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Abstract

Corticotropin releasing factor (CRF) is implicated in a variety of stress-related disorders such as de-

pression and anxiety, and blocking CRF receptors is a putative strategy for treating such disorders. Using

a well-studied animal model of panic, we tested the efficacy of JNJ19567470/CRA5626, a selective, non-

peptidergic CRF type 1 receptor (CRF1) antagonist (3, 10 and 40 mg/kg intraperitoneal injection), in pre-

venting the sodium lactate (NaLac)-induced panic-like behavioural and cardiovascular responses. Adult

male rats with chronic reduction of GABA levels (by inhibition of GABA synthesis with l-allyglycine, a

glutamic acid decarboxylase inhibitor) in the dorsomedial/perifornical hypothalamus are highly anxious

and exhibit physiological and behavioural responses to intravenous NaLac infusions similar to patients

with panic disorder. These ‘panic-prone’ rats pre-treated with vehicle injections displayed NaLac-

induced increases in autonomic responses (i.e. tachycardia and hypertensive responses), anxiety-like be-

haviour in the social interaction test, and flight-like increases in locomotor activity. However, systemically

injecting such panic-prone rats with the highest dose of CRF1 receptor antagonist prior to NaLac infusions

blocked all NaLac-induced behaviour and cardiovascular responses. These data suggest that selective

CRF1 receptor antagonists could be a novel target for developing anti-panic drugs that are as effective as

benzodiazepines in acute treatment of a panic attack without the deleterious side-effects (e.g. sedation and

cognitive impairment) associated with benzodiazepines.
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Introduction

Panic disorder is a severe anxiety disorder that is

characterized by recurrent panic attacks (APA, 1994).

One of the most consistent abnormalities in panic dis-

order is a vulnerability to displaying panic attacks

following exposure to mild interoceptive cues such as

hypertonic 0.5 M sodium lactate (NaLac) infusions

(Liebowitz et al. 1984, 1985), CO2 inhalations (Gorman

et al. 1994), and doxapram (Gutman et al. 2005).

Therefore, the initial pathology in these patients ap-

pears to be an alteration somewhere in the central

neural pathways regulating normal panic responses,

thus rendering the patients susceptible to unprovoked

panic symptoms when exposed to ordinarily mild

interoceptive stressors (Vickers & McNally, 2005).

Serotonin reuptake inhibitors are the first-line drugs

for panic disorder, but it often takes several weeks

for full response with significant drop-outs due to

side-effects (for review see Cloos & Ferreira, 2009).

Benzodiazepines are effective with rapid effects,

but side-effects such as sedation and dependence

are common (Baldwin et al. 2005; Bandelow et al.

2008; Cloos & Ferreira, 2009 ; Nutt et al. 2002).

Therefore, there is a great need for rapidly effective

anxiolytic agents without the typical benzodiazepine

side-effects.

The neuropeptide corticotrophin-releasing factor

(CRF) discovered in 1981 by Vale and colleagues

(1981), in addition to its endocrine functions, is syn-

thesized and released in other extra-hypothalamic
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brain regions (Keegan et al. 1994; Swanson &

Simmons, 1989), where it acts as a neurotransmitter/

neuromodulator to coordinate behavioural and auto-

nomic responses to stress. So far, two CRF receptor

subtypes, CRF1 and CRF2, have been identified

(Chalmers et al. 1995; Dautzenberg & Hauger, 2002;

De Souza et al. 1985; Perrin & Vale, 1999). Increasing

evidence suggests that CRF may play a critical role in

mediating some types of anxiety responses, and that

the CRF system may be a potential therapeutic target

for the treatment of anxiety disorders (Baldwin et al.

1991; Britton et al. 1982, 1985; Cole & Koob, 1988;

Dunn & Berridge, 1987; Dunn & File, 1987 ; Liang &

Lee, 1988 ; Liang et al. 1992; Swerdlow et al. 1986;

Takahashi et al. 1989). Central injections of CRF mobi-

lize ‘panic/defence’ responses (Brown et al. 1988;

Ku et al. 1998) and injections of the panic-inducing

agent doxapram activate CRF neurons (Choi et al.

2005). Consistent with these preclinical findings,

clinical evidence suggests that polymorphisms in CRF1

receptor gene may be associated with panic (Keck et al.

2008) and the CRF system may be an important

therapeutic target for panic disorder (Risbrough &

Stein, 2006).

