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Summary data and two-sample
Mendelian randomization

Mendelian randomization studies are often performed in an

instrumental variables framework, using germline genetic

variants as instruments for modifiable disease risk factors or

exposures.1–3 Mendelian randomization analysis depends on

assuming that the genetic variants: (i) are associated with the

exposure (the relevance assumption); (ii) have no common

cause with the outcome (the independence assumption); and

(iii) have effects on the outcome that are solely mediated by

the exposure (the exclusion restriction assumption).1–3

Summary data Mendelian randomization refers to

methods which use summary-level instrument-exposure

and instrument-outcome association results (typically, per-

allele regression coefficients and standard errors) to obtain

causal effect estimates. Two-sample Mendelian random-

ization refers to the application of Mendelian randomiza-

tion methods to summary association results estimated in

non-overlapping sets of individuals. These data can be ob-

tained from the published literature, typically from sum-

mary results provided by consortia of genome-wide

association studies (GWAS), or estimated directly from in-

dividual-level participant data.4 Recent examples include

studies evaluating the causal effects of adiposity-related

traits on risk of breast, ovarian, prostate, lung and colorec-

tal cancers,5 of body mass index on type 2 diabetes6 and of

telomere length on several health outcomes.7 As with

Mendelian randomization in general, two-sample

Mendelian randomization is analogous to methods origin-

ally developed in econometrics.8,9 Recent developments in

two-sample Mendelian randomization are based on meth-

ods originally developed for meta-analysis.10,11

Whereas the first formal extended elucidation of

Mendelian randomization contained what are in essence

two-sample Mendelian randomization estimates (e.g. of

the influence of homocysteine on coronary heart disease

from partially overlapping meta-analyses of genotype-

homocysteine and genotype-coronary heart disease associ-

ations),1,12 formal two-sample studies have been a more re-

cent phenomenon. We therefore performed a literature

search on 24 October 2016 in PubMed restricted to the

period from 1 January 2011 to 24 October 2016 using the

terms ‘Mendelian randomisation’ OR ‘Mendelian random-

ization’ to identify the proportion of Mendelian random-

ization papers using either the two-sample or subsample13

designs. As shown in Figure 1, the proportion rose from

0% in 2011 to 42% in 2016, with a marked increase since

2014. This suggests that two-sample Mendelian random-

ization already holds a prominent position in the

Mendelian randomization literature and its relative im-

portance is likely to continue to grow.

Even though the most natural application of summary

data Mendelian randomization methods is in the two-
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sample setting (i.e. when instrument-exposure and

instrument-outcome associations were estimated in non-

overlapping sets of individuals), it is possible in principle

to use summary data methods in the one-sample context –

i.e. when instrument-exposure and instrument-outcome

associations are estimated in the same sample. However,

summary data Mendelian randomization analyses using

instrument-exposure and instrument-outcome associ-

ations in the same sample or in partially overlapping sam-

ples may be prone to weak instrument bias towards the

exposure-outcome estimate that would obtained using

conventional methods (typically a regression of the out-

come on the exposure). Therefore, using instrument-

exposure and instrument-outcome associations estimated

in non-overlapping samples is preferable.14 However,

given that many two-sample Mendelian randomization

applications use summary data from large GWAS consor-

tia, it is possible that in many cases the instrument-

exposure and instrument-outcome datasets partially over-

lap due to studies participating in both consortia; and de-

tecting if this occurs and to what degree may depend on

careful assessment of the description of the studies

included in each consortium. The aims of this paper are to

highlight the importance of harmonizing the genetic in-

strumental variables used for estimating the instrument-

exposure and instrument-outcome associations, and to

propose steps for doing this and checking the quality

of the harmonization process in two-sample Mendelian

randomization.

Guidelines for proper harmonization of
datasets for two-sample Mendelian
randomization applications

In a paper recently published in the IJE, the general issue

of data harmonization is discussed.15 Appropriate data

harmonization is clearly essential when combining two or

more independently generated datasets. This is particularly

true for two-sample Mendelian randomization, because

GWAS results rarely have harmonized effect (or coded) al-

leles. In genetic association studies, it is often assumed that

genetic variants have additive (or per-allele) effects, which

corresponds to coding the genotypes numerically according

to the number of copies of one of the alleles. So, if a given

variant was coded as AA¼ 0, AC¼ 1 and CC¼2 (i.e. ac-

cording to the number of copies of the C allele), then C is

termed the effect allele, and A the other (or non-coded, or

baseline) allele.

