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Abstract

Background: In administrative database research, misclassification bias can result from

diagnostic codes that imperfectly represent the condition being studied. It is unclear how

to correct for this bias.

Methods: Severe renal failure and Colles’ fracture status were determined in two distinct

cohorts using gold standard methods. True disease prevalence and disease association

with other covariables were measured and compared with results when disease status

was determined using diagnostic codes. Differences (‘misclassification bias’) were then

adjusted for using two methods: quantitative bias analysis (QBA) with bias parameters

(code sensitivity and specificity) of varying accuracy; and disease status imputation using

bootstrap methods and disease probability models.

Results: Prevalences of severe renal failure (n¼ 50 074) and Colles’ fracture (n¼5680)

were 7.5% and 37.0%, respectively. Compared with true values, important bias resulted

when diagnostic codes were used to measure disease prevalence and disease-

covariable associations. QBA increased bias when population-based (vs strata-specific)

bias parameters were used. QBA’s ability to account for misclassification bias was most

dependent upon deviations in code specificity. Bootstrap imputation accounted for mis-

classification bias, but this depended on disease model calibration.

Conclusions: Extensive bias can result from using inaccurate diagnostic codes to deter-

mine disease status. This bias can be addressed with QBA using accurate bias parameter

measures, or by bootstrap imputation using well-calibrated disease prediction models.
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Introduction

A large majority of administrative database research studies

use diagnostic or procedural codes to identify patient

cohorts, exposures or outcomes.1 Commonly, these codes

are assigned to patient encounters by health records ana-

lysts’ review of patient medical records; as such, codes may

inaccurately indicate true disease status for many reasons,

including unclear physician documentation, misinterpreta-

tion of clinical data, or incorrect diagnoses.2 Since these

codes are never perfectly accurate, their use will produce

study results that deviate from the truth. These deviations

have been termed misclassification bias,3,4 information

bias5 or observation bias.5

The extent of misclassification bias in code-based

administrative database research is rarely, if ever, deter-

mined. Quantitative bias analysis (QBA) is a collection of

calculations that attempts to correct for bias from misclas-

sification and other sources.6 To address misclassification

bias, QBA first measures the sensitivity and specificity of

the surrogate marker (which, in administrative database

research, is the diagnostic code) for the entity it represents.

It uses these bias parameters to calculate the expected

number of patients in each cell of the disease-covariable

contingency table (Appendix A). This permits the

calculation of measures of disease prevalence and disease-

covariable association which are corrected for misclassifi-

cation bias. We have recently shown that misclassification

can also be successfully addressed using bootstrap

methods to impute disease status using disease

probability estimates that are generated from a multivari-

ate model.7

The capabilities of QBA and bootstrap imputation

methods to correct for misclassification bias have not been

directly compared. This study compared the correction for

misclassification bias due to the use of administrative data-

base codes using these two methods.

Methods

Study cohorts

This study included two distinct patient cohorts in whom

disease status was determined using gold standard criteria.

The severe renal failure cohort was created to determine if

severe renal failure status could be accurately determined

using covariables from administrative datasets. The cohort

included 100 000 randomly selected adults admitted to a

multi-institutional, tertiary care teaching hospital between

2002 and 2008.8 Glomerular filtration rate (GFR) was esti-

mated in each person using the abbreviated Modified Diet

in Renal Disease formula using each in-hospital serum crea-

tinine.9 From definitions from recognized guidelines on

chronic kidney disease,10,11 patients having two or more

consecutive GFRs less than 30 mL/min/1.73 m2 were classi-

fied as having severe kidney disease. Patients with only one

serum creatinine measured during their admission were clas-

sified with severe kidney disease if its GFR was less than

30 mL/min/1.73 m2. All other patients, including those with

no creatinine measures, were classified as having no severe

kidney disease. Patients were randomly divided into a meas-

urement (n¼ 49 926) and an analysis (n¼ 50 074) group.

The Colles’ fracture cohort was created to study treatment

and outcomes of patients with Colles’ fracture. The cohort

included all patients assessed in the emergency department

(at the same hospital as the severe renal failure cohort)

between 1 January 2006 and 31 December 2014, who

underwent plain radiography of the forearm (n¼ 11 233).

Patients in 2010 were used to derive the Colles’ Fracture

Model (described below) and were excluded from the cur-

rent analysis. Text reports of all radiographs were manually

reviewed to determine the presence or absence of a Colles’

fracture (acute fracture of the distal radius or ulna, with

Key Messages

• The use of diagnostic codes to determine disease status results in important misclassification bias when measuring

disease prevalence or disease-covariable associations.

