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In this contribution we put forward a novel hypoth-
esis concerning the aetiology of Type 2 (non-insulin
dependent) diabetes mellitus. The concept underlying
our hypothesis is that poor foetal and early post-natal
nutrition imposes mechanisms of nutritional thrift
upon the growing individual. We propose that one
of the major long-term consequences of inadequate
early nutrition is impaired development of the endo-
crine pancreas and a greatly increased susceptibility to
the development of Type 2 diabetes. In the first sec-
tion we outline our research which has led to this
hypothesis. We will then review the relevant litera-
ture. Finally we show that the hypothesis suggests a
reinterpretation of some findings and an explanation
of others which are at present not easy to understand.

Insulin deficiency in Type 2
diabetes
The controversy concerning the relative roles of insu-
lin deficiency and insulin resistance in Type 2 diabetes
continues unresolved. Despite the early demonstration
that obese people have elevated plasma insulin con-
centrations1 many studies over the years have failed
to control adequately for the influence of obesity.
Another difficulty with the interpretation of plasma
insulin concentrations is that sustained hypergly-
caemia could have detrimental effects on insulin
secretion.

In the 1960s one of us (CNH) attempted to deter-
mine whether subjects with a normal fasting glucose
concentration but a delayed return of glucose to the
fasting concentrate after oral glucose (a condition
similar to but not identical with that now defined
as ‘impaired glucose tolerance’) had poor insulin

secretion early in a glucose tolerance test.2 Subjects
thus identified were studied again 5 years later to
determine their tendency to deteriorate to diabetes.3

Obese subjects in this group showed the greatest de-
terioration of glucose tolerance.3 It was concluded
that obese subjects with defective initial rises in
plasma insulin concentration were those most likely
to develop diabetes. Unfortunately the relatively small
numbers of subjects who could be studied in those
days meant that this finding could only be taken as
suggestive rather than definitive.

Whilst the work was in progress the discovery of
proinsulin,4 the later demonstration of its presence
in plasma5,6 and of its elevation in the plasma of
Type 2 diabetic subjects7–9 raised a question concern-
ing the specificity of insulin measurements in plasma.
It was apparent from early days that proinsulin cross-
reacted strongly in many insulin radioimmunoassays.
A potential solution to the assay problem lay in the
exploitation of immunoassay techniques involving the
use of labelled antibodies termed ‘immunoradio-
metric’ assays. These were developed in a variety of
configurations in one of our laboratories over the
years10–14 leading to what was termed an ‘indirect
two site immunoradiometric assay’ of human pro-
insulin.15 It was something of a surprise to discover
subsequently, with the advent of bioengineered
human proinsulin,16 that this assay did not detect
intact human proinsulin but rather the sum of the
partially proteolysed derivates on the pathway of con-
version to insulin.17 This finding led to the inevitable
conclusion that a significant amount of the proinsu-
lin-like material in plasma was partially split rather
than intact. Further work, this time exploiting the
monoclonal antibody technique,18 was required to
devise assays with adequate specificity to resolve the
complex mixture of insulin-like molecules present in
plasma.19

The new assays were applied to the re-investigation
of plasma insulin concentrations in subjects with es-
tablished Type 2 diabetes.20,21 The main conclusions
to emerge from these studies were: (i) the major
proinsulin-like molecule in the plasma of many
Type 2 diabetes subjects was the 32–33 split form.
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(The assays produced do not discriminate between
des 31, 32, des 32 and 32–33 split proinsulin or be-
tween des 64, 65 or 65–66 split proinsulin respect-
ively. As pointed out19 it is probable that des 31, 32
or des 64, 65 are the main products in plasma but for
simplicity the term 32–33 split is used here.), (ii) the
total concentration of proinsulin-like molecules in
plasma from Type 2 diabetic subjects was one to
two-thirds of the total concentration of insulin-like
molecules in plasma, (iii) measuring the relatively
biologically inactive proinsulin-like molecules as ‘in-
sulin’ could lead to the erroneous conclusion that a
diabetic patient was insulin resistant rather than in-
sulin deficient, (iv) specific measurement of insulin
showed that there was a clear separation between
the 30-min insulin responses of the control compared
with the lower response of the Type 2 diabetic sub-
jects, (v) insulin radioimmunoessays often measured
the sum of all the insulin and proinsulin-like mol-
ecules present in plasma.