Table 1 provides an overview of the steps typically

required to harmonize datasets of summary results of gen-

etic associations for two-sample Mendelian randomiza-

tion, based on the guidelines provided by Fortier and

colleagues.15. Below, we will focus on two-sample

Mendelian randomization using summary results from

GWAS consortia.

Based on the research question, researchers will identify

(often multiple) genetic variants associated with an ad-

equate exposure phenotype. For example, if interest lies in

studying the causal effects of adiposity measures on a given

outcome, then one could use as instruments genetic

Figure 1. Scatter plots of all empirical Mendelian randomization studies in PubMed from 1 January 2011 to 24 October 2016. Left panel: absolute num-

ber of one-sample (dotted line) and subsample and/or two-sample Mendelian randomization studies (solid line). Right panel: proportion of sub-

sample and/or two-sample Mendelian randomization studies (among all one-sample and subsample and/or two-sample studies). The dotted line

indicates the 50% value.
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variants identified in GWAS of anthropometric traits such

as body mass index16 or waist circumference.17 The

summary-level association results for the variants that

reached genome-wide significance (i.e. P < 5.0� 10-8) –

hereafter referred to as dataset 1 – are normally extracted

from published papers or a web repository.

Although the focus of this paper is on genetic instru-

ments selected based on a GWAS of the exposure pheno-

type, it is possible that instruments are selected using other

criteria. For example, genetic instruments may be selected

based on results of functional studies of gene expression

regulation or limited to variants located within the gene of

interest. For example, the C Reactive Protein (CRP)

Coronary Heart Disease (CHD) Genetics Collaboration se-

lected four genetic variants in the CRP gene region to

evaluate the causal effect of CRP on CHD risk using

Mendelian randomization.18 These four variants explain

98% of the genetic variation in this locus in populations of

European ancestry, and have been shown to regulate circu-

lating CRP levels without changing the protein sequence.19

Selecting instruments this way will likely yield results that

are less prone to bias due to horizontal pleiotropy com-

pared with selecting genome-wide significant genetic in-

struments scattered throughout the genome.20 In this case,

data from the exposure GWAS (e.g. the large CRP

GWAS21) can be used to obtain precise instrument-

exposure (e.g. instrument-CRP) summary association re-

sults for the previously chosen instruments (e.g. the four

genetic variants in the CRP gene region).

After obtaining dataset 1, the steps listed below are

commonly followed:

• Extract – typically from a web repository – summary-

level instrument-outcome associations (dataset 2). For

example, if the outcome is educational attainment, then

one could obtain instrument-outcome associations be-

tween each adiposity-associated variant and educational

attainment from the educational attainment GWAS.22 If

a variant in dataset 1 is missing from the outcome

GWAS, it can be replaced by a proxy variant in high

linkage disequilibrium (LD – association between alleles

Table 1. Overview of the data harmonization process for two-sample Mendelian randomization applications, based on the

guidelines provided by Fortier and colleagues15

Harmonization step Procedure in two-sample Mendelian randomization

0) Define the research question,

objectives and protocol

Prior to data collection, define exposure(s) and outcome(s) variables, data analysis methods, tar-

geted variables, etc. Targeted variables typically include an identifier of the genetic variant, ef-

fect and other alleles, effect allele frequency and regression coefficient and standard error

1) Assemble pre-existing data

sources and select datasets

Identify potential sources of summary results (e.g. published reports, summary results from

GWAS consortia or even individual-level data) and select the most appropriate ones given the

research question

2) Evaluate harmonization potential

of the selected datasets

i. At minimum, the effect allele must be available in all datasets to be harmonized. Additional

variables, such as the other allelea and effect allele frequency, improve the harmonization

potential

ii. Missing exposure-associated variants in the variant-outcome dataset may be replaced by

proxies available in the latterb but this reduces the quality of the harmonization process

iii. iii. Consider whether the populations used to generate the datasets are sufficiently similar to

harmonize them

3) Harmonize the data Identify variants that do not share the same allele pair between datasets, and either correct this if

possiblec or eliminate such variants. Identify variants with unmatched effect and other alleles

and ‘flip’ their effect estimatesd and effect allele frequenciesd in only one of the datasets