Although several highly specific, non-peptide,

small molecule, CRF1 receptor antagonists with good

solubility, bioavailability and brain penetration have

shown anxiolytic-like effects (Gehlert et al. 2005; Keck

et al. 2001; Keller et al. 2002; Steckler et al. 2006), none

have been tested for their anti-panic effects. Therefore,

we sought to determine the anti-panic efficacy of a

selective CRF1 receptor antagonist (Steckler et al. 2006)

utilizing a well characterized animal model of NaLac-

induced panic-like response (Johnson & Shekhar,

2006 ; Johnson et al. 2008b ; Shekhar & Keim, 1997,

2000 ; Shekhar et al. 1996, 2006).

Methods and materials

Animals and housing conditions

All experiments were conducted on adult male

Sprague–Dawley rats (300–350 g), which were pur-

chased from Harlan Laboratories (USA) and were

housed individually in plastic cages under standard

environmental conditions (22 xC, 12-h light/dark

cycle, lights on 07:00 hours) for 7–10 d prior to surgi-

cal manipulation. Food and water were available

ad libitum. Animal care procedures were conducted in

accordance with NIH Guidelines for the Care and

Use of Laboratory Animals (NIH Publication no.

80–23) revised 1996 and the guidelines of the IUPUI

Institutional Animal Care and Use Committee.

Surgical procedures and osmotic minipump infusions

Prior to and during surgery, rats were anaesthetized

with a nose cone connected to an isoflurane system

(MGX Research Machine, USA). Rats were fitted with

femoral arterial catheters for measurement of mean

arterial blood pressure (MAP) and heart rate (HR) and

with venous catheters for intravenous (i.v.) infusions,

as previously described (Shekhar et al. 1996).

Cardiovascular responses (i.e. MAP and HR) were

measured by a femoral arterial line connected to a

telemetric probe which contained a pressure trans-

ducer [cat. no. C50-PXT, Data Science International

(DSI), USA]. DSI DATAQUEST software was used to

monitor and record MAP and HR. MAP and HR were

recorded continuously in freely moving conscious

rats and are expressed as a 20-min time-course. The

data reported are changes in HR and MAP from the

average of the baseline (tx5 to tx1) from each rat.

After 3 d of recovery, animals were tested for base-

line cardiovascular responses to lactate (see below).

Following baseline testing, rats were anaesthetized as

stated previously and 26-gauge T-shaped cannulae

(cat. no. 3260PG, Plastics One Inc., USA) were directed

at cardio-excitatory regions of the dorsomedial/

perifornical hypothalamus (DMH/PeF; Samuels et al.

2004) based on the following coordinates (from

bregma: 1.2 mm posterior,+2.1 mm lateral,+9.1 mm

ventral and adjusted for approaching at a 10x angle

towards the midline with the stereotaxic incisor bar

elevated 5 mm above the inter-aural line) and ce-

mented into place as described previously (Shekhar

et al. 1996). The 22-gauge side arm was then attached,

via PE-60 tubing, to an osmotic minipump [prefilled

with L-allyglycine (L-AG) solution] and sutured

into place subcutaneously at the nape of the neck

(DURECT Corporation, model no. 2002). The concen-

tration of the solutions was such that 3.5 nmol/0.5 ml

per hour of L-AG or D-AG was infused continuously

into the DMH region for the remainder of the given

experiment.

Previous studies have determined that the dose of

L-AG utilized here reduces local GABA concentrations

by approximately 60% following unilateral infusions

(Abshire et al. 1988; Shekhar & DiMicco, 1987 ; Shekhar

& Keim, 1997; Shekhar et al. 1996, 2006) and supported

by immunohistochemistry (Johnson & Shekhar, 2006)

increases anxiety-like behaviour [i.e. as measured

by the social interaction (SI) test and elevated plus-

maze (EPM)] without increasing cardio-respiratory

responses (Johnson & Shekhar, 2006 ; Johnson et al.

