in are ul-
timately discarded. After the burn-in, the simulation
will continue to generate samples from the distribu-
tions of the parameters of interest for as long as we
specify, which is the total number of iterations speci-
fied. If, for example, we run an MCMC model with
100000 iterations and a burn-in of 10000 samples,
we are specifying 110000 iterations, but we throw
out the first 10000. A challenge of using MCMC is
specifying an appropriate number of iterations and
appropriate burn-in. In practice, there are no hard
and fast rules for this process. Instead, the researcher
uses a trial-and-error process to determine that the
number of iterations and burn-in are adequate. In
our own work, we often specify a starting point of
10000 iterations with a burn-in of 1000 iterations,
and increase the values from these as mnecessary.
Evaluating diagnostic plots, discussed below, will
help indicate whether the Markov chain has run
long enough. It is also worth noting that increasing
the number of iterations and burn-in iterations will
not solve an inherently intractable problem, such as
estimating a non-identified parameter. For instance, if
we have run MCMC simulations for 1000000 iter-
ations with a burn-in of 100000 and have seen little
or no sign of convergence in a model, we may ques-
tion whether or not the parameter can be estimated.
Although MCMC is a very powerful tool, it is of little
use if asked to answer an unanswerable question.

Markov Chain Monte Carlo models are often used in
Bayesian analyses in which a prior is specified.
Suppose that we specify a very ‘diffse’ or non-
informative  prior, such as B, N~(u=0,
62=100000). The goal of such a ‘diffuse’ prior is to
allow the likelihood to overwhelm, and thus fully
characterize, the posterior distribution of the param-
eter of interest. Indeed, this model yields a posterior
OR (the median of the posterior distribution) and
95% posterior interval of 3.37 (0.67, 16.08).
Throughout this paper we present 95% highest pos-
terior density intervals, which are helpful for describ-
ing the posterior density when it is non-symmetrical.
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The geometric mean in the model being discussed is
3.30, indicating slight skewness in the distribution of
the parameter of interest. If in contrast we specify a
more informative prior, as in Greenland’s example,
such that B;, N~ (u=0, c*=0.5), we obtain a pos-
terior OR (95% posterior interval) of 1.71 (0.57, 4.97).
Greenland'’s original analyses yield an OR (95% CI) of
3.51 (0.80, 15.4) with no prior information included
and a posterior OR (95% posterior limits) of 1.80
(0.65, 4.94) when he integrates, via data augmenta-
tion, the null-centered prior mentioned above (details
of this calculation are provided elsewhere ''). We
describe Greenland’s results here to point out that
although MCMC returns an exact distribution for
the parameter of interest, previous methods can in
some cases provide good approximations.*'

The next step in an MCMC analysis is to assess
model convergence. Unlike MCMC, convergence of
likelihood estimators happens in the background
through the use of a pre-specified optimization algo-
rithm (such as the Newton—-Raphson algorithm).
However, judgments about the convergence of an
MCMC procedure require the user to evaluate several
diagnostics, the most common of which are visual
summaries. Three visual plots are routinely used to
assess model convergence:

(1) Trace plots. These document the magnitude of
the sample drawn (y-axis) at each iteration
(x-axis) of the MCMC procedure. Once the
chain has identified the stationary distribution
of samples, the samples that are drawn will
appear to have been randomly sampled from
the same region of the y-axis.

(2) Autocorrelation plots. These document the cor-
relation (y-axis) of samples at each step of the
chain with previous estimates of that same vari-
able, lagged by some number of iterations
(x-axis). Ideally, the autocorrelation declines rap-
idly, so that it is eventually possible to be confi-
dent that the samples from the stationary
distribution can be thought of as random, and
not reliant on initial values in the chain. If the
autocorrelation fails to diminish, a pattern in
the sample draws in the trace plot will become
more discernible, suggesting that at the very
least, the posterior distribution has not been
well characterized by the drawn samples.