4) Estimate quality of the

harmonization process

Strong correlation between effect allele frequencies before and after harmonization, low number

of proxy variants used and strong linkage disequilibrium between proxy and index variants sug-

gest good quality of the harmonization process

5) Preserve and disseminate the

final harmonized datasets

Publish the harmonized datasets (typically as supplementary material) with all the necessary infor-

mation to allow replicating the analysis directly from the datasets provided and verifying the

quality of the data harmonization process

aKnowing the other allele is particularly useful for harmonization of palindromic variants.
bVariants in high linkage disequilibrium with the index variant in the relevant ancestry group.
cNot having the same allele pair could be a consequence of strand orientation differences between datasets. In this case, harmonizing strand orientation will re-

sult in shared allele pairs. Alternatively, if effect allele frequencies are available, they can be used to identify if the effect allele is the major or minor allele, and

such classification can be used to check allele matching. Importantly, this strategy would only be reliable if the minor allele frequency is substantially below 50%.
dMultiply by -1 in the case of additive effect estimates (e.g. linear regression coefficients, log(odds ratio), risk differences) or elevate to the power of -1 in the

case of multiplicative effect estimates (e.g. odds ratios).
d1 (or 100%) minus the effect allele frequency in the raw dataset.
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at two distinct loci within the population; see Figure 2)

with it. Ideally, the effect allele used by the LD proxy

would be in phase (i.e. located on the same chromosome

within a pair of homologous chromosomes) with the

required allele for the target single nucleotide poly-

morphism (SNP). Typical measures of LD (e.g. r2 or D’)

are not informative regarding the direction of the correl-

ation between the effect alleles of the target and LD

proxy variants. Measures of correlation that are inform-

ative of direction (and therefore of phasing), such as

Pearson’s correlation, can be estimated for example

using publicly available reference panels, such as data

from the 1000 Genomes Project for the relevant ancestry

group. Of course, a strong positive correlation that is less

than 1 (i.e. partial LD) only implies that the effect alleles

of the target and the LD proxy variants are typically in

phase, but not always (due to recombination events).

• Ensure that all variants in dataset 1 are associated with

the exposure in the same direction, typically positive (i.e.

the exposure-increasing allele is the effect allele). Such

standardization is important for two main reasons: (i) it

is required when applying a recently-developed summary

data Mendelian randomization method called MR-

Egger11; and (ii) it facilitates interpretation of plots and

other forms of presenting results. When a variant is not

coded in the desired way, it is necessary to ‘flip’ the

variant, which implies that: the effect allele becomes the

other allele, and vice versa; the regression coefficient

(e.g. ln(odds ratio), mean differences, etc.) must be multi-

plied by -1; and the effect allele frequency must be sub-

tracted from 1.

• Ensuring that datasets 1 and 2 are identically coded re-

garding effect (e.g. exposure increasing) and other al-

leles. For example, if a given instrument has A as the

effect allele and C as the other allele in dataset 1, then

one must ensure that this same instrument is coded as

having A and C as the effect and other alleles, respect-

ively, in dataset 2. Ensuring that both datasets are coded

from the same strand is very important to reduce issues

with palindromic variants (as discussed in more detail

below; see Figure 2). The steps described above are illus-

trated in Table 2. Notice that, in Table 2, genetic vari-

ants are represented by ‘rs’ followed with a number.

These are called rs numbers, which uniquely identify a

genetic variant and contain information such as location

(i.e. chromosome and position on the chromosome), its

alleles, and other useful data. Also notice that one of the

genetic instruments (rs3) was missing from the outcome

GWAS, so it was replaced by an LD proxy (rs5) which

was available in both exposure and outcome GWAS.

When it is possible to find a suitable LD proxy that is

available in both exposure and outcome GWAS, it is

Figure 2. Schematic representation of chromosomes, DNA and genetic variants in a diploid cell.
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preferable to replace the target SNP by its LD proxy in

both datasets to avoid problems with phasing (discussed

above).

