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Abstract

Causal inference requires theory and prior knowledge to structure analyses, and is not

usually thought of as an arena for the application of prediction modelling. However,

contemporary causal inference methods, premised on counterfactual or potential out-

comes approaches, often include processing steps before the final estimation step.

The purposes of this paper are: (i) to overview the recent emergence of prediction under-

pinning steps in contemporary causal inference methods as a useful perspective on

contemporary causal inference methods, and (ii) explore the role of machine learning (as

one approach to ‘best prediction’) in causal inference. Causal inference methods covered

include propensity scores, inverse probability of treatment weights (IPTWs), G computa-

tion and targeted maximum likelihood estimation (TMLE). Machine learning has been

used more for propensity scores and TMLE, and there is potential for increased use in G

computation and estimation of IPTWs.

Key words: Machine learning, causal inference, prediction, potential outcomes

Key Messages

• Contemporary causal inference methods in epidemiology often include pre-final estimation steps predicting propen-

sity scores or potential outcomes.

• Machine learning algorithms aim to ‘learn’ or predict outputs (e.g. exposed/unexposed, outcomes) from inputs (cova-

riates) in a new sample, having been first trained on a training dataset that contains both inputs and labelled outputs.

• Machine learning is starting to be used in pre-final steps of contemporary causal inference methods and there is po-

tential for increased use.
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Introduction

In epidemiology, prediction and causal modelling are usu-

ally considered as different worlds.

Prediction modelling uses information ‘within-the-data’

to create a model that most accurately predicts something,

a characteristic or outcome of interest. One common and

clinically useful class of prediction modelling identifies

who is likely to get maximal absolute treatment benefit

from therapies (proven elsewhere to be effective with—

say—randomized controlled trials). For example, who will

likely gain the most from statin treatment to prevent car-

diovascular disease (CVD).1 The variables that perform

well in that prediction may not be causal for disease, e.g.

high-density lipoproteins (HDLs) strongly predict CVD

risk, but HDL itself is not causal of CVD as shown in

Mendelian randomization studies.2

Causal modelling rigorously tests hypotheses generated

from theory and content knowledge external to the data

with explicit attention to key assumptions such as consis-

tency and exchangeability (i.e. no confounding). The use of

directed acyclic graphs (DAGs; this and some other specific

terms in the text are defined in the glossary in Table 1)5,6 is

current best practice for bringing prior knowledge, theory

and a formally defined data structure to any analysis seek-

ing to identify causal effects. In this paradigm, only those

variables that are confounders (or on back door paths)

should be adjusted for in commonly used analytical meth-

ods ranging from stratification through to multivariable re-

gression modelling. It is incorrect to adjust for variables

that are not on back door paths, and in particular it is in-

correct to adjust for intermediaries (those variables on the

causal pathway from exposure to outcome, or front door

Table 1. A glossary of terms and concepts used in this paper

Term Definition and/or concept

Back door path A non-causal path in a DAG from exposure to outcome that has an arrow coming into the exposure. If

there is no collider on the back door path, it is open and requires blocking by conditioning for one of

more variables on the path.

Collider A variable or node on a path in a DAG from exposure to outcome that has both arrows pointing into it.

Confounder A. Has three properties:

1. Must be associated with the exposure in the source population

2. Must be an extraneous risk factor for the disease:

- Need not be actual cause of disease, but must be surrogate of cause

- Must be risk factor among non-exposed (in the source population)

3. Must not be affected by (common cause of) the exposure or (common cause of) disease. In particu-

lar, it cannot be an intermediary.

B. A variable on an open back door path in a DAG.

Directed acyclic graph (DAG) A causal diagram where all arrows are directed and represent causal effects on one variable on another,

and is acyclic in that one cannot return to where one started via directed arrows.

Ensemble learning A technique using multiple algorithms (and could include traditional regression methods) that combines

them to improve estimates and predictive performance. Types of ensemble models include random for-

ests, bagging, boosting and stacking (or super learner).

Front door path A causal path in a DAG from exposure to outcome that has an arrow going out of exposure, and arrow

into the outcome, and no colliders.

G computation Is a ‘maximum likelihood substitution estimator of the G-formula. . .. [and is] equivalent to using the mar-

ginal distribution of the covariates as the standard in standardization, a familiar class of procedures in

epidemiology’. (Snowden et al.3)

Inverse probability of treatment

weights (IPTWs)

The inverse of the propensity score (PS). IPTWs are commonly used to estimate parameters defined by

marginal structural models for a time-varying exposure or treatment as well as in cross-sectional

studies.