(3) Density plot. As its name implies, this plot is a
summary of the sampled values that define the
stationary distribution of values, which approxi-
mates the posterior distribution of interest. The
peak of the density (the maximum a posteriori,
or MAP, estimate) is the mode of the distribu-
tion, which is the value with the most support
from the data and the specified prior. Other pos-
terior summaries, such as the posterior mean or
posterior median, are also easily obtained. Kernel
density estimation is used to smooth over the
samples and produce an estimate of the posterior

distribution. It should be noted that the density
plot is not a formal means of diagnosing model
convergence, as are the autocorrelation and trace
plots. However, unexpected peaks or strange
shapes in the posterior density can be a sign of
poor model convergence.

In addition to the visual plots discussed above, a
Gelman-Rubin diagnostic check is often used to
assess model convergence. This diagnostic involves run-
ning multiple MCMC procedures, specifying the same
model and prior information, from different starting
values and comparing the variance within each chain
with the variance between chains. Lack of model con-
vergence is indicated when the variance between chains
is larger than the variance within chains. This can result
from multimodal problems in which a chain has iden-
tified two or more distinct parameter distributions, or
from a high degree of correlation in the observed data.
Although there are no rules for how many different
chains to run, researchers often run the Gelman—
Rubin diagnostic for 3 chains.

It should be noted that there is no formal method
by which to diagnose that a chain has converged. The
plots and tests we describe here can only aid in
detecting lack of convergence. We conduct analyses
in SAS version 9.2 (SAS Institute, Cary, NC) with
the GENMOD procedure and using a BAYES state-
ment.” It is worth noting that MCMC has its own
procedure in SAS and can also be called upon in
the PHREG procedure. Additionally, software is avail-
able in the free WinBUGS and R statistical packages.
We provide an eSupplement with a code for imple-
menting this example as a Bayesian analysis in
GENMOD. This example code will produce both fre-
quentist and Bayesian results, with the associated
diagnostic plots we describe above.

Figure la illustrates the result of Greenland’s ex-
ample with the use of a diffuse prior. An MCMC al-
gorithm that has converged will tend to quickly
wander randomly around the same area, rarely ven-
turing outside that area. The trace plot in Figure la
suggests that the chain is wandering through the
same region of the parameter space and has found
the stationary distribution, but it is not guaranteed
that this is so. For this reason we must use the
trace plot in conjunction with the autocorrelation
and density plots as well as the Gelman-Rubin
statistic to assess model convergence. The autocorrel-
ation drops precipitously, from lag 0 to lag 50, which
tells us that each sample in the chain is only slightly
correlated with the previous draw, and suggests no
reason for concern. These plots suggest that the sam-
ples are approximately independent, random draws
from a parameter distribution. Lastly, the density
plot allows assessment of the posterior distribution
of the parameter of interest. In this case we see a
symmetric distribution for the parameter estimate.
The density plot is also useful when assessing
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Figure 1 Diagnostic plots illustrating convergence (top) and non-convergence (bottom) of an MCMC procedure
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whether or not chains started from different values
converge to the same distribution.

Figure 1b provides an example of non-convergence
of an MCMC procedure. This was achieved by repla-
cing the ny; cell in our example with a value of 0,
creating quasi-complete separation.”? The trace and
autocorrelation plots are particularly informative
here. The Markov chain wanders slowly through the
parameter space, attempting to find a stationary dis-
tribution, but never settles into an area from which it
can yield independent samples. It appears as though
estimates are serially correlated with previous esti-
mates in the chain. This is confirmed by the autocor-
relation plot, in which the draws are almost perfectly
correlated with draws made 50 iterations prior. The
samples may be from a distribution of the parameter
of interest, but they are not independent random
samples. The kernel density plot reflects the lack of
convergence seen in the trace and autocorrelation
plots, showing that the chain was unable to find a
smooth distribution with a single point estimate with
more support than any other point estimate (as will
often be the case in simple models).