• Using quantitative bias analysis (QBA) will not necessarily decrease bias.

• QBA is very dependent upon the accuracy of its bias parameters (in particular the accuracy of code specificity) when

addressing bias. Therefore, researchers must pay particular attention to determining values for bias parameters that

are used for QBA. In particular, they should strongly consider using values that are actually measured on the popula-

tion used in the study (or one that is very similar to that in the study).

• The ability of bootstrap imputation to address misclassification bias deteriorated when the scaled Brier Scores for

prediction models exceeded 60%.
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fractures of the proximal radius or ulna, the carpal bones

or the metacarpal bones being excluded). Patients were ran-

domly divided into a measurement (n¼ 5553) and an anal-

ysis (n¼ 5680) group.

Administrative database codes

Patients were deemed to have been coded with severe renal

failure or Colles’ fracture if they were assigned any of the

International Classification of Diseases 10 (ICD10) codes

listed in Appendix B during their hospital encounter.

Models for disease status

Bootstrap implementation requires a model which gener-

ates a probability that an individual patient is truly dis-

eased. For the severe renal failure cohort, this was

accomplished using the Severe Renal Failure Model. This

model was derived (in the measurement group of the severe

renal failure cohort) and internally validated (in the analy-

sis group) in a previous study.8 All predictor variables con-

sidered for the model came from the hospital’s discharge

abstract database and included patient factors (age, sex and

all Elixhauser comorbidities using ICD codes cited by

Quan12), hospitalization factors (admission urgency,

admitting service, intensive care unit treatment, surgical

procedures, hospital survival status and length of stay) and

renal failure-specific codes (dialysis-related diagnoses and

procedures, the most common acute diagnoses causing

renal dysfunction, and manifestations of renal dysfunction).

A macro from Sauerbrai was used to create the models

using fractional polynomial methods for continuous varia-

bles and forward variable selection.13 This model was used

in the validation group to estimate each patient’s probabil-

ity of having severe renal failure.

For the Colles’ fracture cohort, disease probability was

determined using the Colles’ Fracture Model. This model

was derived using text classification methods to identify a

Colles’ fracture in 493 radiology reports.14 In an internal

validation population of 258 reports, the model had a sen-

sitivity of 95.5% and a specificity of 92.9%. This algorithm

was applied to all text reports of forearm radiographs in

the Colles’ fracture validation cohort to return the proba-

bility of a Colles’ fracture.

Covariables

A total of 43 covariables for the renal failure cohort were

abstracted from the Discharge Abstract Database and were

listed in the ‘Models for disease status’ section. Covariables

for the Colles’ fracture cohort were abstracted from the

National Ambulatory Care Reporting System (which

records all emergency room visits). These nine variables

included patient age and sex, Charlson comorbidity score

(based on coded comorbidities), diabetes status, year of

presentation, presentation during winter months, triage

location, presence of Colles’ fracture-related procedural

codes [Canadian Classification of Intervention codes of

1.UB.73* (Reduction, wrist joint using closed approach) or

1.TV.73 (Reduction, radius and ulna using closed

approach)] and patient disposition.

Analysis

The primary outcome for the study was the amount of bias

in the measurement of: (i) disease prevalence; and (ii) the

association of the disease with covariables when they were

calculated using true disease status and diagnostic codes

(Appendix B). True disease prevalence [with exact 95%

confidence intervals (CIs)] was measured in patient strata

defined by the presence or absence of covariates in each

cohort (with continuous variables dichotomized by their

median values). Logistic regression was used to determine

the true association of disease status with each covariable

(measured using odds ratios with 95% CI), again with con-

tinuous variables dichotomized by their median values. All

analyses were limited to the analysis group (n¼50 074 in

the severe renal failure cohort, n¼ 5680 in the Colles’ frac-

ture cohort).

Measures of disease prevalence and disease-covariable

associations were repeated after disease status was deter-

mined using diagnostic codes (Appendix B). To quantify

bias in prevalence estimates, these results (‘surrogate val-

ues’) were subtracted from true values. Differences between

true and surrogate values were expressed in both absolute

(true-surrogate) and relative (jtrue-surrogatej/true) values.