Machine learning Algorithms that aim to ‘learn’ or predict outputs (exposed/unexposed, treated/untreated) from inputs

(covariates) in a new sample, having been first trained on a training dataset that contains both inputs

and labelled outputs.

Propensity score The probability of being exposed or treated, using an equation based on confounders.

Targeted maximum likelihood

estimation (TMLE)

‘Is a doubly robust maximum-likelihood-based approach that includes a secondary “targeting” step that

optimizes the bias-variance trade-off for the target parameter’. (Schuler and Rose4) For the average

treatment effect (ATE), it involves both outcome modelling (akin to G computation) and exposure

modelling (akin to PS, but more to optimize the bias variance trade-off – hence ‘targeted’).
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paths) when estimating the effect, and it is incorrect to ad-

just for colliders (i.e. those variables inducing a selection

bias if adjusted for).

Causal inference methods and best-prediction modelling

have become less distinct in recent years due to the devel-

opment of causal inference methods (often premised on a

potential outcomes approach7 or structural causal mod-

els8) that harness predictive estimation in pre-final estima-

tion steps. For example, the prediction of inverse

probability of treatment weights (IPTWs) as a step before

their use in a weighted estimator. Rapid developments in

computer science, especially machine learning algorithms

that allow for selection of main terms, interactions and

non-linear relationships to better fit the observed data, ac-

centuate the potential for sophisticated and automated pre-

dictive estimation steps in analytical strategies that aim to

make epidemiological causal inference.9–11

The purpose of this paper is not to review in depth ma-

chine learning or causal inference. (Regarding machine

learning in epidemiology, the reader is instead directed to:

accompanying papers in this issue of IJE and other reviews

of machine learning from an epidemiological

perspective.10,12) Rather, the purposes of this paper are: (i)

to overview the recent emergence of prediction underpin-

ning steps in contemporary causal inference methods as a

useful perspective on contemporary causal inference meth-

ods, and (ii) explore the role of machine learning (as one

approach to ‘best prediction’) in causal inference.

Unless stated otherwise, we focus on the average treat-

ment effect (ATE) in the population as a whole, or an effect

that would be given by comparing the whole population

had they been exposed to the whole population had they

been unexposed. Table 2 provides supporting information

to the sections below.

Predicting exposures: propensity scores

Propensity scores (PS) reduce information on multiple con-

founding covariates into one value: the propensity to be ex-

posed or treated,13 i.e. Pr(X¼ 1jZ) for a binary exposure X

and a vector of covariates Z. The generation of a PS is a

pre-effect estimation step, with the propensity scores used

in the final outcome model by way of matching exposed

and unexposed subjects with similar PS or using the PS as

inverse weights. Consistent estimation of the PS strength-

ens internal validity of subsequent outcome modelling, by

adjusting for confounding. Within the confines of selecting

the Z covariates to model the PS (i.e. they are confounders;

and they are not exogenous predictors of just X), the best

specification of covariates Z and model specification is

flexible. Put another way, we are agnostic to what trans-

formations (e.g. log, cubic splines, etc.) and interactions of

(possibly transformed) covariates Z are used, and how

these Z covariates are used to predict X (e.g. regression,

decision trees, classification algorithms). We might just

want the most accurate prediction or PS that also optimally

balances confounders between the exposed and unexposed.

To do so, it may be more efficient to use machine learning

algorithms, rather than manual, time consuming user-

specification with trial and error of various algorithms.

Indeed, many of the early epidemiological applications

of machine learning in causal inference have been to calcu-

late PS. The earliest example (according to14) is a simula-

tion study by Setoguchi et al.15 comparing recursive

partitioning and neural networks with logistic regression.

The two machine learning methods arguably out-

performed logistic regression, but the gains (reductions in

bias) were small and sometimes at the expense of less preci-

sion (i.e. wider standard errors) of the final X�Y associa-

tion determined in the outcome regression using PS

matching. Examples of machine learning generated PS

have followed since with some gains in confounding con-

trol.14,16–19 Recently, machine and ensemble learning

methods have been applied to not only best prediction of

exposure, but optimal selection and modelling of covari-

ates in the propensity score algorithm based on optimizing

the balance of confounding covariates between the ex-

posed and unexposed.16,20

Predicting weights for exposures: inverse
probability of treatment weights (IPTWs)

