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In epidemiological studies it is often necessary to disentangle the
pathways that link an exposure to an outcome. Typically the aim is
to identify the total effect of the exposure on the outcome, the
effect of the exposure that acts through a given set of mediators
of interest (indirect effect) and the effect of the exposure unex-
plained by those same mediators (direct effect). The traditional
approach to mediation analysis is based on adjusting for the medi-
ator in standard regression models to estimate the direct effect.
However, several methodological papers have shown that under a
number of circumstances this traditional approach may produce
flawed conclusions. Through a better understanding of the causal
structure of the variables involved in the analysis, with a formal
definition of direct and indirect effects in a counterfactual frame-
work, alternative analytical methods have been introduced to
improve the validity and interpretation of mediation analysis. In
this paper, we review and discuss the impact of the three main
sources of potential bias in the traditional approach to mediation
analyses: (i) mediator-outcome confounding;(ii) exposure-mediator
interaction and (iii) mediator-outcome confounding affected by the
exposure. We provide examples and discuss the impact these
sources have in terms of bias.
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Introduction
The importance of mediation analysis in epidemiolo-
gical studies relies on the need to disentangle the
different pathways that could explain the effect of
an exposure on an outcome. Mediation analysis is
typically applied when a researcher wants to assess
the extent to which the effect of an exposure is
explained, or is not explained by a given set of
hypothesized mediators (also called intermediate vari-
ables1). In this way, the total effect of an exposure on
an outcome, the effect of the exposure that is ex-
plained by a given set of mediators (indirect effect)

and the effect of the exposure unexplained by those
same mediators (direct effect) can be defined.
Intuitively, one expects that the total effect can be
decomposed into direct and indirect effects. Suppose
that the total effect of a binary exposure translates
into a risk difference of 15%; if the direct risk differ-
ence is 10%, we would expect one-third of the total
effect to be explained by the mediator, and the re-
maining two-thirds to be explained by alternative
pathways.

In this paper, we will address the fact that this in-
tuitive expectation of effect decomposition may not
hold true. Also, the concept of the proportion of
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effect explained by a mediator can be cumbersome in
some situations. For example, walking to work in-
creases both the total amount of physical activity
and the total levels of exposure to air pollution. In
an epidemiological study of incidence of coronary
heart disease (CHD), if exposure to air pollution
were the mediator, walking to work could have a pro-
tective direct effect on CHD but a simultaneous harm-
ful indirect effect on CHD. Theoretically, in this
scenario we could observe no total effect (risk differ-
ence¼ 0) on CHD due to opposite direct and indirect
effects.

Epidemiological studies often require the study of
mediation: for example, in studies of molecular mech-
anisms involved in disease causation, studies of socio-
economic inequality, studies of response to clinical
treatments and studies aiming to measure the
impact of public health interventions. The assessment
of mediation can be the main aim of the study,
whereas often the goal is to estimate the total
effect, though exploratory mediation analyses are
also conducted.

The traditional approach to mediation analysis con-
sists of comparing two regression models, one with
and one without conditioning on the mediator.2 The
exposure coefficient is then interpreted as a direct
effect in the model adjusted for the mediator and as
a total effect in the unadjusted model. In epidemiolo-
gical studies, the proportion of the total effect ex-
plained by the mediator is typically obtained by the
ratio of the unadjusted to the adjusted relative risks,
and the percent excess risk explained by the mediator
is obtained by a ratio where the numerator includes
the difference between the unadjusted (total effect)
and the adjusted (direct effect) relative risks, and
the denominator includes the unadjusted excess risk
(total effect).3,4 For example, if a study found a total
effect of low vs high socioeconomic status (SES) on
lung cancer risk equal to a relative risk of 2.3 and,
after adjustment for smoking, the relative risk
decreased to 1.2, the percent excess risk of SES on
lung cancer risk explained by the smoking would be
85% [(2.3-1.2)/(2.3-1)*100].