As a qualitative measure of the extent of the difference

between the true and surrogate values, the proportion of

the surrogate prevalence estimates within the 95% confi-

dence intervals of the true prevalence estimates was also

calculated. To measure disease-covariable associations,

logistic regression models were created using the surrogate

disease status. Absolute differences between parameter esti-

mates from these models and those using true disease status

were calculated and then exponentiated to facilitate inter-

pretation. Parameter estimates that are identical have abso-

lute differences of 0 and exponentiated values of 1; in

contrast, absolute differences less than 0 have exponenti-

ated values less than 1, and differences exceeding 0 have

exponentiated values exceeding 1. The proportion of surro-

gate odds ratios within the 95% confidence intervals of

true odds ratios was also calculated. Finally, overall bias

for both prevalence estimates and disease-covariable associ-

ations was summarized using the mean squared error. This
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was calculated as the sum of squared difference of the true

value and the surrogate estimate divided by the total num-

ber of groups:

X
ðtrue valve� surrogate estimateÞ2

# groups

The direction of the bias was not reported, since this can

be influenced by a large number of factors.15

These statistics were repeated after correction for mis-

classification bias using quantitative bias analysis (QBA) or

bootstrap imputation. The QBA methods for addressing

misclassification bias described by Lash, Fox and Fink6

were used (Appendix A). This method requires the sensitiv-

ity and specificity of the code for the disease (Appendix A,

section 1). These ‘bias parameters’ permit the calculation of

cell counts in the covariable-code for disease contingency

tables (Appendix A, section 2) that are corrected for mis-

classification using the equations that are specified in

Appendix A, section 3.

The initial QBA iteration used bias parameters from

patients in the measurement group of each cohort (the

‘overall bias parameters’ analysis). We also conducted an

analysis using ‘strata-specific bias parameters’ that used

bias parameters (again determined in the measurement

group) specific to each patient stratum. Finally, analyses

were repeated using bias parameters that were measured in

the analysis group to illustrate results with completely accu-

rate sensitivity and specificity values (‘perfect bias parame-

ters’ analysis).

For the bootstrap imputation, 1000 bootstrap samples

with replacement were created from the validation patients

in each patient stratum.8 Each bootstrap sample had the

same sample size as the original cohort. For each patient

within each bootstrap sample, a uniformly distributed

number between 0 and 1 was randomly selected; disease

status was then imputed as present if the randomly selected

number was below the estimated probability of disease

(from the Severe Renal Failure Model for the renal failure

cohort or the Colles’ Fracture Model for the Colles’ frac-

ture cohort) for that particular patient. Disease prevalence

and disease-covariable associations were then measured on

each bootstrap sample. The final point estimate for disease

prevalence or disease-covariable odds ratio was the median

value of all 1000 bootstrap samples.

Finally, the factors influencing the capability of QBA

and bootstrap imputation to address bias for disease preva-

lence estimation were explored. Bias was quantified as the

mean squared error (calculated using the equation above)

within each patient stratum. For QBA, this was plotted

against the relative difference in code sensitivity and specif-

icity (calculated in each stratum as: jbias

parametermeasurement – bias parameteranalyticalj/ bias parame-

teranalytical). For bootstrap imputation, bias was plotted

against the scaled Brier score measuring calibration of the

models for disease status. The scaled Brier score measures

agreement between predicted and actual binary outcomes

on a scale ranging from 0% (perfect agreement between

observed and predicted) and 100% (perfect

disagreement).16

Results

The severe renal failure cohort analysis included 100 000

patients (measurement cohort n¼ 49 926, analysis cohort

n¼ 50 074). The Colles’ fracture cohort included 11 233

patients (measurement cohort n¼5553, analysis cohort

n¼ 5680). Table 1 describes the analysis patients of both

cohorts by disease status. In the severe renal failure cohort,

3748 patients (7.5%) had the disease. Renal failure was nota-

bly more common as patients aged and in patients with

dialysis-related diagnoses or procedures, those who were

treated in the intensive care unit or died in the hospital and

those assigned codes for causes for, or manifestations of,

renal failure. In the Colles’ fracture cohort, 2102 (37.0%)

had the disease, with fractures being more common in

females and those coded with a Colles’-related procedure.

Patients in the measurement and analysis populations of both

study cohorts were essentially equivalent (Appendix C).

Accuracy of ICD codes

In the measurement groups of the severe renal failure cohort

(n¼ 49 926) and Colles’ fracture cohort (n¼ 5553), the ICD

codes used to determine disease status (Appendix B) had

overall sensitivities of 71% and 72%, respectively, and specif-

icities of 96% and 98%, respectively. These values are the

‘overall bias parameters’ for each disease. However, these

values varied extensively when measured in distinct patient

strata. In the renal failure cohort, ranges of code sensitivities

and specificities in the 86 patient strata were 0.3–0.93 and

0.72–0.99, respectively; in the Colles’ fracture cohort, ranges

in code sensitivities and specificities in the 18 distinct patient

strata were 0.62–0.90 and 0.78–0.99, respectively.