The PS (as stated above) can also be used to weight analyses

with 1/PS for the exposed (or treated), and 1/(1-PS) for the

unexposed (or untreated). In a simple cohort study with no

repeated measures of exposure and covariates, this inverse

weighting by PS will adjust for baseline confounding and

may provide the same benefit as matching, regressing or

stratifying on the PS. However, IPTWs can also be used with

repeated measures data where variables may be intermediar-

ies for the association of exposure at one point in time with

the outcome, but also confounders of the association for the

(time varying) exposure at future points in time with the out-

come. IPTWs are commonly used to estimate parameters

defined by marginal structural models.21 As with PS, (user-

specified) logistic regression is the most common method to

calculate IPTWs, but also as with PS the IPTWs have no

causal interpretation themselves—making them natural

quantities for estimation with machine learning.

For example, Bentley et al.22 aimed to estimate the im-

pact of cumulative exposure to social housing, and transi-

tions in and out of social housing, on mental health. They

used ensemble learning (combining three types of ‘base

learners’: logistic regression with cubic b-splines; a gradient
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boosting machine; and a conditional inference forest).

Compared with standard logistic regression estimation of

IPTWs, the ensemble learner’s weights were superior in two

respects: a narrower distribution of IPTWs; and better bal-

ance of covariates between exposed and unexposed (al-

though it was still not ideal). Exposure-outcome estimates

using ensemble learning IPTWs were notably different to us-

ing standard logistic regression IPTWs, albeit with overlap-

ping confidence intervals. We are aware of only a few other

examples of machine learning to generate IPTWs in mar-

ginal structural models published in epidemiological jour-

nals (e.g.23); this seems a fertile area to incorporate machine

learning into epidemiological causal inference.

Predicting outcomes: G computation and
other methods

Following the adage that potential outcomes are the ulti-

mate missing data problem24, epidemiologists are increas-

ingly explicitly estimating individual outcome status had

they been counterfactually (un)exposed3,25 or experienced

differing levels of mediating risk factors.26–28 This estima-

tion, or prediction, of potential outcomes (and potential

mediators) is, again, a pre-final effect estimation step. We

are not seeking to interpret coefficients or other parameters

used in these prediction algorithms. Rather, we are predict-

ing outcome values for all individuals, then using this ex-

panded dataset to directly estimate causal effects of interest,

be that the marginal ATE or effect sizes within strata of the

data (e.g. by sex). For example, we may estimate the average

of every individual’s difference in outcome under exposure

and unexposed (at least one being counterfactual).3,25,29

Given that, for this simple example at least, we could use a

standard regression model to estimate an effect size for the

exposure�outcome association to undertake prediction of

potential outcomes, why bother? First, it decouples the esti-

mation of the causal effects per se from the estimation of all

other parameters required3—a conceptual advantage.

Second, in the presence of heterogeneity of the exposure

�outcome association across levels of covariates (i.e. effect

modification), one can both estimate the marginal average

treatment effect for the population averaged across this het-

erogeneity, as well as conditional within subsets of the pop-

ulation. Third, with predicted outcomes it is simple to

visualize the outcome risks or rates by exposure in graphs,

and to calculate effect measures on both absolute and rela-

tive scales—enabling, in our experience at least, simpler

reporting for readers and end-users (e.g.27).

Again, we are predicting potential outcomes as a pre-

final estimation step, and the final step may be as simple as

averaging the individual differences in potential outcomes

across individuals. An early example of using machine

learning to predict potential outcomes found that it outper-

formed standard methods when the outcome model was

non-linear and non-additive (i.e. the true predictive equation

had quadratic terms and many interactions of predictors).30

The above is a form of G computation, which when the un-

derlying functional form is simple may be better estimated

with standard regression modelling (i.e. parametric G

computation31). It can also be used for research questions

that have a longitudinal nature, such as ‘what is the effect of

an intervention programme that increases tobacco cessation

in middle age on later development of cardiovascular dis-

ease?’. For this question, we want to allow for the fact that

in the absence of the intervention smokers are still likely to

quit at older ages for ‘business as usual’ (BAU) reasons.

Such estimators require sequential estimation steps, often

using parametric regressions, and extensive calibration of

the prediction equations in BAU before estimating the coun-

terfactual intervention.31 As ‘big data’ access improves, such

approaches to answer policy-relevant questions are likely to

increase. Machine learning to undertake these predictions at

each time-step, within the confines of only using covariates

that are on back door paths at any point in time (i.e. not

intermediaries or colliders), seems a fertile opportunity to

exploit machine learning. Westreich et al. (2015)25 state

that these types of estimators ‘can be made more robust to

model misspecification through machine-learning

techniques’.14 However, examples to date are sparse

(e.g.30), although we anticipate this to be a growth area for

epidemiology and related fields.