Depending on the situation, additional steps may be

required. For example, if instruments have been identified

from elsewhere (as illustrated above with the CRP ex-

ample) and an exposure GWAS is only being used to ob-

tain precise estimates of the instrument-exposure

association, it is possible that the genetic instruments are

missing from the exposure GWAS, and it may be necessary

to replace them with LD proxies. Another step, related to

but not actually part of the data harmonization process per

se, is to adjust the scale of the causal effect estimate. For

example, Ference and colleagues wanted to evaluate the

causal effect of a 10-mmHg reduction in systolic blood

pressure (exposure) on CHD (outcome).23 If, for example,

instrument-exposure associations (dataset 1) are mmHg

changes in systolic blood pressure per copy of the effect al-

lele, then it would be necessary to divide both the regres-

sion coefficients and standard errors in dataset 1 (but not

in dataset 2) by 10. However, it is important to consider

that causal effect estimates from Mendelian randomization

may not resemble the estimates from a randomized con-

trolled trial even after scale adjustment, because the genetic

variants relate to life-time differences in exposure, whereas

in trials the intervention is generally for a much shorter

period. Moreover, genetic variants and interventions may

affect the exposure through different mechanisms.24,25

The final step would be to undertake quality control

checks. One useful check is to compare (either visually or

through statistics such as the correlation coefficient, or

both) datasets 1 and 2, before and after harmonization, re-

garding effect allele frequency. If case-control data were

used to generate the dataset, it is preferable to use effect al-

lele frequencies estimated in controls only. In Table 2, the

Pearson correlation coefficient was -0.003 before harmon-

ization (after identifying LD proxies), and 0.98 after har-

monization. A similar check may be applied to standard

errors, although linear regression may be preferred over a

correlation coefficient because there may be a systematic

difference in standard errors if the sample sizes used to gen-

erate datasets 1 and 2 are considerably different. Other

quality control steps include re-checking that instrument-

exposure associations are all coded in the desired direction

and that the effect and other alleles are indeed the same be-

tween datasets. It is also possible to identify typographical

errors by comparing pre- and post-harmonization datasets

regarding standard errors, absolute value of the regression

coefficients, and minor allele (i.e. the least common allele

of a given genetic variant; this may or may not be the effect

allele) frequency.

Table 2. Illustration of the process of data harmonization in two-sample Mendelian randomization using fictional data. Dataset 1

corresponds to instrument-exposure associations, and dataset 2 corresponds to instrument-outcome associations. It is

assumed that both datasets are coded in the forward (5’!3’) strand

Step SNP Dataset 1 Dataset 2

EA OA Beta (SE) EAF (%) EA OA Beta (SE) EAF (%)

Obtain the raw data rs1 A C �0.1 (0.04) 20 A C �0.2 (0.04) 18

rs2 G T �0.2 (0.03) 40 T G 0.4 (0.03) 58

rs3a T C 0.2 (0.03) 60 NA NA NA NA

rs4 G A 0.1 (0.04) 80 A G �0.2 (0.04) 18

Identify LD proxies rs1 A C �0.1 (0.04) 20 A C �0.2 (0.04) 18

rs2 G T �0.2 (0.03) 40 T G 0.4 (0.03) 58

rs5a A G 0.18 (0.03) 58 A G 0.36 (0.03) 62

rs4 G A 0.1 (0.04) 80 A G �0.2 (0.04) 18

Standardize the direction in dataset 1 rs1 C A 0.1 (0.04) 80 A C �0.2 (0.04) 18

rs2 T G 0.2 (0.03) 60 T G 0.4 (0.03) 58

rs5 A G 0.18 (0.03) 58 A G 0.36 (0.03) 62

rs4 G A 0.1 (0.04) 80 A G �0.2 (0.04) 18

Match the alleles in dataset 2 with those in dataset 1 rs1 C A 0.1 (0.04) 80 C A 0.2 (0.04) 82

rs2 T G 0.2 (0.03) 60 T G 0.4 (0.03) 58

rs5 A G 0.18 (0.03) 58 A G 0.36 (0.03) 62

rs4 G A 0.1 (0.04) 80 G A 0.2 (0.04) 82

The genetic instrument rs3 was not available in the outcome GWAS. Therefore it was replaced by rs5 which was available in both exposure and outcome

GWAS. To this end, rs5 must be in high LD with rs3 in the relevant ancestry group.