There were large differences in bias parameter values

when measured in the entire cohort vs specific patient strata.

In the analysis population, relative differences in code sensi-

tivity when measured in the entire population vs specific

strata ranged from 0.1% to 88.7% (median 4.4%) in the

renal failure cohort and 0.03% to 20.4% (median 2.4%) in

the Colles’ fracture cohort. Corresponding values for code

specificity were smaller: 0.1–37.4% (median 1.7%) for the

renal failure cohort and 0.005–11.9% (median 0.2%) for

the Colles’ fracture cohort. There were also notable
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differences in strata-specific bias parameter values in the

measurement vs the analysis population: for code sensitiv-

ity, relative differences ranged 0.06–26.9% (median 1.4%)

in the renal failure cohort and 0.003–8.3% (median 1.9%)

in the Colles’ fracture cohort. Corresponding values for spe-

cificities were smaller (0.002–4.8%, median 1.0% for the

renal failure cohort; 0.02–11.1%, median 0.2% for the

Colles’ fracture cohort).

Accuracy of disease prediction models

In the analysis population, the Severe Renal Failure Model

was highly discriminative (c-statistic 0.937) and very well

calibrated (Figure 1; scaled Brier score 0.43). The Colles’

Fracture Model had a greater discrimination (c-statistic

0.981) but its calibration suffered from a systematic overes-

timation of risk (Figure 1; scaled Brier score 0.77). Model

calibration varied between patient strata most notably in

the renal failure cohort; scaled Brier scores ranged from

0.18 to 0.59 (median 0.43) between strata in the severe

renal failure cohort and 0.71 to 0.81 (median 0.77) in the

Colles’ fracture cohort.

Bias measuring disease prevalence

The median prevalence of severe renal failure in the 86

patient strata was 7.5%, range 2.5–73.3% (Table 2A, col-

umn A). Measuring severe renal failure prevalence using

the ICD codes overestimated disease prevalence with a

median absolute difference with true values of -1.2% [inter-

quartile range (IQR) -3.4% to -1.0%, Table 2, column B]

and a median relative difference of 16.6% (IQR 15.5%-

25.3%). Only 13.8% of prevalence estimates based on

codes were within the 95% confidence intervals of the true

measure.

Misclassification bias actually increased when QBA

with overall bias parameters was used, with increases in rel-

ative differences of renal failure prevalence and mean

squared error (Table 2A, column C). QBA using strata-

specific bias parameters notably decreased bias, with the

Table 1. Description of study cohorts

Severe renal failure cohort Value No severe renal

failure (n¼46326)

Severe renal failure

(n¼3748, 7.5%)

Overall

(n¼50074)

Mean age (SD) 53.6 6 19.8 68.8 6 15.3 54.8 6 19.9

Female 27066 (58.4%) 1768 (47.2%) 28834 (57.6%)

Coded with possible causes of renal failure 878 (1.9%) 312 (8.3%) 1190 (2.4%)

Coded with manifestations of renal failure 634 (1.4%) 509 (13.6%) 1143 (2.3%)

Dialysis-related diagnoses 94 (0.2%) 258 (6.9%) 352 (0.7%)

Patient admitted emergently 27010 (58.3%) 3255 (86.8%) 30265 (60.4%)

Patient admitted from emergency 17238 (37.2%) 2199 (58.7%) 19437 (38.8%)

Patient came in by ambulance 10513 (22.7%) 1687 (45.0%) 12200 (24.4%)

Patient admitted to surgical service 11373 (24.5%) 632 (16.9%) 12005 (24.0%)

Patient had operation during admission 6921 (14.9%) 852 (22.7%) 7773 (15.5%)

Patient in ICU during admission 1663 (3.6%) 634 (16.9%) 2297 (4.6%)

Patient had dialysis-related procedure 1553 (3.4%) 1372 (36.6%) 2925 (5.8%)

Patient died in hospital 1382 (3.0%) 718 (19.2%) 2100 (4.2%)

Median hospital length of stay (IQR) 3.0 (2.0–7.0) 9.0 (4.0–19.0) 3.0 (2.0–7.0)

Colles’ fracture cohort No fracture

(n¼3578)

Fracture

(n¼2102, 37.0%)

Overall

(n¼5680)

