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Abstract

All statistical estimates from data have uncertainty due to sampling variability. A stan-

dard error is one measure of uncertainty of a sample estimate (such as the mean of a set

of observations or a regression coefficient). Standard errors are usually calculated based

on assumptions underpinning the statistical model used in the estimation. However,

there are situations in which some assumptions of the statistical model including the var-

iance or covariance of the outcome across observations are violated, which leads to

biased standard errors. One simple remedy is to use robust standard errors, which are

robust to violations of certain assumptions of the statistical model. Robust standard

errors are frequently used in clinical papers (e.g. to account for clustering of observa-

tions), although the underlying concepts behind robust standard errors and when to use

them are often not well understood. In this paper, we demystify robust standard errors

using several worked examples in simple situations in which model assumptions involv-

ing the variance or covariance of the outcome are misspecified. These are: (i) when the

observed variances are different, (ii) when the variance specified in the model is wrong

and (iii) when the assumption of independence is wrong.
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Introduction

All statistical analyses are based on a statistical model of-

ten involving one or more quantities in the population,

known as parameters.1 The model may not always be ex-

plicit, but it is always present. As a simple example, most

statistical tests (e.g. the independent t-test) are based on
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models that assume independent and identically distrib-

uted observations. In practice, parameter estimates

(e.g. mean differences) will vary from one sample to the

next. The variation in estimates across multiple samples

is quantified by the standard error, which is simply the

standard deviation of the estimates in hypothetical

repeated samples of the population.2 Standard errors can

be derived using various methods. The most common ap-

proach is based on the underlying model—i.e. to assume

that sampling variation in the parameter estimates is fully

captured by the statistical model. However, when the

assumptions of independence and identically distributed

observations are violated, the model-based standard

errors can be incorrect because they are calculated based

on the assumptions intrinsic to the model being used.

One simple remedy is to use robust standard errors,

which are robust to violations of the statistical-model

assumptions involving the variance or covariance of the

outcome. The aim of this paper was to explain robust

standard errors and their applications at an introductory

level for epidemiologists.

Robust standard errors

Robust standard errors, also known as Huber–White stan-

dard errors,3,4 essentially adjust the model-based standard

errors using the empirical variability of the model residuals

that are the difference between observed outcome and the

outcome predicted by the statistical model. For example,

in estimating the mean difference between two groups, the

residuals are simply the difference between the observed

outcome and the mean in each group.

The robust standard error is sometimes called the sand-

wich standard error due to its mathematical formulation:

the ‘bread’ of the sandwich is the variance based on the sta-

tistical model and the ‘meat’ is the empirical variance

based on the residuals. By adjusting the model-based stan-

dard errors, the robust standard errors can sometimes give

a better assessment of the sample-to-sample variability of

the estimates when the statistical-model assumptions are

violated. We will discuss their use in three situations in

which (i) the assumption of equal variances is wrong, (ii)

the assumptions about the variance function is wrong and

(iii) the assumption of the independence of the outcomes is

wrong. Stata and R code for all analyses are presented in

Supplementary Appendix 1, available as Supplementary

data at IJE online.

Robust standard errors for
heteroscedasticity

Robust standard errors can be used when the assumption

of uniformity of variance, also known as homoscedasticity,

in a linear-regression model is violated. This situation,

known as heteroscedasticity, implies that the variance of

the outcome is not constant across observations. Under the

assumption of independence of observations, one remedy

is using a robust standard error that is based on the square

of the individual residuals.4 However, this simple robust

standard error underestimates the true variance in small

samples or with leveraged data (which occurs when there

are extreme values for the predictor variables). A modified

conservative robust standard error that adjusts for the

impact of small samples or leveraged data, known as

HC3 (homoscedasticity consistent), is recommended.5

Supplementary Appendix 2A, available as Supplementary

data at IJE online, provides further details for various ro-

bust standard errors for heteroscedasticity in the simplest

case of linear regression equivalent to an independent

t-test.