It is now recognized that the traditional approach to
mediation analysis is prone to bias arising both from
incorrect statistical analysis and suboptimal study
design. There is already a large amount of literature
on this issue, both from a theoretical and an applied
point of view, and it continues to grow rapidly. New
statistical methods have been developed, although
some are not fully implemented, and appropriate
methods for some situations simply do not yet exist.
The traditional approach to mediation analysis is
still frequently used, and findings from earlier epi-
demiological studies that used this approach should
not be discarded. It is thus fundamental to under-
stand when, and to what extent, bias hampers the
possibility to use and interpret traditional mediation
analyses.

In this paper we will discuss, describe and provide
examples of the three main sources of potential bias
that may cause traditional approaches to mediation
analyses to give flawed conclusions:(i) mediator-out-
come confounding, (ii) exposure-mediator interaction
and iii) mediator-outcome confounding affected by
the exposure. Throughout the paper, if not otherwise
specified, we will not consider issues of random vari-
ation, unmeasured exposure-outcome confounders or
measurement errors. The paper is organized as fol-
lows: we will first discuss mediator-outcome con-
founding using the aforementioned conventional
definition of direct effects (i.e. the direct effect is
the effect of the exposure on the outcome in a
model adjusted for the mediator); we will then intro-
duce a formal definition of direct and indirect effects
in a counterfactual framework and discuss exposure-
mediator interaction; finally, we will briefly discuss
situations in which mediator-outcome confounders
are affected by the exposure.

Mediator-outcome confounding
It is well known that lack of exposure-outcome
confounding is necessary to obtain a valid estimate
of the total effect of a given exposure on a given
outcome. In mediation analysis, lack of mediator-out-
come confounding is also necessary. This issue has
been discussed several times in the past 20 years,
though it was overlooked in early epidemiological stu-
dies.5–7 The direct acyclic graph (DAG) shown in
Figure 1 clarifies the issue: according to the causal
graph theory, conditioning on the mediator M induces
a spurious association between the mediator-outcome
confounder U and the exposure A, where U becomes
a confounder of the exposure-outcome association
and induces bias (Figure 1). This is an example of
collider bias, which occurs frequently in epidemiolo-
gical studies (e.g. selection bias8). A simple example
of this situation in the context of mediation analysis
would be given by a study designed to assess how
much of the total effect of exposure to environmental
noise on CHD is mediated by hypertension. All vari-
ables that affect both hypertension and CHD risk,
such as body mass index, diet and smoking, act as
mediator-outcome confounders; therefore they should

Figure 1 Effect of adjusting for a mediator (M) on the
estimate of an exposure (A)-outcome (Y) association in the
presence of a mediator-outcome confounder (U). a)
Underlying causal structure. b) Effect of adjustment for the
mediator M

1512 INTERNATIONAL JOURNAL OF EPIDEMIOLOGY

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/42/5/1511/619987 by guest on 10 April 2024



be measured and considered in the analyses to validly
estimate the direct effect of noise. For those unfamil-
iar with DAG language,9 consider that M in Figure 1
is caused by A and U, both of which are sufficient
causes of M. In this case, collider bias arises because
in the stratum M¼ 1 (e.g. in the stratum of people
with hypertension), if U were not present, A should
be present in order to have hypertension. Therefore, in
this example, for a given level of M, A and U are
inversely associated even if they are marginally
independent.