Mean age (SD) 67.3 6 13.1 67.5 6 12.3 67.4 6 12.8

Patient>65 1799 (50.3%) 1067 (50.8%) 2866 (50.5%)

Patient is male 1552 (43.4%) 443 (21.1%) 1995 (35.1%)

Visit year <2010 1562 (43.7%) 987 (47.0%) 2549 (44.9%)

�2010 2016 (56.3%) 1115 (53.0%) 3131 (55.1%)

CTAS score 1–2 579 (16.2%) 336 (16.0%) 915 (16.1%)

3þ 2999 (83.8%) 1766 (84.0%) 4765 (83.9%)

Colles’ fracture-related procedure coded 8 (0.2%) 744 (35.4%) 752 (13.2%)

Discharged home 3068 (85.7%) 1735 (82.5%) 4803 (84.6%)

Charlson score 0 3227 (90.2%) 1994 (94.9%) 5221 (91.9%)

> 0 351 (9.8%) 108 (5.1%) 459 (8.1%)

SD, standard deviation; ICU, intensive care unit; CTAS, Canadian Triage and Acuity Scale.
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distribution of renal failure prevalence being almost identi-

cal to true values (Table 2A, column D, row 1), and a nota-

ble drop in relative differences (Table 2A, column D, row

3). Misclassification bias was essentially eliminated with

QBA when perfectly accurate bias parameters were used

(Table 2A, column E). Bootstrap imputation methods

resulted in the next smallest amount of misclassification

bias, with 94.2% of estimates falling with the 95% confi-

dence intervals of true values and a mean squared error of

6.9 (Table 2A, column F).

Patterns were different in the Colles’ fracture cohort

(Table 2B). Disease prevalence was higher (median 36.9%,

range 22.2–98.9%, Table 2B, column A) but prevalence

using the ICD codes underestimated disease prevalence

[median relative difference 9.5% (IQR 8.9%–10.1%)]. No

prevalence estimates using codes were within the 95% con-

fidence intervals of the true measures. Misclassification

bias decreased notably with QBA using overall bias

parameters (Table 2B, column C) and decreased further

still with QBA using strata-specific bias parameters (Table

2B, column D). Again, QBA using perfectly accurate bias

parameters eliminated misclassification bias (Table 2B,

column E). In contrast to the severe renal failure cohort,

misclassification bias using the bootstrap imputation

method was notably higher than QBA methods (Table 2B,

column F).

Bias measuring disease-covariable associations

True associations between severe renal failure and the 43

covariables ranged from 0.47 and 36.3 (median 2.71, Table

3A, column A). Using ICD codes to determine renal failure

status, disease-covariable associations were biased away

from the null (median odds ratio 3.01; Table 3A, column

B). However, estimates of association were exaggerated

even further away from the null using QBA with overall

bias parameters (Table 3A, column C, row 1) with an

increase in the mean squared error (Table 3A, row 6, col-

umns C vs B). Misclassification bias using QBA with strata-

specific bias parameters was similar to that using ICD

codes alone (Table 3A, column D). QBA with perfectly

accurate bias parameters eliminated bias (Table 3A, col-

umn E). Bias was also very small when bootstrap imputa-

tion was used (Table 3A, column F).

Misclassification bias measuring disease-covariable asso-

ciations with Colles’ fracture (Table 3B) was eliminated

using QBA with perfectly accurate bias parameters (Table

3B, column E). However, misclassification bias did not vary

extensively between the other surrogate methods used.

Factors influencing capability of QBA and

bootstrap imputation to address bias

Since QBA using perfect bias parameters resulted in essen-

tially no misclassification bias (Table 2 and Table 3, col-

umn E), differences in bias parameters (code sensitivity and

specificity) in the measurement group relative to values in

the analysis groups were calculated and plotted against the

mean squared error (Figure 2). Compared with relative dif-

ferences in code sensitivity, relative differences in code spe-

cificity appeared to be strongly associated with mean

squared error. In the bootstrap imputation analysis, mean

squared error appeared to increase as values for the scaled

Brier score increased.

Discussion

Misclassification bias affects any administrative database

research study in which codes are used to identify patient

cohorts, exposures or outcomes. This study found that the

use of diagnostic codes resulted in extensive and clinically

important bias when estimating disease prevalence or its

association with covariables. Quantitative bias analysis

(QBA) methods can successfully remove misclassification

bias, but its success depended on bias parameter accuracy.

Imputing patient disease status using bootstrap methods

can also address misclassification bias, but requires a well-

calibrated disease prediction model.