Another possibility that arose from this work was
that 32–33 split proinsulin might have a pathogenic
significance.22 Risk factors for ischaemic heart dis-
ease such as plasma cholesterol, triglyceride, HDL-
cholesterol, plasminogen activator inhibitor and
blood pressure were more strongly correlated with
32–33 split proinsulin than was insulin itself. We
return to the interpretation of this finding below.

Although the finding of a uniformly reduced early
insulin response to oral glucose in Type 2 diabetic
subjects seemed to be received as something of a
shock a couple of years ago, review of the literature
of obesity-controlled studies over the years shows
this to be an almost universal finding (e.g. 23–32).
Disagreement over the insulin status of Type 2 dia-
betic subjects has often resulted from the use of dif-
ferent aspects of the plasma insulin response to oral
glucose to assess status. Emphasis has been variously
placed on the early insulin response, the 2 h insulin
concentration or the area under the insulin curve or a
combination of these. It is now clear that the early
insulin response is of critical importance in determin-
ing glucose tolerance.33 Thus in the absence of a
normal early insulin response, elevated 2-h insulin
concentrations or an elevated area of insulin concen-
tration under the 2h curve cannot be accepted as evi-
dence of insulin resistance. Studies of subjects with
impaired glucose tolerance [IGT] give less clear cut
findings than in Type 2 diabetes, but provide little
evidence of universally raised early insulin responses
as might be expected of a condition which has been
suggested to be largely determined by insulin resist-
ance (e.g. 25–28,32,34–37).

Studies such as those listed above however cannot
determine whether insulin deficiency, insulin resist-
ance or a combination of the two leads to Type 2
diabetes. A large prospective study of adult men and
women living in Ely, Cambridgeshire, UK, has been
initiated to address this issue. An early and surprising

finding to emerge from this work is that there is in
this population a continuous relationship between
height and glucose tolerance and that both men and
women subjects with impaired glucose tolerance are
significantly shorter than matched control subjects.38

Foetal and infant growth and Type
2 diabetes
Previous work by one of us (DJPB) has led to the
conclusion that cardiovascular disease in adult life re-
sults from restraint of growth during foetal life and
infancy.39 Cardiovascular disease is viewed as a ‘pro-
grammed’ effect of interference with early growth and
development. (Programming may be defined as a per-
manent or long-term change in the structure or func-
tion of an organism resulting from a stimulus or
insult acting at a critical period of early life.40 The
first evidence for this came from geographical studies
which showed that differences in death rates from
cardiovascular disease in different areas of England
and Wales were closely related to differences in neo-
natal mortality (deaths before one month of age) 70
and more years ago.41 Since most neonatal deaths
were associated with low birthweight these findings
suggest that cardiovascular disease is linked to im-
paired foetal growth.

This link was subsequently demonstrated in studies
of individual men and women whose foetal and
infant growth was recorded at the time. The first
study was carried out in the county of
Hertfordshire, England, where since 1911 all babies
born have been weighed at birth and at one year.
Among 5654 men those who had the lowest weight
at birth and at one year had the highest death rates
from ischaemic heart disease as adults.42 The differ-
ences in death rates were large, around three-fold.
This posed the question of what processes link
lower rates of foetal and infant growth with cardio-
vascular disease. Subsequent studies in Hertfordshire
and in the city of Preston showed that lower birth-
weight, especially if associated with disproportionately
high placental weight, is linked to raised blood pres-
sure in adult life and to elevated plasma levels of fi-
brinogen.43,44 It was concluded that these long-term
associations reflect restraint of growth of certain tis-
sues, including blood vessels and the liver, by an ad-
verse environment during a critical period of foetal or
infant development. Poor maternal nutrition was sug-
gested as an important environmental influence.39

The known associations of Type 2 diabetes and IGT
with ischaemic heart disease and hypertension45,46

plus awareness of the rapid growth of Beta cells
during foetal life47 suggested to us that reduced glu-
cose tolerance may be another outcome of early
growth restraint.