To illustrate a robust standard error for heteroscedastic-

ity, we use the data on child asthma to compare the mean

dead space (ml) between asthmatics and non-asthmatics.6

The dead spaces (ml) in people with asthma (n1¼ 8) were

43, 44, 45, 56, 56, 57, 58 and 64, and in people without

asthma (n0¼ 7) were 31, 78, 79, 88, 92, 101 and 112.

The mean dead space in asthmatic and non-asthmatic

groups were 52.9 and 83.0 ml, respectively, and the mean

Key Messages

• The standard error of an estimate can be derived using various methods. The most common approach is based on

assumptions underpinning the statistical model used in the estimation.

• There are situations in which assumptions of the statistical model are violated leading to biased standard errors. One

simple remedy is to use robust standard errors.

• Robust standard errors can be used when certain model assumptions involving the variance or covariance of the

observations are misspecified. Common examples include unequal variances across observations, using a Poisson

distribution instead of a binomial distribution, and clustered data.
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difference was –30.1 ml. The standard deviations of the

two groups were S1¼ 7.8 ml and S0¼ 25.9 ml, although S0/

S1 was >2, suggesting unequal variances7 (see Figure 1).

The model-based standard error for the difference in mean

dead space between asthmatics and non-asthmatics (based

on Sp) was 9.6 and the two-sample t-test assuming equal

variances gives P¼ 0.008 and 95% confidence interval

(CI) of (–9.5, –50.8). The robust standard error HC3 was

11.0, which gives P¼ 0.017 and 95% CI of (–6.4, –53.8),

suggesting that the P-value using a two-sample t-test as-

suming equal variances is too small and the resulting 95%

CI is too narrow. In fact, the model-based standard error

was 13% smaller than the robust standard error. It is im-

portant to note that the main concern in this example was

heteroscedasticity and a robust standard error was used to

handle this problem but not the violation-of-normality as-

sumption (the P-value of the Shapiro–Wilk normality test

was 0.54).

Robust standard errors for an incorrect
variance function

Robust standard errors can also be used when the variance

function is misspecified. Usually with a binary outcome,

one would use logistic regression. However, this results in

an odds ratio and one may wish to estimate a risk ratio, as

its interpretation is easier. One effect-size measure should

not be interpreted as if it is another one and, in particular,

the odds ratio is not generally a valid estimate of the risk

ratio. The natural model for estimating the risk ratio is the

log-binomial regression model.

This is given by log(p)¼ b0þ b1X1þ . . ..þ bpXp, where

the predictor variables are X1 to Xp with coefficients b1 to

bp. Whereas the left-hand side of the log-binomial regres-

sion model is the logarithm of risk (p), which takes a nega-

tive value, the right-hand side of the model is the linear

predictor, which is unbounded. When the linear predictor

is large (which can occur with many predictors), it can

yield a risk that is greater than one. Therefore, the log-

binomial regression suffers from a structural problem that

can result in non-convergence of the model and failure to

estimate the adjusted risk ratio.8–10

One remedy is using the log-Poisson regression model

whose left-hand side is the logarithm of mean and un-

bounded.11 The beta-coefficient from the log-Poisson regres-

sion model is a valid estimate of the adjusted log-risk ratio

due to the resemblance of the functional form of log-

binomial and log-Poisson regression. However, the standard

error of the estimate will be overestimated. To see why, note

that, whereas the variance of a binomial outcome is p(1 –p),

the variance is equal to the mean, i.e. p in the Poisson distri-

bution. The robust standard error can be used to correct the

standard error obtained from the Poisson model. In sum-

mary, to estimate the adjusted risk ratio, we use a log-

Poisson regression model instead of a log-binomial regres-

sion model along with robust standard error.11

We illustrate the application of robust standard error

using an unadjusted (crude) risk ratio for the study of the

association between printers’ vs farmers’ wives and breast-

feeding for <3 vs >3 months.6 The data have been dis-

played in the BMJ statistics at square one.7 In this study,

the wives of printers were considered as the exposed and

the wives of farmers as the unexposed. The outcome was

breastfeeding for <3 months (the reference level was

breastfeeding for >3 months). There were 50 printers’

wives, of whom 36 breastfed for <3 months. There were

55 farmers’ wives, of whom 30 breastfed for <3 months.