LD, linkage disequilibrium; SNP, single nucleotide polymorphism; EA, effect allele; OA, other allele; EAF, effect allele frequency; NA, not available.
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Potential issues in data harmonization for
two-sample Mendelian randomization
applications

There might be problems in each step of the data harmon-

ization process. These include: lack of standardization of the

direction of the instrument-exposure association; selection

of poor LD proxies for missing variants; using negatively,

rather than positively, correlated alleles as correspondent

between the target SNP and the LD proxy (relevant when

the target SNP is used in one of the datasets and the proxy is

used in the other dataset, as discussed above); lack of allele

harmonization between datasets; different genetic variants

(excluding the case of intentionally selected LD proxies) be-

tween datasets (which can happen, for example, if variants

are labelled as ‘chromosome:position’ – e.g. chr1:13960678

– and there is more than one variant mapped to this loca-

tion); and typographical errors introduced along the process

(especially if harmonization is done manually rather than

through automated scripts).

Another potential problem in data harmonization is

strand issues – i.e. when the effect and other alleles in data-

set 1 were defined based on the forward (5’!3’) DNA

strand, but on the reverse (3’!5’) strand in dataset 2, or

vice versa (Figure 2). Therefore, different studies might re-

port effects of the same SNP using different strands: for ex-

ample, an SNP with A/G alleles in dataset 1 may be

reported as T/C in dataset 2. In most cases these can be

identified easily, but palindromic SNPs (i.e. SNPs whose al-

leles correspond to nucleotides that pair with each other in

a DNA molecule; see Figure 2) are much harder to har-

monize because the alleles are the same on both strands.

These SNPs require that the effect allele frequency is re-

ported, and that the minor allele frequency is substantially

below 50% in order to identify ambiguities. There are

some options to deal with palindromic SNPs that have

minor allele frequencies close to 50%, including: replacing

them by suitable, non-palindromic LD proxies; conducting

sensitivity analyses to evaluate their impact on Mendelian

randomization results; or discarding them.

It is increasingly common in GWAS to perform imput-

ation (i.e. prediction of genotypes of non-genotyped gen-

etic variants in the individuals under study) using genetic

datasets (e.g. HapMap26 and 1000 Genomes27 projects)

from more densely genotyped samples as a reference

panel.28 Therefore, in recent GWAS reports the summary

results made available are almost always in reference to the

forward strand (Figure 2) as a consequence of imputation

to a common reference panel. However, this is not a guar-

antee that all datasets are ready-harmonized for analyses

because different studies may be imputed to different refer-

ence panels, or different versions of the same reference

panel, which may present differences regarding strand

orientation or allele coding.

To illustrate the implications of harmonization issues,

consider that we are interested in a single genetic instru-

ment with alleles A and C, so an individual’s genotype for

this variant can be AA, AC or CC. Consider that the data

are coded as AA¼ 0, AC¼ 1 and CC¼2 (i.e. C is the effect

allele, and A the other allele). Since choosing the effect al-

lele is often an arbitrary decision, it is possible that effect

allele coding differs between instrument-exposure and

instrument-outcome datasets. Let us assume that this hap-

pened to our genetic variant of interest, so that the

instrument-exposure association was estimated with C as

the effect allele, but A was the effect allele in the

instrument-outcome association. Let bbX denote the per-C

allele effect estimate of the genetic instrument on the ex-

posure, and bbY denote the per-C allele effect estimate on

outcome. In this case, the corresponding per-A allele esti-

mates would be �bbX and �bbY (i.e. the per-C allele esti-

mates in opposite direction), respectively. If the allele

mismatch is not detected, the causal effect estimated using

the ratio method3 would be bbY=�bbX

� �
¼ � bbY=

bbX

� �
.