This study made several important findings. First, the

use of database codes to determine disease status is

Figure 1. Calibration of the Severe Renal Failure Model and Colles’

Fracture Model.

This graphic plots the observed disease risk (vertical axis) against the

expected disease risk (horizontal axis). Severe renal failure (triangles)

was defined as a glomerular filtration rate less than 30 ml/min/1.73 m2

with the expected disease risk determined with the Severe Renal Failure

Model.8 Colles’ fracture (circles) was defined as an acute fracture of the

distal radius or ulna on plain radiography with the expected disease risk

determined with the Colles’ Fracture Model.14 The scaled Brier scores of

the Severe Renal Failure Model and Colle’s Fracture Model were 0.43

and 0.78, respectively.
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associated with an important amount of misclassification

bias in both disease prevalence estimates and disease-

covariable associations. Administrative database researchers

must be aware that using codes can result in meaningfully

biased results. More importantly, the ‘direction’ of this bias

(i.e. disease prevalence estimates increasing or decreasing

and associations moving towards or away from null values)

was unpredictable. Second, the use of classical quantitative

bias analysis (QBA) can (but does not always) decrease mis-

classification bias. The success of QBA to adjust for misclas-

sification bias depends upon the accuracy of the bias

parameters used; in particular, the limited analysis pre-

sented here indicated that the extent to which misclassifica-

tion bias is decreased by QBA appears to be especially

dependent upon the accuracy of specificity values.

Administrative database researchers who use classical QBA

to address misclassification bias must ensure that the bias

parameters used are both measured accurately using valid

methods and are generalizable to the population being

studied.17 Ideally, bias parameters would be measured in a

large sample of the study population to ensure applicability.

Given the sensitivity of QBA results to bias parameter val-

ues, the use of probabilistic quantitative bias analysis—in

which a distribution of potentially valid sensitivity and spe-

cificity values are used18—should be considered to illustrate

the extent of uncertainty around estimates. Finally, this

study showed that bootstrap imputation methods were

capable of generating results with very little misclassifica-

tion bias, but only when the model used to predict disease

probability was well calibrated. Because of the time

required for resampling, this method of accounting for mis-

classification is computationally more intensive than classi-

cal QBA. However, an important potential advantage of the

bootstrap imputation over QBA is its ability to be done

using multivariate models. As such, it can account for mis-

classification bias when measuring association adjusted for

covariables. Therefore, developing accurate models to deter-

mine disease probability is an important step to optimizing

administrative database research.

Some issues regarding the study should be kept in mind.

First, the study addressed two conditions only, from a sin-

gle centre. It is important that this study’s methods be repli-

cated in other conditions at other centres, to determine if

the results seen here are replicated. Second, further research

is required to determine the conditions under which a

researcher can be confident that misclassification bias has

Figure 2. Influence of bias parameter accuracy and model calibration on misclassification bias in the estimation of disease prevalence.

Misclassification bias was quantified as the mean squared difference between estimated and actual disease prevalence. This was plotted against the:

relative difference of sensitivity values used in the quantitative bias analysis [QBA] and those in the analysis cohort (left plot); relative difference

of specificity values used in the QBA and those in the analysis cohort (middle plot); and the scaled Brier score, measuring calibration of disease

prediction models used in bootstrap imputation (right plot). (Grey circles¼ severe renal failure strata; black triangles¼Colles’ fracture strata).
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been addressed using QBA or bootstrap imputation. This

study found that the relative difference in code specificity

appeared to be linearly related to misclassification bias

(Figure 2b). It also found that bias appeared to be related

to model calibration in bootstrap imputation (Figure 2c). A

more exhaustive examination of this area is necessary, so

that researchers will know the conditions under which they

can confidently use these methods to address misclassifica-

tion bias. Third, this study focused on misclassification bias

resulting from the use of administrative database codes to

identify patient cohorts. However, the results are equally

applicable to other situations in which disease status is

imputed using inaccurate methods. Finally, using probabil-

istic bias analysis—in which errors around the estimates for

sensitivity and specificity are recognized using Monte Carlo

resampling techniques to generate a distribution of cor-

rected estimates—would not have changed the results of

the study, since it would use the same bias parameters as

those that were used in the current analysis (i.e. bias param-

eters from the measurement section of both disease

cohorts). Such a PBA—assuming a large enough resampling

size—would essentially return the same point estimates as

those presented here.