An example of hierarchical
modeling

The nicest feature of MCMC is its ability to handle
otherwise complex model specifications. An example
of this is specification of a hierarchical model.
Breslow and Day present an example of this from
the Ille-et-Villaine study of the relationship between
alcohol and tobacco consumption and risk of esopha-
geal cancer.”” Data are available for five forms of
alcohol: wine, beer, cider, digestifs, and apertifs.
A researcher might model each individually, combine
them into a single term, or choose a subset. An
appealing alternative to these options is to specify a
hierarchical model in which the first-stage model con-
tains a term for each form of alcohol consumed, e.g.
Bi—Bs, and the second-stage model contains a single
term representing the common mean of alcohol con-
sumption, e.g. u. By modeling alcohol consumption in
this way, we are saying that we believe, a priori, that
the distinct types of alcohol are exchangeable, as rep-
resented in this case by the expression g;~N(pu, ).
These data are analyzed with a first-stage logistic-
regression model of the form: Logit(Pr(D=1))=
o+ Bx;, where x indexes each form of alcohol
(0=no alcohol consumption, 1=any alcohol con-
sumption) as well as age (centered at the mean of
52 years). Analyses are restricted to non-smokers, to
aid in illustrating how the grand mean can influence
the individual parameter estimates in the presence of
sub-optimal data. The second stage, or prior, is speci-
fied such that the model shrinks the coefficients (8;.5)
of alcohol consumption toward their grouped mean
() weighted by the inverse wvariances (t). The
priors specified for © and t are N~ (mean=0,

var =100000) and y~(0.01, 0.01), where the param-
eters correspond to the shape and inverse-scale par-
ameters of the gamma distribution, respectively. The
latter will be unfamiliar to many, but it is simply
another way of specifying a very weak prior so that
the weight of information in the data supporting the
grand mean, u, define its strength. Additionally, the
prior for age is specified as diffuse, with
N ~ (mean =0, var =100 000).

The data in Table 1 show that in the absence of a hier-
archical structure to the model, the individual estimates
for some forms of alcohol are quite imprecise, although
all of the forms of alcohol produce positive-effect esti-
mates. When shrinkage of their grouped mean is
induced through a Bayesian hierarchical model, all of
the effect estimates are within a similar range of values,
extending from an OR of 2.11 for aperitif consumption
to an OR of 2.36 for beer consumption. Effect estimates
from the hierarchical regression are noticeably more
precise, which is expected, because the formulation of
this model allows regression estimates to borrow
strength through the prior.**

In executing this analysis, we began with 10000 it-
erations and a burn-in of 1000. This was inadequate
to produce reliable estimates, as indicated by a high
autocorrelation for the parameters of interest, resem-
bling what is seen in Figure 1b. We increased
the number of iterations to 500000 with a burn-in
of 50000. At this point we introduced thinning,
which is a procedure that may be used to reduce
autocorrelation. Thinning is the act of discarding
some samples from the simulation. For instance, if
we specify ‘thin=2" or ‘thin=3’, the procedure will
retain only every second or third parameter value, re-
spectively. We settled on retaining every fourth par-
ameter value (thin=4) and increased the MCMC
procedure to 2-million iterations with a burn-in of
100000 iterations, which left 500000 iterations to
summarize the posterior distribution of each param-
eter (since, again, we kept only every fourth sample
of a total of 2 million samples). Although this
may seem like a lengthy procedure, the final models
ran in just under 22 minutes on a common laptop
computer.

Table 1 Odds ratios of esophageal cancer associated with
consumption of distinct forms of alcohol in the
Ille-et-Villaine study®

Model

Alcohol Logistic Hierarchical model results

type OR 95% CI OR 95% HPD
Beer 341 0.71-16.31 2.36 0.71-5.55
Cider 2.68 0.49-14.60 2.29 0.63-5.45
Wine 144 0.15-14.14 2.15 0.38-5.16
Apertif 1.57 0.35-7.09 2.11 0.56-4.58
Digestif 1.86 0.36-9.47 2.18 0.64-4.73

4All models are adjusted for age (centered at 52 years).
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Discussion

In this paper we have provided a basic introduction
to Markov Chain Monte Carlo methods. Drawing
on Greenland’s example from his Bayesian series, we
illustrate the basic tools needed for executing a basic
MCMC analysis with a weak and non-informative
Bayesian prior."' We emphasize that results of MCMC
simulation need not produce different estimates than
those provided by standard frequentist regression tech-
niques currently used by epidemiologists.