When the mediator is included as a covariate in a
regression model to estimate the direct effect of an
exposure on the outcome, adjusting for mediator-out-
come confounders (U variable in Figure 1) is needed
to avoid bias. If some, or all, of these confounders are
unmeasured or unknown, estimate of the direct effect
might be invalid. Therefore, it is always important to
assess how the results obtained from any mediation
analysis could be affected by the possible unmeas-
ured/residual mediator-outcome confounding, the
main question being whether this source of bias
could explain away the estimated direct effect.10

The magnitude of the bias introduced by condition-
ing on a collider, both in a general setting and in the
context of mediation analysis, is an issue that has
been addressed by several authors.11–14 Vanderweele
provided simplified formulas to carry out, under spe-
cific assumptions, a quick sensitivity analysis for the
estimate of the direct effect.13 On the risk ratio scale,
if g is defined as the direct effect of the unmeasured
binary confounder U on the outcome (for given levels
of the exposure A and the mediator M), and pa,m and
pa*,m are the prevalences of the unmeasured confoun-
der U among the two exposure levels a and a* at a
given level of the mediator M=m, under simplifying
assumptions the bias in the direct effect estimate of a
vs a* would be obtained by: B¼ [1þ (g-1) pa,m]/
[1þ (g-1) pa*,m]. Assuming that the unmeasured con-
founder U is not itself affected by the exposure A, the
bias-corrected direct effect estimate can be obtained
by dividing the risks ratio adjusted for the mediator
by the bias factor B obtained from different scenarios
of values for the parameters g, pa,m and pa*,m.

For example, in a recent study on the association
between ethnicity (Maori women vs women of
European origin) and late stage at diagnosis of cer-
vical cancer in New Zealand, it was found that most
of the total effect of Maori ethnicity on late stage at
diagnosis (OR: 2.71) did not change much after
adjustment for screening practices (direct effect OR:
2.39).15 The study concluded that ethnicity-related
differences in stage at diagnosis of cervical cancer in
New Zealand could not be explained by ethnic-related
differences in screening attendance. It is possible,
however, that part of the estimated direct effect was
due to bias introduced by unmeasured mediator-out-
come confounders. However, in order to explain com-
pletely a direct effect estimate of 2.39 among, say,

unscreened women with this source of bias, we
would have to assume, for example, that the sup-
posed mediator-outcome confounder was associated
with the outcome with a relative risk (g) equal to
4.0, had a prevalence of 65% among unscreened
Maori women and a prevalence of 10% among un-
screened women of European origin. This scenario
seems unlikely to occur in real practice.

Weaker direct effects could however be entirely
explained by bias due to mediator-outcome confound-
ing. For example, there is a great deal of interest in
understanding the role of SES inequalities in morbid-
ity and mortality, and whether the effects of this vari-
able remain after taking into account well known risk
factors.16 In these studies, the direct effect is often
fairly small, as typically most—but not all—of the
association between SES and the disease under
study can be explained. Let us consider the hypothet-
ical example described in the previous section: a study
on lung cancer yields a total relative risk for low vs
high SES of 2.3, which, after adjustment for smoking,
decreases to 1.2. A mediator-outcome confounder (say
family history of lung cancer, assuming that is not
itself affected by socioeconomic status) with, for ex-
ample, a relative risk (g) for lung cancer of 2.5, a
prevalence of 20% among non-smokers with low
SES and a prevalence of 5% among non-smokers
with high SES, could entirely explain a direct effect
of 1.2 among non-smokers.

It is also of interest to consider the direction of the
bias. According to the Vanderweele’s formula, when,
conditioned on the mediator, there is a positive asso-
ciation between the exposure and the unmeasured
mediator-outcome confounder, which in turn has a
positive direct effect on the outcome, the estimate of
the direct effect of the exposure on the outcome is
biased upwards (i.e. the unmeasured mediator-out-
come confounder becomes a positive confounder of
the exposure-outcome association after conditioning
on the mediator). Although there are exceptions, con-
ditioning on a variable (collider) that is affected by
two other variables (parents) typically induces a nega-
tive association between the parents if they affect the
collider in the same direction (either positive or nega-
tive), whereas the association is positive if the two
parents affect the collider in opposite directions.17,18

Thus, if an exposure positively affects the mediator,
and the supposed mediator-outcome confounder is
positively associated with both the outcome and the
mediator, the direct effect for a given level of M is
likely to be biased downwards. Returning to our
hypothetical study on noise (exposure), hypertension
(mediator) and CHD (outcome), many factors, such
as smoking and body mass index, are likely to be
positively associated with both hypertension and
CHD risk. As noise is also expected to increase the
risk of hypertension, all the associations involved
are thus positive. In this situation, if a positive
direct effect of noise on CHD is found, that effect is
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unlikely to be explained by the bias introduced from
any unmeasured mediator-outcome confounders.
Conversely, the magnitude of the positive direct
effect is likely to be underestimated.