Blended exposure and outcome modelling:
doubly robust, targeted maximum likelihood
estimation methods

Doubly robust methods32 for the ATE have an exposure

model (e.g. PS) in addition to the outcome regression

model that includes covariate adjustment. The beauty of

doubly robust methods, and from where their name

derives, is that only one of the exposure model or the out-

come model needs to be correctly specified (or more

broadly, estimated consistently) for the final parameter

estimators to be unbiased. If both are estimated consis-

tently,32 the estimator will also be asymptotically efficient.

The procedure is increasingly used. For example, in the pa-

per described above by Bentley et al. (2018)22 that used en-

semble learning to construct IPTWs in a study of the

association of social housing with mental health, they also

adjusted ‘again’ for some of the covariates used in the

IPTW calculation in the outcome regression.

The most common use of the double robust method

with machine learning prediction for causal inference is in

the targeted maximum likelihood estimator (TMLE).4,33
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For a simple ATE, it involves outcome prediction (just as

in the G computation estimator) and additionally includes

an updating or targeting step that incorporates information

from the PS. This updating step optimizes the bias-variance

trade-off for the parameter of interest rather the overall

outcome regression distribution. Machine learning can be

used for both the outcome and exposure modelling.

Tutorials aimed at epidemiologists have been published for

TMLEs using machine learning with both continuous and

binary outcomes, and include R code for TMLE implemen-

tation as well as G computation and propensity score esti-

mators.4,34 TMLEs possess many favourable statistical

properties beyond their double robustness, including hav-

ing a loss-based principle for dealing with multiple

solutions.33

Thus, the potential gains from double robust machine

learning are 2-fold: we not only have two opportunities to

obtain unbiased estimation of our final estimator, but we

are more likely to obtain at least one consistently estimated

outcome or exposure regression by considering machine

learning (and specifically ensembles).35 Imagine the sce-

nario where a simple main-terms regression is misspecified

for the outcome and exposure regressions. In this case, if

we included that main-terms regression in an ensemble of

other learners that are better able to search the covariate

space, we have protected our final estimates from this bias

as the ensemble assigns lower or zero weight to the misspe-

cified regression(s). Simulation studies find that under a

range of circumstances, including with large, collinear co-

variate sets, double robust analyses may be more accurate

(less systematic error or bias) than either outcome or expo-

sure methods used in isolation.32,36 Conversely, it is true

that machine learning may not always be an improvement

over traditional approaches used to estimate the outcome

and exposure regressions. For example, if the underlying

functional form is well estimated by a main-terms regres-

sion, a double robust machine learning estimator that con-

siders many learners (including parametric regression) will

still be unbiased, but may have slightly larger confidence

intervals (see Schuler and Rose4 for examples).

What else and what next?

The recruitment of machine learning into causal inference

methods is largely about achieving exchangeability—or ac-

counting for confounding—be that through propensity

scores, weighting, or potential outcome prediction.

Machine learning has been (and is likely to be increasingly)

used to identify effect heterogeneity,35 with recent method-

ological work (for example) demonstrating how random

forests combined with the potential outcomes approach

can robustly detect and estimate heterogeneity of treatment

effects across multiple covariates considered simulta-

neously.37 We anticipate increasing cross-over from com-

puter science—including machine learning methods—into

epidemiology for methods to address measurement

error and missing data. Methods such as regression

calibration,38 quantitative bias analysis39 and multiple

over-imputation40 exist, albeit arguably under-utilized in

epidemiology. Machine learning may offer some assistance

for mismeasurement of confounders, if only by being able

to include more variables in prediction modelling steps;

even if variables are mismeasured or unmeasured, if they

are correlated then including more of them may help block

back door paths by correlation.41

Conclusion

Advances in causal inference methods and the emergence

of big, complex, longitudinal data as well as data science,

will profit from incorporating methods such as machine

learning into epidemiological causal inference. The differ-

ent worlds of prediction and causal modelling inference

have blurred. As with any new method, machine learning

is no panacea—and may not always gain as much in accu-

racy and precision for the resources invested as epidemiol-

ogists might expect, but that ‘cost’ will decrease as the

methods become more familiar. We argue that thinking

about the pre-final estimation steps in causal inference—

prediction that can be aided by machine learning—offers a

useful conceptual approach to deploy potential outcomes

thinking in epidemiology.
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