The risk ratio for breastfeeding for <3 months is 36=50
30=55 ¼

1:32 for printers’ wives relative to farmers’ wives. A log-

binomial model gives an estimated risk ratio of 1.32 (95%

CI: 0.98, 1.78; P¼ 0.07). The model-based standard error,

an approximate large-sample estimate of the standard er-

ror of the logarithm of risk ratio, was 0.15.

Note that a log-binomial model converges in this exam-

ple, as there is just one binary predictor in the model. A

log-Poisson regression model yields a similar risk ratio but

wider CI and larger P-value (1.32 with 95% CI of 0.81,

2.14; P¼ 0.26). In fact, the reported model-based standard

error for the log-risk ratio (based on the Poisson distribu-

tion) was increased to be 0.247. We can use an approxi-

mate robust standard error taking into account biases due

to small samples and leveraged data known as HC3 to cor-

rect the overestimation.

Figure 1 The scatter plot of dead space (ml), separately for people with

asthma and people without asthma
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Fitting a log-Poisson regression model with robust stan-

dard error HC3 gives the estimate of 1.32 (95% CI: 0.98,

1.78; P¼ 0.07) for the risk ratio. The robust standard error

estimate was 0.152, suggesting a 62% overestimation for

the model-based standard error. See Supplementary

Appendix 2B, available as Supplementary data at IJE on-

line, for the formulae for HC3 and several robust standard

errors for the log-Poisson regression model with just one

binary predictor.

Robust standard errors for clustering

The so-called cluster-robust standard error is a generaliza-

tion of the robust standard error for clustered data,

e.g. cluster-randomized-trial data in which treatments are

randomly assigned to clusters of participants (e.g. hospi-

tals)12,13 or repeated outcome measurements in longitudi-

nal data in which each unit is a cluster of observations over

time.14 It does not make any assumptions about indepen-

dence within a cluster but does assume between-cluster

independence and so is appropriate for the analysis of clus-

tered data. The cluster-robust standard error is based on

the cluster-level residuals, which are simply the linear com-

bination of individual residuals in each cluster and use the

empirical variability of the cluster-level residuals to adjust

the biased model-based standard error ignoring cluster-

ing.15 Using the latter will lead to CIs that are too narrow

and P-values that are too small.

We illustrate cluster-robust standard errors using the

following cluster-randomized-trial example in which 10

practices were randomly assigned to 2 treatment groups

(patient-centred care and normal care) and body mass

index (BMI) at Year 1 was assessed as the outcome

(Table 1).6

A measure of clustering is the intra-cluster correlation16

coefficient, which is the proportion of the total variance

explained by cluster membership, i.e. the between-cluster

variance divided by the sum of the between-cluster vari-

ance and the within-cluster variance. Using a one-way

analysis of variance17 of BMI over practice, we can verify

that the intra-cluster correlation-coefficient estimate is

0.87, indicating high levels of clustering by practice.

The mean BMI (kg/m2) in treatment Groups 1 and 0

were 28.81 and 28.39 kg/m2, respectively. A two-sample t-

test (assuming equal variances) that ignores clustering by

practice gives a mean difference estimate of 0.42 kg/m2

with a 95% CI of (–3.58, 4.42) and P¼ 0.83 based on the

ordinary standard error estimate of 1.90.