In the recent literature on mediation analysis, the
so-called low birthweight paradox, i.e. the inverse
association of maternal smoking on infant mortality
that is typically observed in children with low birth-
weight (the mediator), has often been used as an
example of bias introduced by unmeasured medi-
ator-outcome confounding.19 In this example, some
confounders, such as birth defects, are positively asso-
ciated with both low birthweight and infant mortal-
ity, and at the same time maternal smoking is
positively associated with low birthweight. The result-
ing bias is thus downwards, corresponding to an
apparent protective direct effect of maternal smoking
on infant mortality among children with low birth-
weight. In sensitivity analyses, it has been shown that
sensible assumptions regarding the magnitudes of the
associations involved could explain away this appar-
ent association.20

Obviously, the collider bias is not the only source of
bias affecting mediation analysis although it is prob-
ably the most largely overlooked source in past medi-
ation analyses. Misclassification of the mediator, for
example, can also seriously bias conclusions. A trivial
example would be a non-differential misclassification
of a binary mediator so large as to obscure the pres-
ence of any indirect effect. As recently shown, the
general rule is that a nondifferentially misclassified
(binary) mediator overestimates the magnitude of
the direct effect and underestimates the magnitude
of the indirect effect.21

Exposure-mediator interaction
According to the traditional approach to mediation
analysis, the direct effect is estimated by conditioning
on the mediator M. In the hypothetical data reported
in Table 1 there is a total risk difference for the
exposure of 4.8%, which decreases to 2.3%, after ad-
justment for the mediator M, thus indicating the
presence of a direct effect. If we estimate the effect
of the exposure A in those without the mediator
(M¼ 0), the risk difference for the event associated
with the exposure is 2.0%. As the mediator in this
example is a binary variable, there are two possible
direct effects that can be estimated: the risk difference
(2%) among those with M¼ 0, and the risk difference
(18%) among those with M¼ 1. Although the risk
difference is lower than the total effect in the stratum
M¼ 0, it is much larger than the total effect in the
stratum M¼ 1. In this example, the estimate of the
direct effect depends on the value of the mediator.

The fact that the estimates of direct effect vary
across different levels of the mediator implies that
the exposure A and the mediator M interact in ex-
plaining the outcome. In Table 1, using unexposed

subjects without the mediator as the reference, the
observed effect of being exposed with the mediator
(risk difference¼ 19%) is much larger than the
linear combination of the two effects of being in the
exposed group without the mediator (risk differ-
ence¼ 2%) and having the mediator without the
exposure (risk difference¼ 1%).

If we are interested in estimating the effect of an
exposure that is not explained by a mediator in the
presence of exposure-mediator interaction, we need to
introduce an alternative formal definition of direct
effect,5,6,22 which provides a population summary of
the effects at different levels of the mediator. The
same applies when the relationship between the ex-
posure and the mediator is not linear, but here we
will not discuss this case further.

The alternative definition uses a counterfactual
framework to define natural direct effects and natural
indirect effects that sum up to the total effect.5,6 In a
counterfactual framework, the individual causal effect
of the exposure on the outcome is defined as the
hypothetical contrast between the outcomes that
would be observed in the same individual at the
same time under the exposure and in the absence of
the exposure (or in presence of two different levels of
the exposure).23,24 According to the counterfactual
notation, Ya is the potential outcome under exposure
A¼ a and Ya* is the potential outcome under the ex-
posure level A¼ a*, where a 6¼ a*. Obviously, as these
are potential outcomes under alternative exposure
levels, it is not possible to observe both Ya and Ya*

in the same individual: only one of the two would
be factual. The individual causal effect, defined as
Ya -Ya*, is unlikely to be the same for all individuals
of a given population. We thus define the population
causal effect as the average of the individual causal
effects, i.e. E(Ya -Ya*).