Of the Hertfordshire men who still live in the county
468 attended for venous blood sampling in the fasting
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state. Of these men 370 agreed to have a full 75 g oral
glucose tolerance test. From this study some strong
relationships have emerged.47 The percentage of men
with impaired glucose tolerance or Type 2 diabetes fell
progressively with increasing birth weight and weight
at one year.48 Forty percent of men with birth weights
of 2.5 kg (5.5 pounds) or less had a 2-4 h plasma glu-
cose of 7.8 mmol/l or over compared with 14% of men
with birthweights over 4.3 kg (9.5 pounds). Forty
three percent of men with weights at one year of
8.2 kg (18 pounds) or less had a 2-h plasma glucose
of 7.8 mmol/l or over compared with 13% of men with
weights at one year of 12.3 kg (27 pounds) or more. It
is possible that some infants with heavier birth
weights were the outcome of pregnancies complicated
by gestational diabetes. However, the number of such
babies would have been small and their survival 60 or
more years ago would probably have been poor.
Though there is evidence that gestational diabetes
predisposes to diabetes in the offspring,49 this could
not explain our findings that the largest babies are
those least likely to develop diabetes.

Analysis of the effects of obesity, measured as body-
mass index, showed that its diabetogenic effect adds
to that of poor early growth. The mean 2-h glucose
concentration ranged from 5.8 mmol/l in men who
were in the highest tertile of weight at one year but
the lowest tertile of current BMI (425.4), to 7.7 mmol/
l in men in the lowest tertile of weight at one and the
highest tertile of current BMI (428). Interestingly
there was a similar addition of the effects of obesity
and low weight at one year on current fasting 32–33
split proinsulin concentration. The extremes of the
range defined as above were 2.1 and 4.8 pmoI\l re-
spectively. When the subjects were divided into quin-
tiles according to the fasting 32–33 split proinsulin
concentration this measurement was highly correlated
with systolic blood pressure (Table 1). This association
is consistent with earlier findings linking 32–33 split
proinsulin and risk factors for ischaemic heart dis-
ease22 and requires an explanation.

The concentrations of 32–33 split proinsulin mea-
sured in the Hertfordshire study are in the low
pmolar range. Any biological activity of this derivative
at these low concentrations has yet to be described.
It seems to us that a more likely explanation of
its association with blood pressure is that the patho-
genic mechanisms leading to changes in both meas-
urements are linked This is reminiscent of the
proposal by Reaven50 in relation to what he termed
‘Syndrome X’ which includes glucose intolerance,
hypertension and some types of hyperlipidaemia.
He has hypothesised that insulin resistance is the
underlying factor linking these phenomena.

Our data suggests a different interpretation.
Consistent with previous findings43 blood pressure
in the Hertfordshire men was inversely related to
birth weight though unlike 2-h plasma glucose it
was not related to weight at one year. Factors

affecting early growth may therefore lead to either
high blood pressure or impaired glucose tolerance/
Type 2 diabetes, or a mixture of hypertension and
glucose intolerance, depending on the exact timing
of the growth impairment during foetal or infant
life. Our working hypothesis is that the varying com-
ponents and combinations of Syndrome X, possibly
including insulin resistance, are late outcomes of ab-
normal growth and development processes occurring
in foetal and early infant life.