2008b ; Shekhar & Keim, 1997; Shekhar et al. 1996,

2006).
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Intraperitoneal (i.p.) injections of

JNJ19567470/CRA5626, a selective CRF1 receptor

antagonist

Five days following L-AG infusion onset, in a coun-

terbalanced design, rats received an i.p. injection of

either CRF1 receptor antagonist, JNJ19567470/

CRA5626 [3 mg/kg (n=4), 10 mg/kg (n=11), 40 mg/

kg (n=7), or vehicle (0.2 ml/100 g volume DMSO,

n=15)] 30 min prior to NaLac challenge. Steckler

and colleagues have previously shown that the

JNJ19567470/CRA5626 compound used here exhibits

the following : (1) affinity and high selectivity (some

weak affinity is noted for the d opiate receptors) for

recombinant and native CRF1 receptors expressed in

brain tissue and cells that does not appear to be species

specific ; (2) acts as a CRF1 receptor antagonist in AtT20

cells in vitro ; (3) dose-dependently occupies CRF1 re-

ceptors in the brain ex vivo following peripheral ad-

ministration; and (4) is highly concentrated in brain

and plasma levels after oral administration (Steckler

et al. 2006).

I.p. injections of alprazolam, a benzodiazepine

Five days following l-AG infusion onset, in a counter-

balanced design, rats received an i.p. injection of either

alprazolam [3 mg/kg (n=6), cat. no. 1960, Tocris

(UK), in 0.2 ml/100 g volume DMSO], or vehicle

(0.2 ml/100 g volume DMSO, n=6) 30 min prior to

NaLac challenge.

Description of NaLac infusion

Five days following stereotaxic osmotic minipump

implantation, cardiovascular responses were recorded

continuously until a 5-min stable baseline was

achieved. Rats were then given their assigned i.v.

infusion [NaLac or saline (when applicable)] and

cardiovascular and activity data were recorded for

15 min following onset of infusion, as described pre-

viously (Shekhar et al. 1996). Thus, freely moving rats

in home cages were given i.v. infusions of 0.5 M NaLac

in vehicle (10 ml/kg over 15 min), similar to clinical

lactate infusions (Liebowitz et al. 1986).

SI test

The SI test of experimental anxiety-like behaviour in

rats (File, 1980), modified for use in our laboratory

has been described previously (Sanders & Shekhar,

1995 ; Shekhar & Katner, 1995). The apparatus itself

consists of a solid wooden box with an open roof ap-

proximately 0.9 m longr0.9 m wide with walls 0.3 m

high. All behavioural tests were videotaped with a

camera above the box. The ‘experimental ’ rat and an

unfamiliar ‘partner’ rat were both allowed to indi-

vidually habituate to the box for a 5-min period 24 h

prior to each SI test. During the SI test, the two rats

were placed together in the centre of the box, and the

total duration (s) of non-aggressive physical contact

(grooming, sniffing, crawling over and under, etc.)

initiated by the ‘experimental ’ rat is quantified over a

5-min period. A baseline SI test was performed o72 h

after i.v. catheterization, but prior to osmotic mini-

pump implantation. Another SI test was performed

5 d following minipump infusions and immediately

following saline or NaLac infusions. Videotaped ses-

sions were scored at a later time (by S.D.F.), who was

blind to any drug treatment.

Histology

Following experiments, all rats were anaesthetized

and decapitated and their brains removed and frozen;

the brains were sectioned (30 mm) and stained with

Neutral Red for determination of injection cannulae

placements.

Statistical analyses

Each dependent variable for in-vivo analyses (i.e. SI

duration, activity, HR, MAP) was analysed using one-

way ANOVA with repeated measures with drug

treatment as main factor and time as the repeated

measure. Levene’s Test of Equality of Error Variance

was also performed in order to determine equal var-

iances in the groups. When there were equal variances

in the groups and in the presence of significant main

effects, between-subject post-hoc tests were conducted

using a parametric Tukey’s test and within-subject

time effects were assessed using Dunnett’s one-way

analysis with the minute prior to i.v. infusion used as

control. When there were unequal variances in the

groups, post-hoc tests were conducted using a non-

parametric Kruskal–Wallis test. Statistical significance

was accepted as p<0.05. All statistical analyses were

performed using SPSS version 13.0 (SPSS Inc., USA)

and Systat 5.02 for Windows (Systat Inc., USA), and

all graphs were generated using SigmaPlot 2001 for

Windows (SPSS Inc.), figure-plate illustrations were

done using CorelDraw version 12 for Windows.