In the context of mediation analysis, Ya,m is the
potential outcome under exposure level A¼ a and me-
diator level M¼m. The natural direct effect is defined as
Ya,M(a*) – Ya*,M(a*), i.e. the difference between the value
of the counterfactual outcome if the individual were
exposed to A¼ a and the value of the counterfactual
outcome if the same individual were instead exposed
to A¼ a*, with the mediator assuming whatever value
it would have taken at the reference value of the expos-
ure A¼ a* (Box 1). At the population level, the natural
direct effect is E(Ya,M(a*) – Ya*,M(a*)). The natural direct

Table 1 Hypothetical data on the risk of being a case
associated with an exposure (A) and a mediator (M)

Exposure
(A)

Mediator
(M) Risk Cases Non-cases Total

0 0 1% 100 9900 10 000

1 0 3% 150 4850 5000

0 1 2% 10 490 500

1 1 20% 200 800 1000
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effect captures the effect of A on Y via pathways that do
not involve M, although the value of the mediator M is
allowed to vary among individuals according to all the
determinants of M, with the exception of the exposure
A. This illustrates one of the reasons why a counterfac-
tual framework is used for the definition of natural
direct effects, namely to conceptualize the hypothetical
distribution of the mediator. The natural indirect effect
can be defined as Ya,M(a) – Ya,M(a*), i.e. the contrast,
having set the exposure to a fixed level A¼ a, between
the value of the counterfactual outcome if the mediator
assumed whatever value it would have taken at a level
of the exposure A¼ a and the value of the counterfac-
tual outcome if the mediator assumed whatever value it
would have taken at a reference level of the exposure
A¼ a* (Box 1). At the population level, the natural in-
direct effect is E(Ya,M(a) – Ya,M(a*)). Intuitively, the nat-
ural indirect effect captures the effect of the exposure A
on the outcome Y due to the effect of the exposure A on
the mediator M. The total causal effect of A on Y can
now be decomposed into the sum of the natural direct
effect and the natural indirect effect, even in presence of
exposure-mediator interaction. Note that slightly differ-
ent ways to decompose the total effect into direct and
indirect effects have been proposed.5,25

In mediation analysis, a counterfactual framework is
also used to define an additional meaningful effect,
the controlled direct effect (Box 1). Controlled direct
effect is defined as Ya,m – Ya*,m, i.e. a contrast between
counterfactual outcomes with alternative exposure
values, A¼ a and A¼ a*, if the mediator were set to
a fixed value M¼m. At the population level the con-
trolled direct effect is E(Ya,m – Ya*,m). As a conse-
quence, there are as many controlled direct effects
as there are levels of the mediator. A controlled
direct effect thus corresponds to a situation in
which a hypothetical intervention controls the medi-
ator to a given value,6,22 whereas a natural direct
effect corresponds to a situation in which the natural
relationship between the exposure and the mediator
is maintained (i.e. we would intervene on the

exposure but not directly on the mediator). In the
example of a hypothetical study on noise, hyperten-
sion (the mediator) and risk of CHD, the controlled
direct effect (for hypertension¼ 0) would be the effect
of elimination of noise exposure when controlling
hypertension to be absent, whereas for the natural
direct effect hypertension would be set at the value
that would have been observed in the absence of
noise exposure.

In the absence of interaction between the exposure
and the mediator, controlled direct effect and natural
direct effect are equivalent. The intuitive explanation
for this equivalence is that if the direct effect of the
exposure is constant for the different levels of the me-
diator, setting the mediator to a fixed value (con-
trolled direct effect) or considering the value that
the mediator would have taken at the reference
level of the exposure (natural direct effect) gives the
same estimate (i.e. a weighted average between con-
stant values gives the same result irrespectively of the
weights).