At first sight it may seem improbable that events
occurring in the first 2 years of existence could pro-
duce changes 50–70 years later. However looked at in
another way it is perhaps less surprising. It has been
calculated that the fertilised ovum in developing into
a full-term infant goes through some 42 rounds of cell
division.51 After birth there need be only a further 5
cycles of division. The number of these divisions and
their timing in development varies widely between
different tissues. For example at birth a virtually full
complement of brain neurons and of renal glomeruli
are present and, available data suggest, at the age of
1 year at least half the adult complement of Beta cells
is present.52 Adverse influences, in particular poor
nutrition, acting at this early time could permanently
impair the size and structure of organs and tissues.
Poor intrauterine nutrition may lead either to general-
ised growth retardation, or growth of the brain may
be protected at the expense of the viscera. Evidence
for selective growth retardation comes from the stu-
dies of blood pressure in Preston, UK where one
group of people with high blood pressure as adults
was characteristed at birth by their shortness in rela-
tion to their head circumference.43 There is good
reason to believe that development of Beta cells,
which proceeds rapidly during foetal life and early
infancy,47 would be vulnerable to poor nutrition.
Poor foetal nutrition may be caused by poor maternal
nutrition A link with poor maternal nutrition would
explain the high rates of impaired glucose tolerance

Table 1 Relationship of 32–33 split proinsulin to systolic
blood pressure in men aged 59–70 years. 32–33 split pro-
insulin was measured in plasma from a sample taken after
an overnight fast

32–33 split
proinsulin
(pmol/l)

Mean systolica

pressure
(mm Hg)

Number
of men

�1.5 161 96

�2.5 164 90

�3.6 163 93

�5.8 165 96

45.8 170 93

Total 164 (SD 23) 468

p-value for trend¼ 0.003
a(adjusted for BMI, age, room temperature)
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and diabetes in parts of the third world and is also
consistent with the occurrence of Type 2 diabetes in
more affluent countries. A recent survey in Oxford,
UK, for example, found evidence of iron deficiency
in 47% of all pregnant women.53

Thus we propose that poor nutrition of the foetus
and infant leads to permanent changes of the struc-
ture and function of certain organs and tissues. The
timing and precise nature of the deficiencies deter-
mine the pattern of metabolic and functional abnorm-
alities seen in later life, including diabetes and
hypertension and possibly also including some hyper-
lipidaemias and even insulin resistance. We suggest
that poor early development of islets of Langerhans
and Beta cells is a major factor in the aetiology of
Type 2 diabetes.

In referring to poor early development we do not at
this stage consider this necessarily to be a solely
quantitative deficiency of Beta cells but include the
possibility that the cells themselves may be altered,
or that the more complex aspects of islet structure
and function, such as vasculature54 and innervation
may be abnormally developed. There is a dispropor-
tionately large flow of blood to the islets (10–20%)
compared to that of the pancreas as a whole.
Therefore major changes in islet vasculature such as
have been described54 could make a large contribution
to changes in islet and particularly Beta cell function.

Brief review of evidence
We briefly review six key questions central to the
hypothesis.

1) Is there a deficiency of Beta cells in Type 2
diabetes?
Many of the histological studies which have been
carried out thus far have failed to control for the ef-
fects of obesity on Beta cells. However, as reviewed by
Kloppel and colleagues,55 there is now a general con-
sensus that the number and total area of islets are
reduced, mainly due to a decrease in the volume of
Beta cells. However, one may wonder whether a 50%
reduction is really enough to cause diabetes? Dogma
has it that an 80-90% loss is needed to produce
diabetes.

2) What degree of deficiency of Beta cells is
required to reduce glucose tolerance?
A recent paper from the University of Minnesota pan-
creas transplant programme showed that even hemi-
pancreatectomy in humans leads to a considerable
deterioration of insulin secretion and glucose toler-
ance. The early insulin response was virtually arith-
metically halved in these subjects and 7 out of 28
developed severely abnormal glucose tolerance.56

In parallel with this data, work from Weir’s labora-
tory has shown that careful quantitation of the degree
of deficiency produced by pancreatic ablation in

animals is needed. Both after neonatal streptozotocin
and pancreatectomy considerable regeneration of Beta
cells occurs in the rat. This group has been able to
produce good models of Type 2 diabetes in rats which
retain 46 and 42% of normal Beta cell mass after neo-
natal streptozotocin or pancreatectomy respectively.57

Our assertion that poor foetal growth is associated
with Type 2 diabetes in later life begs the question:

3) What are the major nutritional determinants
of foetal growth?
Many studies have shown the key role of amino acids
in foetal growth. Not only are they essential for laying
down the protein required by the growing foetus but
interestingly they are also a major source of substrate
for energy production.58 Looking at it teleologically
this is not too surprising since the foetus clearly has
to gear its growth to the availability of amino acids.