However, if the alleles are correctly matched, the causal ef-

fect estimate would be bbY=
bbX. This illustrates that allele

mismatches in a given instrument change the direction of

its causal effect estimate, thus reinforcing the importance

of allele harmonization in summary data Mendelian

randomization.

Inappropriate data harmonization
can distort two-sample Mendelian
randomization analysis

Two recently published two-sample Mendelian randomiza-

tion studies that evaluated the causal effect of CRP levels

(exposure) on schizophrenia risk (outcome)29,30 can be

used to illustrate the practical relevance of data harmoniza-

tion for two-sample Mendelian randomization. In both

studies, 15 independent CRP-associated variants were used

as genetic instruments. These variants were associated with

CRP (P < 5.0� 10-8) in a GWAS on more than 80 000 in-

dividuals,21 from which instrument-CRP associations were

obtained. Instrument-schizophrenia associations were ob-

tained from the schizophrenia GWAS conducted by the

Psychiatric Genomics Consortium (PGC).31 Using a

method that approximates regressing the outcome on an

additive weighted allele score (described in detail else-

where),32 Prins and colleagues detected an odds ratio of

0.86 [95% confidence interval (CI): 0.79; 0.94] per 1-unit

increment in ln(CRP) (although they incorrectly inter-

preted their result as corresponding to a 10% increase in

CRP levels).30 However, Inoshita and colleagues reported
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an odds ratio of 1.10 (95% CI: 1.02; 1.19) per 1-unit incre-

ment in ln(CRP) when combining multiple instruments

using random effects meta-analysis.29 Since the same data-

sets were used, it was possible that these inconsistencies

were due to differences in data harmonization.

To investigate this, we extracted regression coefficients,

standard errors and effect alleles of all 18 CRP-associated

single nucleotide polymorphisms (SNPs) identified in the

CRP GWAS from the paper (i.e. dataset 1).21 Since only

the CRP-increasing alleles were provided in the publica-

tion, the other alleles were obtained using the 1000

Genomes browser [browser.1000genomes.org]. None of

these variants were palindromic. Summary results for all

genetic variants tested in the schizophrenia GWAS were

downloaded from the PGC website [https://www.med.unc.

edu/pgc/files/resultfiles/scz2.snp.results.txt.gz]. This data-

set was reduced to only the 18 variants associated with

CRP (P < 5.0� 10-8) (dataset 2). Both datasets were sorted

according to rs numbers. All variants were identified as

having the same allele pairs between datasets. Finally, we

checked whether the effect (in this case, CRP-increasing)

alleles matched in datasets 1 and 2. They did not: 11 out of

18 variants had different effect alleles. We harmonized the

effect alleles in the two datasets, (and the corresponding re-

gression coefficients) using the CRP-increasing alleles as

the reference. Applying the inverse variance weighting

(IVW) method10 to these harmonized datasets yielded an

odds ratio of 0.87 (95% CI: 0.79; 0.95) per 1-unit incre-

ment in ln(CRP) levels, a result that was consistent with

Prins’, but not with Inoshita’s, findings.

To explore the reason for these differences, we com-

pared our harmonized datasets with the datasets provided

in Prins’ and Inoshita’s publications. In our analyses using

the same two datasets as both Inoshita and colleagues and

Prins and colleagues, we found that all 18 of the SNPs that

were genome-wide associated with CRP (dataset 1) were

available in the schizophrenia GWAS (dataset 2), with no

need for proxies, so we used all 18 (see previous para-

graph). Inoshita and colleagues removed three of these 18

SNPs from their analyses because, although they were

genome-wide significant in the combined discovery and

replication sample meta-analyses, they were not in the dis-

covery-only meta-analysis, and the authors had a priori

decided that they wanted genome-wide significant variants

in both discovery and combined samples. Prins and col-

leagues reported that five of the 18 CRP genome-wide sig-

nificant SNPs were not in the schizophrenia GWAS dataset

(though we find all 18 are); they found proxies (in tight

LD) with two of these but did not include the other three.