When there is interaction between the exposure and
the mediator, the natural direct effect and the natural
indirect effect still sum up to the total effect and they
represent a sort of interpretable population average
over the levels of the mediator. Note that, if expos-
ure-mediator interaction exists, the estimate of the
total effect associated with the exposure in a given
population depends on the population prevalence of
the mediator. The same applies to the natural effects:
when exposure- mediator interaction is present, nat-
ural effects can be estimated and interpreted, but
their estimates are population-specific. We would
like to propose the same example discussed by
Judea Pearl to illustrate the use and interpretation
of natural direct effects.6 Pearl considered a situation
where a drug could induce headache as a side effect,
and, at the same time, could interact with aspirin
taken to treat the drug-induced headache on its
effects on the outcome. In this situation, the drug is
the exposure and the aspirin is the mediator.

Box 1. Definitions of controlled direct effect, natural direct effect and natural indirect effect in the
counterfactual framework

Controlled direct effect: Ya,m – Ya*,m

This effect is the contrast between the counterfactual outcome if the individual were exposed at A¼ a and the
counterfactual outcome if the same individual were exposed at A¼ a*, with the mediator set to a fixed level M=m.

Natural direct effect: Ya,M(a*)– Ya*,M(a*)

This effect is the contrast between the counterfactual outcome if the individual were exposed at A¼ a and the coun-
terfactual outcome if the same individual were exposed at A¼ a*, with the mediator assuming whatever value it would
have taken at the reference value of the exposure A¼ a*.

Natural indirect effect: Ya,M(a)– Ya,M(a*)

This effect is the contrast, having set the exposure at level A¼ a, between the counterfactual outcome if the mediator
assumed whatever value it would have taken at a value of the exposure A¼ a and the counterfactual outcome if the
mediator assumed whatever value it would have taken at a reference value of the exposure A¼ a*.
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Obviously, aspirin may be taken in the population for
reasons other than the drug-induced headache. Now,
imagine that the producer of the drug manages to
eliminate headache as a side effect, and would like
to know what the effect of the drug will be in the
population, knowing that use of the drug will no
longer be a cause of aspirin intake. The natural
direct effect is the key quantity that answers this
question, but its estimate depends on the aspirin
use in absence of the exposure in that population.
To further explore this concept, let us assume now
that the drug does not work when taken without as-
pirin. If people in the population take aspirin for rea-
sons other than the drug-induced headache, the drug
would still have a natural direct effect, whereas if
people in the population only take aspirin for the
drug-induced headache there would be no natural
direct effect after this headache was eliminated.
Conversely, controlled direct effect, when the aspirin
intake is set to be 0, would be the same in the two
populations.

How can we estimate these effects? Under specific
assumptions, controlled and natural direct effects can
be estimated using standard regression models.
Assuming no unmeasured mediator-outcome con-
founding and no mediator-outcome confounding af-
fected by the exposure, the controlled direct effect can
be estimated by conditioning the analysis on the me-
diator. Assuming also no unmeasured exposure-medi-
ator confounding, the natural direct effect can be
estimated as a weighted average of the controlled
direct effects, with weights for each level of the me-
diator given by the probability that the mediator
would have taken that value if the exposure were
set at its reference level. Going back to the hypothet-
ical data reported in Table 1, the estimate of the nat-
ural direct effect can be non-parametrically obtained
by averaging the two controlled direct effects of 2%
and 18%, using the frequency of the mediator among
the unexposed subjects as the weighting function. 26

Table 1 shows a 4.76% probability of M being present
(M¼ 1) among the unexposed subjects, and the nat-
ural direct effect can be obtained by the following:
[2%*(1- 4.76%)þ 18% *(4.76%)]¼ 2.8%. More com-
plex methods (see Discussion), based on parametric
assumptions, are used when simpler non-parametric
estimates are not feasible.