In summary, this study explored misclassification bias

resulting from the use of diagnostic codes to identify disease

status and how it might be addressed. Future studies are

needed to determine if these results are replicated and to

clarify the conditions in which these methods will reliably

produce results that are less biased than those generated

using administrative database codes alone.

Funding

C.vW. is supported by a University of Ottawa Department of

Medicine Clinician Scientist Chair.

Conflict of interest: None declared.

References

1. van Walraven C, Bennett C, Forster AJ. Administrative database

research infrequently uses validated diagnostic or procedural

codes. J Clin Epidemiol 2011;64:1054–59.

2. Nicholls SG, Langan SaM, Benchimol EI. Routinely collected

data: the importance of high-quality diagnostic coding to

research. CMAJ 2017;189:E1054–55.

3. Colman S, Joyce T, Kaestner R. Misclassification bias and

the estimated effect of parental involvement laws on

adolescents’ reproductive outcomes. Am J Public Health 2008;

98:1881–85.

4. Mohler B, Earls F. Trends in adolescent suicide: misclassification

bias? Am J Public Health 2001;91:150–53.

5. Last JM. A Dictionary of Epidemiology, third edn. New York,

NY: Oxford University Press, 1995.

6. Lash TL, Fox MP, Fink AK. Misclassification. Applying

Quantitative Bias Analysis to Epidemiologic Data. London:

Springer, 2010.

7. van Walraven C. Bootstrap imputation with a disease

probability model minimizes bias from misclassification due to

administrative database codes. J Clin Epidemiol 2017;84:

114–20.

8. van Walraven C, Austin PC, Manuel D, Knoll G, Jennings A,

Forster AJ. The usefulness of administrative databases for identi-

fying disease cohorts is increased with a multivariate model.

J Clin Epidemiol 2010;63:1332–41.

9. Manjunath G, Sarnak MJ, Levey AS. Prediction equations to esti-

mate glomerular filtration rate: an update. Curr Opin Nephrol

Hypertens 2001;10:785–92.

10. National Kidney Foundation. K/DOQI clinical practice guide-

lines for chronic kidney disease: evaluation, classification, and

stratification.[see comment]. Am J Kidney Dis 2002;39(Suppl 1):

S1–266.

11. Levey AS, Eckardt KU, Tsukamoto Y et al. Definition and classifi-

cation of chronic kidney disease: a position statement from

Kidney Disease: Improving Global Outcomes (KDIGO). Kidney

Int 2005;67:2089–100.

12. Quan H, Sundararajan V, Halfon P et al. Coding algorithms for

defining comorbidities in ICD-9-CM and ICD-10 administrative

data. Med Care 2005;43:1130–39.

13. Sauerbrei W, Meier-Hirmer C, Benner A, Royston P.

Multivariable regression model building by using fractional poly-

nomials: Description of SAS, STATA and R programs. Comput

Stat Data Anal 2006;50:3464–85.

14. de Bruijn B, Cranney A, O’Donnell S, Martin JD, Forster AJ.

Identifying wrist fracture patients with high accuracy by auto-

matic categorization of X-ray reports. J Am Med Inform Assoc

2006;13:696–98.

15. Jurek AM, Greenland S, Maldonado G, Church TR. Proper inter-

pretation of non-differential misclassification effects: expecta-

tions vs observations. Int J Epidemiol 2005;34:680–87.

16. Steyerberg EW. Evaluation of Performance. Clinical Prediction

Models. New York, NY: Springer, 2010.

17. Benchimol EI, Manuel DG, To T, Griffiths AM, Rabeneck L,

Guttmann A. Development and use of reporting guidelines for

assessing the quality of validation studies of health administrative

data. J Clin Epidemiol 2011;64:821–29.

18. Lash TL, Fox MP, Fink AK. Probabilistic Bias Analysis. Applying

Quantitative Bias Analysis to Epidemiologic Data. London:

Springer, 2010.

614 International Journal of Epidemiology, 2018, Vol. 47, No. 2

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article/47/2/605/4745802 by guest on 09 April 2024



Appendix A Quantitative bias analysis
using sensitivity and specificity of surrogate
indicator for true disease status.