This means that somewhat different SNPs are used in the

three analyses (ours, Inoshita’s and Prins’) — see

Supplementary Tables 1-3, available as Supplementary

data at IJE online. However, as can be seen in these

Tables, 13 of the SNPs are identical across all three ana-

lysis sets, and the two proxies that Prins et al. use are at-

tempting to tag the same associations at the SNPs that they

proxy for, both of which were included in Inoshita’s ana-

lysis. Thus, Inoshita and colleagues and Prins and col-

leagues are using highly overlapping sets of genetic

instrumental variables for CRP. Indeed, our analysis limit-

ing to the SNPs used in the Prins’ and Inoshita’s studies

showed that such differences in variants had almost no in-

fluence on the results.

Use of our suggested harmonization
quality control checks to explore the
different results

The instrument-CRP coefficients and standard errors in

our and Inoshita’s dataset 1 were perfectly positively corre-

lated. This indicates that effect and other alleles (not expli-

citly provided in Inoshita’s publication) were the same.

However, when we compared our dataset 2 after harmon-

ization with Inoshita’s, the correlations between the

ln(odds ratios) were -0.82, and the correlations between

the standard errors were 0.59. We then compared

Inoshita’s dataset 2 with the raw schizophrenia dataset

from the PGC. In this comparison, the correlation between

the ln(odds ratio) was 0.94, indicating that many variants

in Inoshita’s dataset 2 were coded as in the raw PGC data-

set. This was suggestive of lack of harmonization between

Inoshita’s datasets 1 and 2, because (as discussed above) it

was necessary to flip some of the variants in the PGC data-

set so that the effect allele was the CRP-increasing allele.

Moreover, the correlation between standard errors of 0.59,

possibly suggests a typographical error in Inoshita’s dataset

2, since the correlation between standard errors should be

1 even if there are issues with allele harmonization. After

graphical inspection, we found that the coefficients and

standard errors between Inoshita’s and the raw PGC

instrument-schizophrenia datasets were identical aside

from the single variant rs4129267. This variant had odds

ratio [ln(odds ratio) standard error] of 1.026 (0.012) and

0.990 (0.042) per CRP-decreasing allele in the raw PGC

and in Inoshita’s datasets (although in Inoshita’s analysis

this was assumed to correspond to the CRP-increasing al-

lele), respectively. We do not know why this difference

exists; it might be due to a typographical error because

even the standard errors were different. Since all other vari-

ants in Inoshita’s dataset 2 were coded as in the raw PGC

dataset, we assigned to the rs4129267 variant the same ef-

fect and other alleles as in the raw PGC dataset.

Therefore, there were two errors in Inoshita’s dataset 2:

(i) lack of allele harmonization between datasets 1 and 2,
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which resulted in some of the effect alleles in dataset 2 not

corresponding to CRP-increasing alleles; and (ii) possibly

a typographical error regarding variant rs4129267.

Applying the IVW method to Inoshita’s datasets, as pro-

vided in their publication, yielded an odds ratio of 1.08

(95% CI: 0.96; 1.22) per 1-unit increment in ln(CRP).

After excluding the rs4129267 variant, the odds ratio was

1.09 (95% CI: 0.96; 1.23). After proper harmonization

(and exclusion of the variant with the typographical error),

the odds ratio was 0.87 (95% CI: 0.79; 0.97). We also re-

did our analysis using pre-harmonization datasets, and the

resulting odds ratio was 1.09 (95% CI: 0.98; 1.22). These

results indicate that the differences between our and

Inoshita’s results were largely due to lack of allele harmon-

ization between datasets 1 and 2 rather than to differences

in methods to compute the causal effect estimate or the

typographical error.

None of the issues above were detected in Prins’ dataset 2.

When applying the IVW to their pre-harmonization datasets,

the odds ratio was 1.10 (95% CI: 0.99; 1.22). When using

post-harmonization datasets, the odds ratio was 0.87 (95%

CI: 0.79; 0.95) (almost identical to the result they reported).

All results are shown in Table 3. In this example, inappropri-

ate data harmonization shifted the direction of the causal

effect estimate from protective (as reported by Prins and

colleagues and us) to risk-increasing.

Conclusions

Effect allele mismatches can lead to bias in the causal effect

estimate in the opposite direction. Although this would not

be a problem when the true causal effect is zero, the esti-

mates can be biased if the true causal effect is non-zero.