The availability of amino acids may be monitored by
the Beta cell, just as the Beta cell senses the availabil-
ity of nutrients in the adult. Thus, it is important to
understand what effect amino acids have on the de-
velopment and growth of Beta cells in the foetus and
also whether they control foetal insulin secretion.
Evidence available to date strongly suggests that
amino acids are the major factors controlling Beta-
cell growth and development and insulin secretion
until late foetal life. Glucose has little effect until
late gestation.59,60 Insulin in turn appears to be a
key regulator of foetal growth.61,62

If the key sequence of events is the supply of amino
acids leading to insulin secretion leading to foetal
growth then we should ask:

4) Is the amino acid supply abnormal in growth
retarded babies?
A recent collaborative study between Milan and
Denver has shown that this is indeed the case and
that the deficiency is large.63 Furthermore, whether
as a cause or effect, there is deficient amino acid
transport in placentae of small babies.64

If a major cause of defective intrauterine and early
post natal growth is linked to insulin deficiency and
this in turn leads to adult diabetes, then we should be
able to show that there is defective production and
performance of Beta cells in this situation and that
such defects are irreversible.

5) Does defective Beta-cell growth and function
result from malnutrition? If so is it irreversible?
There is in fact quite a considerable body of evidence
both in man and experimental animals that the
answer to both these questions is ‘Yes’.

James and Coore studied treated malnourished chil-
dren and suggested that they showed a permanent
reduction of insulin response to glucose.65 Milner stu-
died malnourished children before and after treat-
ment and found the same. He even questioned
whether this might predispose to adult diabetes.66
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These two studies were of postnatally malnourished
children, although it is possible of course that the
children might also have been malnourished in the
uterus. Certainly there is evidence of a major effect
of intrauterine malnutrition. Growth retarded new
born infants have reduced numbers of Beta cells
and reduced insulin secretion.67 Studies in experi-
mental animals show clearly that these changes can
be reproduced by subjecting either foetal or early post
natal animals to general protein/calorie malnutrition68

or interestingly to protein deficiency alone.54 It is sig-
nificant that the degree of loss of insulin secretion in
protein/ calorie malnutrition is much more severe
than would have been expected from the degree of
reduction of islet volume.68 This of course is reminis-
cent of the situation in human Type 2 diabetes. An
explanation of the discrepancy between the deficit of
Beta cells and the severe loss of insulin secretion may
lie in the finding that protein deficiency not only
reduced Beta cells mass but produced an even larger
effect on islet vascularisation.54 Thus, poor insulin se-
cretion may be due not only to less Beta cells but also
to abnormal islet structure and vascularisation.
Indeed one cannot help wondering whether poor vas-
cularisation might lead to poor clearance of insoluble
peptides. Or in other words could amyloid deposition
be secondary to vascular changes? This would of
course have an accelerating effect on the underlying
pathology.

In addition underfeeding young rats lowers adult
plasma insulin. This is not restored by refeeding nor-
mally.69 Indeed the finding of irreversible loss from
an early growth failure applies generally to tissue
growth. Work in the 1960s and early 1970s showed
clearly that a failure of early cell multiplication leads
to an irrecoverable deficit in cell numbers.70,71

In reviewing the effect of poor foetal and early post-
natal nutrition on Beta-cell growth and function we
have placed great emphasis on the role of protein and
amino acids. We have done this because there is
considerable evidence that, as far as insulin produc-
tion is concerned, protein and amino acid supply are
critically important. However, optimum nutrition in
pregnancy and early life depends on a complex inter-
action of many nutrients concerning which we are
still largely ignorant. It is probable that other nutri-
ents play a role in Type 2 diabetes and other compo-
nents of ‘Syndrome X’.