As we have shown in this section, the presence of
exposure-mediator interaction may introduce large
problems in mediation analysis and in its interpret-
ation, and therefore should be considered whenever
interpreting the results of traditional analyses. Let us
consider an additional example of a study that aims
to understand to what extent differences in mortality
by SES among cancer patients are explained by stage
at diagnosis. If we assume there is no interaction be-
tween SES and stage at diagnosis, it implies that SES
inequalities in mortality are the same irrespective of
the stage at diagnosis (even if, for example, low SES

is associated with later stage at diagnosis), whereas
presence of an interaction would imply that the stage
at diagnosis may increase or decrease the effect of
SES on mortality. We assumed a simplified scenario
in which, after cancer is diagnosed, SES has an
impact on mortality only through the type and quality
of treatment received by the patients. Then, to under-
stand whether standard analyses designed to estimate
controlled direct effects can provide interpretable
estimates in terms of mechanisms, one of the key
questions that needs to be posed is whether an inter-
action exists between SES and stage at diagnosis on
mortality. For example, for some cancer types SES
inequalities regarding treatment may occur in patients
diagnosed at an early stage, whereas at very
advanced stages where effective treatments are lack-
ing, SES inequalities disappear. For other cancer
types, SES inequalities might be more constant
across stages.

Mediator-outcome confounding
affected by the exposure
Finally, we introduce the third potential source of
bias. As mentioned previously in the section on me-
diator-outcome confounding, it is necessary to adjust
for mediator-outcome confounding in standard
regression models to avoid collider bias. However,
there are exceptions in which adjustment for such
confounders in standard regression models still pro-
duces flawed estimates. Figure 2 depicts a scenario
where the mediator-outcome confounder L is now
affected by the exposure (A). In this scenario, L,
also referred to as intermediate confounder, 27 is
both a mediator-outcome confounder and a variable
that lies on the direct path from the exposure A to the
disease Y (Figure 2a).

Intermediate confounding is probably not rare in
mediation analysis. Let us consider a hypothetical
study aiming to assess to what extent the effect of
smoking on CHD is mediated by atherosclerosis.28 A
number of variables, including blood pressure, affect
both atherosclerosis and the risk of CHD, and are also
affected by smoking (Figure 2b). Adjustment for

Figure 2 Intermediate confounding. a) Causal structure:
L is affected by an exposure (A) and is also a mediator
(M)-outcome (Y) confounder. b) Hypothetical example of a
study of smoking, atherosclerosis and risk of coronary
heart disease
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blood pressure in traditional regression models would
bias the estimate of the direct effect by blocking the
effect of smoking on CHD acting through blood pres-
sure, but not atherosclerosis (i.e. the path smo-
king! blood pressure!CHD). This would induce
an attenuation of the direct effect and a consequent
overestimate of the indirect effect. On the other hand,
adjustment for blood pressure is necessary to prevent
collider bias (that is inherently introduced by adjust-
ing for the mediator atherosclerosis). As discussed in
the section on mediator-outcome confounding, if we
assume that: (i) smoking and blood pressure both
positively affect atherosclerosis; (ii) smoking posi-
tively affects blood pressure; and (iii) blood pressure
positively affects the risk of CHD, adjustment for ath-
erosclerosis would likely bias the direct effect of
smoking on CHD downwards, although the determin-
ation of the direction and magnitude of bias may be
difficult in complex DAGs.29 Interestingly, in this
scenario the bias goes in the same direction whether
adjusting or not adjusting for blood pressure, imply-
ing that it is not possible to conduct both analyses
and conclude that the unbiased estimate lies some-
where in the middle.