The size of this bias will depend on the proportion of effect

allele mismatches and their weight in the causal effect esti-

mate. For example, the bias may just attenuate the causal

effect estimate when only a few genetic instruments present

effect allele mismatches. However, when most of the in-

struments or the strongest variants are mismatched, the

bias may be strong enough to reverse the causal effect esti-

mate (as in Inoshita and colleagues’ analysis).

Data harmonization has been only briefly discussed in

Mendelian randomization guidelines published to date.33

In some situations this process may not be trivial, because

often various assumptions have to be made or reasonable

thresholds have to be decided upon that are potentially

study-specific. To prevent bias due to data harmonization

errors, we recommend that researchers provide the full,

harmonized datasets (as well as the original, pre-

harmonization datasets) used in two-sample Mendelian

randomization analysis. This would allow evaluation of

the harmonization process by reviewers and readers, thus

avoiding having to assume that harmonization has been

conducted appropriately. We also recommend that har-

monization is performed using scripts, and that the scripts

are made available with the publication to aid reproduci-

bility. We provide a function written in R [www.r-project.

org] that can be used to harmonize summary-level datasets

of genetic associations as Supplementary material (avail-

able as Supplementary data at IJE online) and on GitHub

[https://github.com/FernandoHartwig/GenEpi_R_Scripts].

There are others scripts available that aid with harmoniza-

tion and other steps of two-sample Mendelian randomiza-

tion analyses, such as those in the TwoSampleMR

package [https://github.com/MRCIEU/TwoSampleMR],

which is used in the recently developed web database and

analysis platform called MR-Base [http://www.mrbase.

org/].34

Providing both the original and harmonized datasets

and describing the harmonization process with enough in-

formation for reproducibility will likely minimize the

chance that errors in data harmonization are distorting

two-sample Mendelian randomization findings. The pro-

cess of data harmonization should be included when pub-

lishing or sharing the analysis code. This practice would

also assist reviewers (who should ask for and check

harmonized datasets) in assessing whether or not the har-

monization has been done correctly. Data harmonization

is clearly essential for accurate two-sample Mendelian

Table 3. Odds ratio (95% confidence intervals) of schizophrenia per 1-unit increment in ln(C-reactive protein) based on

Mendelian randomization analyses using the inverse variance weighting method, unless indicated otherwise

Hartwig et al. Inoshita et al. Prins et al.

As originally presented in publications NA 1.10 (1.02; 1.19)a 0.86 (0.79; 0.94)b

Using pre-harmonization datasetsc 1.09 (0.98; 1.22) 1.08 (0.96; 1.22) 1.10 (0.99; 1.22)

Using post-harmonization datasetsc 0.87 (0.79; 0.95) 0.87 (0.79; 0.97) 0.87 (0.79; 0.95)

NA, not applicable.
aResults computed using random effects meta-analysis.
bResults computed using a method that approximates regressing the outcome on an additive weighted allele score.
cDatasets were provided in Supplementary Tables 1-3, available as Supplementary data at IJE online.
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randomization analyses and should be carefully performed

and clearly reported.

Two-sample Mendelian randomization studies are

analogous to literature-based meta-analyses, in that they

can be performed using publicly available data and can be

used to produce publishable papers – receiving consequent

academic reward in the absence of any primary data collec-

tion or indeed expertise in the field under investigation. In

the field of meta-analysis, the corruption of the scientific

literature that can occur in this situation has been well

documented.35 It is important that the recent rise of

two-sample Mendelian randomization studies shown in

Figure 1 does not recapitulate the epidemic of ‘redundant,

misleading, and conflicted systematic reviews and meta-

analyses’ recently reported by Ioannidis.36 The possibility

of this happening is prefigured by the title of a recent paper

that suggests that combining the two could be even more

(academically) rewarding: ‘Adding Mendelian randomiza-

tion to a meta-analysis: a burgeoning opportunity’.37 It is

of concern that the recent substantial increase in the publi-

cation of two-sample Mendelian randomization studies

could result in poor-quality studies using this design

becoming more common in the literature, an occurrence

that should be resisted by researchers, reviewers and

editors.

Supplementary Data

Supplementary data are available at IJE online.
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