Appendix B International Classification of
Diseases (ICD), 10th revision codes used to
identify conditions

Severe renal failure

I12.0: Hypertensive chronic kidney disease, stage 5

I13.1: Hypertensive heart and chronic kidney dis-

ease without heart failure

N18.X: Chronic kidney disease

N19.X: Unspecified kidney failure

N25.0: Renal osteodystrophy

Z49.0– Z49.2: Preparatory care for renal dialysis

Z94.0: Kidney transplant status

Z99.2: Dependence on renal dialysis

K76.7: Hepatorenal syndrome

D59.3: Haemolytic-uraemic syndrome

R39.2: Extra-renal uraemia

O08.4: Renal failure following ectopic pregnancy

N99.0: Post-procedural kidney failure

N17.X: Acute kidney failure

N14.X: Acute tubular necrosis from toxins

Colles’ fracture

S52.50: Colles’ fracture, closed

S52.58: Other fracture of lower end of radius, closed

S52.59: Unspecified fracture of lower end of radius,

closed

S52.60: Fracture of lower end of both ulna and

radius, closed

1. Code-disease contingency table

Disease

þ –

Code þ a b

– c d

Sensitivity (of disease code for true disease status)¼ a/(aþ c).

Specificity (of disease code for true disease status)¼ d/(bþ d).

2. Covariable-disease code contingency table

Disease code

þ –

Covariable þ A B

– C D

3. Cell values in covariable-disease contingency table cor-

rected for misclassification bias (given observed values in

covariable-disease code contingency table in Section 2)

a (corrected) [A-(AþC)*(1-specificity))/(sensitivity-

(1-specificity)]

b (corrected) [B-(BþD)*(1-specificity))/(sensitivity-

(1-specificity)]

c (corrected) (AþC)-a(corrected)

d (corrected) (BþD)-b(corrected)

Corrected disease

prevalence

[a(corrected)þ c(corrected)]/

[a(corrected)þb(corrected)þ
c(corrected)þd(corrected)]

Corrected odds

ratio

a(corrected)*d(corrected)/b(corrected)*

c(corrected)
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Severe renal failure cohort Measurement population Analysis population Overall

n¼49926 n¼50074 n¼100000

Severe renal failure present 3613 (7.2%) 3748 (7.5%) 7361 (7.4%)

Mean age (SD) 54.8 6 19.9 54.8 6 19.9 54.8 6 19.9

Female 28934 (58.0%) 28834 (57.6%) 57768 (57.8%)

Coded with possible causes of renal failure 1126 (2.3%) 1190 (2.4%) 2316 (2.3%)

Coded with manifestations of renal failure 1082 (2.2%) 1143 (2.3%) 2225 (2.2%)

Dialysis-related diagnoses 342 (0.7%) 352 (0.7%) 694 (0.7%)

Patient admitted emergently 30260 (60.6%) 30265 (60.4%) 60525 (60.5%)

Patient admitted from emergency 19271 (38.6%) 19437 (38.8%) 38708 (38.7%)

Patient came in by ambulance 12075 (24.2%) 12200 (24.4%) 24275 (24.3%)

Patient admitted to surgical service 12061 (24.2%) 12005 (24.0%) 24066 (24.1%)

Patient had operation during admission 7816 (15.7%) 7773 (15.5%) 15589 (15.6%)

Patient in ICU during admission 2274 (4.6%) 2297 (4.6%) 4571 (4.6%)

Patient had dialysis-related procedure 2913 (5.8%) 2925 (5.8%) 5838 (5.8%)

Patient died in hospital 2063 (4.1%) 2100 (4.2%) 4163 (4.2%)

Median length of hospital stay (IQR) 3.0 (2.0–7.0) 3.0 (2.0–7.0) 3.0 (2.0–7.0)

Colles’ fracture cohort Measurement population Analysis population Overall

n¼5553 n¼5680 n¼11233

Colles’ fracture present 2029 (36.5%) 2102 (37.0%) 4131 (36.8%)

Mean age (SD) 67.2 6 12.9 67.4 6 12.8 67.3 6 12.8

Patient aged>65 2770 (49.9%) 2866 (50.5%) 5636 (50.2%)

Patient is male 1929 (34.7%) 1995 (35.1%) 3924 (34.9%)

Visit year <2010 2499 (45.0%) 2549 (44.9%) 5048 (44.9%)

�2010 3054 (55.0%) 3131 (55.1%) 6185 (55.1%)

CTAS score 1–2 907 (16.3%) 915 (16.1%) 1822 (16.2%)

3þ 4646 (83.7%) 4765 (83.9%) 9411 (83.8%)

Colles’ fracture-related procedure coded 733 (13.2%) 752 (13.2%) 1485 (13.2%)

Discharged home 4741 (85.4%) 4803 (84.6%) 9544 (85.0%)

Charlson score>0 >0 477 (8.6%) 459 (8.1%) 936 (8.3%)

Appendix C Description of patient cohorts in the measurement and the analysis patient groups
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