The causal structure depicted in Figure 2 has been
discussed in depth, first in scenarios of time-depend-
ent exposures and confounders, and then in the
framework of mediation analyses.30 Statistical
approaches, such as inverse probability weighting30,31

and g-computation,32 which are both based on the
counterfactual framework, are generally able to
adjust for the confounding effect of L without block-
ing the corresponding direct path from the exposure A
to the outcome Y, and to estimate controlled direct
effects, as well as, under stronger assumptions, nat-
ural direct and indirect effects.5,22,27,33 Briefly, these
methods model the expected potential outcome under
exposure A¼ a and the mediator M¼m, E(Ya,m): the
inverse probability weighting by regressing the out-
come on the exposure and the mediator and by
controlling for potential confounders by re-weighting
the population instead of introducing them in the re-
gression model; the g-computation by an exten-
sion of the standardization using Monte Carlo
simulations.34

To assess the amount of bias that traditional ana-
lyses could introduce in the presence of intermediate
confounding, the strengths of the associations
between the exposure and the mediator-outcome con-
founder L and between L and the outcome (in our
example it would be between smoking and blood
pressure and between blood pressure and CHD)
should be evaluated. If the presence of any of these
two associations is more an issue of theoretical dis-
cussion rather than a real threat to the analysis, more
advanced methods to deal with intermediate con-
founding will produce estimates similar to standard
methods. On the contrary, if, as in our example,
both associations are likely to play an important

role, traditional analyses will not provide the correct
answers.

Discussion
Research on methods for mediation analysis is a fast
growing field in epidemiology; its development is
related to the need to better understand mechanisms,
and follows with somewhat surprising delay earlier
discussions on black box epidemiology,35 conceptual
frameworks36 and molecular epidemiology.37

Standard or traditional approaches to mediation ana-
lysis can produce flawed conclusions and their main
limitations have been addressed at length in the
methodological literature.

Although the investigation of statistical methods for
mediation analysis is not in the scope of this paper,
we should emphasize that new non-parametric and
parametric approaches, based on counterfactual
framework, are now available to address some of
the problems we describe herein, including the
Mediation formula, inverse probability weighting
and g-formula.5,26,27,30,33,34 These methods are reach-
ing now a wide spread and are entering the epidemio-
logical literature and textbooks, though they are still
underused in applied epidemiology. It should be
emphasized that their implementation may be com-
plex, and that they are subject to strong assumptions
that need to be met in order to obtain valid and in-
terpretable estimates.38 Furthermore, there are epi-
demiological scenarios for which valid methods are
not yet available and, for other scenarios, new
approaches have either only recently been suggested,
or more options exist but their performance has not
been fully compared.27,39,40

In this paper, we reviewed some of the most basic
problems that can arise in mediation analysis, the
concepts and the methods that have been developed
to tackle them, and provided some examples. The
rapid development in this field is characterized by
levels of formalism and conceptualization that may
be somewhat difficult for applied epidemiologists to
integrate. This is probably the main reason why the
new methods are being introduced rather slowly in
epidemiological research. Indeed, one of the recent
focuses of research in mediation analysis has been
the development of simplified or unified approaches
that could be adopted by a broader group of users.26,41

We predict that the use of new and more correct
approaches to mediation analyses in common epi-
demiological studies will increase rapidly in the next
years.
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KEY MESSAGES

� Mediation analysis is common in epidemiology; it aims to disentangle the effect of an exposure on an
outcome explained (indirect effect) or unexplained (direct effect) by a given set of mediators.

� Traditional approaches to estimate the direct effect, based on simply adjusting for the mediator in a
standard regression setting, may produce invalid results.

� Potential sources of bias include unmeasured mediator-outcome confounding, interaction between
exposure and mediator, and presence of intermediate confounding.

� The validity and interpretation of mediation analysis is enhanced by using the counterfactual frame-
work to conceptualize the controlled direct effect, the natural direct effect and the natural indirect
effect of the exposure on the outcome.

� Research on methods for mediation analysis is a fast growing field in epidemiology and biostatistics.
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