Despite the practical similarities between a Bayesian
analysis with a non-informative prior in MCMC and a
frequentist analysis with maximum-likelihood estima-
tors, there are conceptual differences in the two
techniques. Thus, for example, frequentist theory
treats parameters as fixed values with an associated
random error, whereas Bayesian analysis treats all par-
ameters as random values. Further, from a theoretical
point of view, the two procedures are attempting to
solve different problems. Frequentist theory is con-
cerned with long-run properties (bias, mean squared
error) of estimators with repeated sampling, whereas
Bayesian theory is concerned with computing a poster-
ior distribution from a single analysis sample and prior.
However, in the absence of an informative prior, the two
techniques will often return similar if not identical point
and interval estimates for the parameters of interest.
When the sample size becomes small, or a regression
model becomes sufficiently complex, traditional asymp-
totic maximum-likelihood estimation may poorly esti-
mate the parameter of interest; alternately, MCMC is
capable of returning an exact distribution of the param-
eter of interest. It should be noted that the poor per-
formance of traditional likelihood methods comes
from their reliance on asymptotic normality.
Alternative likelihood methods are available to provide
more accurate parameter estimates that do not rely on
assumptions of normality. Two common examples of
these alternative methods are profile-likelihood estima-
tion and bootstrapping. As with MCMC, either of these
approaches allows users to improve on asymptotic max-
imum-likelihood techniques.

As with other methods, MCMC methods have
limitations, most notably the computational power
required for some models. However, computational obs-
tacles are increasingly overcome with improvements in
computer technology, although this may still be
off-putting to some. In addition, choosing an MCMC
approach to data analysis will not remedy the problems
of bias (confounding, information, and selection) that
plague many epidemiological studies. However, it does
ease the inclusion of information to correct for these
biases.?>* Doing this does make the form of a model
more complex, but handling challenging models is the
reason for which MCMC was designed.

As with any valid epidemiologic inquiry, MCMC
relies on proper model specification to yield valid re-
sults. If a model is not properly specified, the results
may be incorrect even if a Markov chain converges, as
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is the case for any frequentist approach. The more
complex the model, the more difficult it becomes to
diagnose proper model convergence. Thus, care must
be taken in developing a correct model. Care must
also be given to specifying a prior, because not every
prior distribution can be used in every situation. A
poorly specified prior can result in a greater mean
squared error than with frequentist estimators. For
example, a prior distribution that designates the
most likely relative risk for the smoking-lung cancer
relationship to be 0.5 is likely to result in poorly per-
forming estimators.'”*” In practice, what constitutes
the mis-specification of a prior is difficult to quantify,
and many users of Bayesian techniques tend to err
on the side of specifying more diffuse prior distribu-
tions to diminish their risk of error and help en-
sure they have not grossly mis-specified their prior.
In addition, there is no established method for deter-
mining an appropriate number of iterations and
burn-in size. Rather, we use a trial-and-error process
in which the ultimate goal is to obtain stable param-
eter estimates that minimize simulation error. As with
the computational intensity discussed above, these
steps require more time on the part of the researcher.
However, MCMC estimation is indispensable as a tool
for handling intractable epidemiological inquiries.
Markov Chain Monte Carlo methods are not limited
to use in obtaining Bayesian posterior distributions.
Proponents of frequentist statistics can just as easily
use the machinery of MCMC to obtain parameter
estimates of interest.'® Advances in statistical software
packages have provided easier approaches to the speci-
fication of a model and of priors for individual param-
eters. In our view, epidemiologists would not need to
seek out the guidance of biostatisticians for conducting
simple Bayesian analysis, such as with generalized
linear models. With more complicated models, expert
advice may be required. Lastly, the act of recklessly
applying a “Bayes” stamp to an analysis may lead to
dubious results."*® Thus, careful consideration should
be given when applying a Bayesian method to data
analysis. We hope that readers will find MCMC meth-
ods less daunting, and we look forward to their
increased use by epidemiologists in future studies.
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