The cluster-robust standard error with a small-sample

adjustment for both cluster and individual (Supplementary

Appendix 2C, available as Supplementary data at IJE on-

line)18 was 2.68, which gives 95% CI of (–5.64, 6.48)

and P¼ 0.88. Compared with a cluster-robust standard

error, the model-based standard error was under-

estimated by 29%.

Discussion

Robust standard errors can be used to adjust model-based

standard errors to allow for certain violations of the model

assumptions. We have illustrated a few examples of using

robust standard errors in simple cases in which there is one

binary predictor, although they can be used in regression

models with many covariates, as well as models not consid-

ered here such as logistic regression or Cox regression.

Robust standard errors can also be used when the mecha-

nism of data generation does not follow a theoretical distri-

bution, e.g. if there are sampling weights or inverse

probability-of-treatment weights.14,19,20

Some caution is warranted when using robust standard

errors. First, using the robust standard error when the

model assumption is not violated will lead to less precise

estimates and wider confidence intervals than when using

the valid-model-based standard error. Second, robust

standard errors perform poorly in small sample sizes

(where the sample size refers to the number of clusters for

cluster-robust standard errors) than the model-based stan-

dard errors, especially with non-linear models such as

Table 1 A data example of a cluster randomized trial

Subject BMI (kg/m2) Treatment Practice

1 26.2 1 1

2 27.1 1 1

3 25.0 1 2

4 28.3 1 2

5 30.5 1 3

6 28.8 1 4

7 31.0 1 4

8 32.1 1 4

9 28.2 1 5

10 30.9 1 5

11 37.0 0 6

12 38.1 0 6

13 22.1 0 7

14 23.0 0 7

15 23.2 0 8

16 25.7 0 8

17 27.8 0 9

18 28.0 0 9

19 28.0 0 10

20 31.0 0 10
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log-Poisson and logistic regression, as they are then only

approximations. Third, applying robust standard errors is

not the only method to take into account violations

of statistical-model assumptions. One can derive valid

standard errors using more elaborate models that account

for heteroscedasticity or clustering. For example, one can

use inverse-variance (precision) weighting to accommodate

unequal variances or random-effect models to account for

clustering. Generalized estimating equations (GEEs)21 use

not only a working correlation structure to account for

clustering, but also a cluster-robust standard error to ad-

just for errors in the working correlation structure used. In

clustered data, GEE and random-effect models are more ef-

ficient than ordinary regression models with robust stan-

dard errors (such as illustrated above) if the model

correlation assumption is correct. An alternative to robust

and cluster-robust standard errors is the bootstrap, which

may be preferred in small sample sizes.6,22 Forth, it is im-

portant to note that, depending on the method of adjust-

ment for small samples and leveraged data, the same

robust variance estimators in the same data set may not re-

turn the same results in different statistical software pro-

grams (see Supplementary Appendices 1 and 2, available as

Supplementary data at IJE online). Finally, we warn that

using a robust standard error does not make an analysis

‘robust’ to all modelling assumptions.6 When a regression

model is used to estimate marginally adjusted treatment

effects,23 robust standard errors can improve variance

estimation over model-based approaches.24,25 However,

robust standard errors are less useful when estimating con-

ditionally adjusted effects with a seriously misspecified re-

gression model, where one would obtain accurate standard

errors to a mostly meaningless parameter.26 Robust stan-

dard errors (also referred to as sandwich or Huber–White

standard errors) are commonly encountered in modern

epidemiologic analyses. However, their precise form,

strengths and limitations are not well understood by the

broader epidemiologic community. We have provided an

overview of what robust standard errors are and how they

can be used to overcome problems encountered with more

traditional model-based approaches. Researchers should

carefully consider when robust standard errors can be use-

ful and when they should be avoided. Simulation studies

are still needed to compare the different robust standard

errors presented in Supplementary Appendix 2, available

as Supplementary data at IJE online, considering several

factors such as sample size and variance ratio, but they are

beyond the scope of this educational paper.

Supplementary data

Supplementary data are available at IJE online.
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