6) Relation of hypothesis to current concepts
of the aetiology of Type 2 diabetes
How do we reconcile the view which we are putting
forward with the widely accepted theory that Type 2
diabetes is totally genetically determined? In the first
place the mechanisms we propose by no means ex-
clude genetically based changes. We do suggest how-
ever that in thinking of candidate genes in Type 2
diabetes we should widen our horizons considerably

and consider genes involved in foetal growth and
development.

The evidence that we have presented raises a ques-
tion about the interpretation of concordance in iden-
tical twin data. A genetic interpretation of
concordance rates of Type 2 diabetes in identical
twins may not be justifiable since identical twins
share a common early nutritional environment. The
familial pattern of Type 2 diabetes may have a similar
explanation Family members share a similar socio-
economic environment, which is known to be linked
to the incidence and prevalence of Type 2 diabetes.72

Poor maternal nutrition may be the key influence
associated with low socio-economic status. The stron-
ger maternal than paternal influence on the develop-
ment of Type 2 diabetes73 is consistent with our
hypothesis. So too are the results of a large genetic
study of Type 2 diabetes.74 This study of families with
Type 2 diabetes looked for evidence of genetic inher-
itance of poor insulin secretion. Instead it was dis-
covered that the strongest influence was the
common environment shared by the siblings.

We should also reconsider the Neal ‘thrifty geno-
type’ hypothesis — that the diabetogenic gene or
genes persist at a high level in the population because
they somehow confer a survival advantage in times of
nutritional deprivation, though detrimental at times
of adequate or over nutrition.75,76 For reasons out-
lined above we are suggesting a thrifty phenotype hy-
pothesis. We propose that Type 2 diabetes is the
outcome of the foetus and early infant having to be
nutritionally thrifty. This thrift results in impaired
growth of the Beta cells and the islets of
Langerhans. As long as the individual persists in the
undernourished state there is no need to produce
much insulin. However, a sudden move to good or
over-nutrition exposes the reduced state of Beta-cell
function and diabetes results. This situation was
demonstrated recently in the Ethiopian Jews trans-
ported to Israel among whom a high prevalence of
diabetes was observed77. The effect of a rapid transi-
tion from subsistence to good or overnutrition was
also seen in the Nauruan islanders who suffered
severe nutritional deficiency before and during the
last World War. After the war, they became affluent
from phosphate mining. Diabetes on the island
became epidemic. An interesting consequence of
what we are suggesting is that the advent of good
nutrition should start to result in better infant and
foetal growth which in turn will reduce the incidence
of diabetes, provided always of course that the popu-
lation does not become fatter and less active. It was
therefore interesting to see the outcome of the most
recent survey of the islanders.78 Though obesity, ex-
ercise and other risk factors had not decreased since
1975/1976, when the first survey was carried out,
there had nevertheless been a dramatic reduction in
impaired glucose tolerance and Type 2 diabetes. The
authors attributed this to a eugenic affect of lower
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reproduction of diabetic subjects. However, the size
and speed of the improvement makes this explanation
unlikely. We suggest it was due to a great improve-
ment of foetal and infant nutrition consequent upon
post-war affluence. Thus, infants born after 1945 are
now up to 46 years old. It was among them that the
reduction in diabetes was seen.

Conclusions
We propose a thrifty ‘phenotype hypothesis’ of the
aetiology of Type 2 (non-insulin-dependent) diabetes.
The essence of the hypothesis is that poor nutrition in
foetal and early infant life are detrimental to the de-
velopment and function of the Beta cells of the islets
of Langerhans. Such defects of structure and function,
which may include more complex features of islet
anatomy such as the vasculature and innervation,
predispose to the later development of Type 2

diabetes. Existing evidence points to a key role for
protein and amino acids in this process but other nu-
tritional defects are not excluded. Indeed the complex
interactions of the type and timing of nutritional de-
fects in early life are suggested as underlying the
pathogenesis of the variable abnormalities sometimes
described as ‘Syndrome X’. Whilst these early changes
powerfully determine susceptibility, additional factors
such as obesity, ageing, physical inactivity, and pos-
sibly other processes leading to insulin resistance
must also play a role in deciding the time of onset
and severity of Type 2 diabetes (Figure 1).
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