Results

Histological verification of hypothalamic infusion

sites

All minipump cannulae placements resided in regions

of the DMH/PeF known to be cardio-excitatory
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(Samuels et al. 2004; Shekhar, 1993 ; Shekhar &

DiMicco, 1987) (see Fig. 1). No significant tissue

damage at the site of implantation was noted due to

the 26-gauge cannula (0.46 mm o.d.). Previous im-

munohistochemical analyses of the total numbers

of Neu-N-positive neurons as well as N-methyl-D-

aspartate (NMDA) and alpha-amino-3-hydroxy-5-

methyl-4-isoxazolepropionate (AMPA) receptor

immunoreactive neurons in the DMH/PeF from rats

that had similar L-AG infusions showed no difference

between the side of the DMH which had the cannula

track compared to the intact DMH/PeF on the con-

tralateral side (Johnson & Shekhar, 2006).

Effects of prior systemic injections of CRF1

antagonist on behavioural and cardiovascular

responses in L-AG-treated rats following NaLac

challenge

Intraperitoneal injections of the highest dose of

JNJ19567470/CRA5626 CRF1 receptor antagonist

30 min prior to the lactate challenge attenuated lactate-

induced ‘anxiety’, i.e. reduced social interaction time

during the 5-min test (F4,47=6.5, p=0.000 ; Fig. 2a),

and changes (from baseline) in HR (treatment x time

effect : F57,589=1.4, p=0.037 ; Fig. 2b), and MAP

(treatmentrtime effect : F57,589=2.4, p=0.000 ; Fig. 2d)

in panic-prone rats. As predicted, cardio-excitatory

[MAP (F19,239=3.9, p<0.001) ; HR (F19,239=3.9, p<
0.001)] and ‘flight’ responses (shown as increased

locomotor activity) were noted in vehicle-treated

panic-prone rats following the lactate challenge (time

effect : F28,315=1.7, p=0.019). However, unlike the ve-

hicle controls, no change in MAP (F19,120=1.1, p=
0.388), HR (F19,120=0.6, p=0.867), or activity (F7,48=1.0,

p=0.413) was noted over 5-min baseline +15 min of

i.v. infusions in rats receiving the highest dose

(40 mg/kg) of CRF1 receptor antagonist. Although no

increases in locomotor activity were noted in the

10-mg and 40-mg doses of CRF1 receptor antagonist, a

significant increase in locomotor activity was noted in

the 3-mg/kg dose of CRF1 receptor antagonist that was

of longer duration than vehicle controls (see* symbols

in Fig. 2c denoting between-subject differences from

the vehicle-treated group as revealed by Tukey’s HSD

post-hoc test). There was no significant differences

in baseline (5 min prior to i.v. infusion) activity (F3,31=
0.6, p=0.595), HR (F3,31=1.4, p=0.246) or MAP (F3,31=
0.8, p=0.508) between groups (see legends to figures

with baseline activity, HR and MAP¡S.E.M.). Nor

did any dose of the CRF1 receptor antagonist have
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Fig. 1. Schematic representation of the infusion sites of L-allylgycine (L-AG; a GABA synthesis inhibitor) as determined by

histology. Infusion cannula placements for L-AG infusions are illustrated as solid circles ($) for CRF1 receptor antagonist

experiments and open circles (#) for alprazolam experiments. Illustrations of coronal brain sections are based on a standard

stereotactic rat brain atlas (Paxinos & Watson, 1997). Numbers below each section indicate the distance posterior from bregma;

the scale on the right of each section represents the distance ventral from bregma (in mm). Solid lines represent white-matter

tracts and dashed lines illustrate subdivisions of brain. The grey shaded area represents the dorsomedial and perifornical

hypothalamus (DMH/PeF) region. Abbreviations : 3 V, 3rd ventricle ; f, fornix ; mt, mammillothalamic tract. Scale bar, 800 mm.
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significant effects on HR, MAP or activity over time

prior to the onset of NaLac challenge [assessed 10 min

following injection, with 10 min allowed for rats to

regain baseline value following i.p. injection; Fig. 3a :

HR (3 mg, F19,60=0.4, p=0.992 ; 10 mg, F19,180=1.5,

p=0.091 ; 40 mg, F19,120=0.3, p=0.999) ; Fig. 3b : MAP

(3 mg, F19,60=0.2, p=1.000 ; 10 mg, F19,180=0.9,

p=0.595 ; 40 mg, F19,120=0.8, p=0.640) ; Fig. 3c : activity

(3 mg, F19,60=0.6, p=0.850 ; 10 mg, F19,180=0.7,

p=0.814 ; 40 mg, F19,120=0.8, p=0.640)]. There were

no differences in tx20 min to tx15 min baseline in

HR (F3,29=0.2, p=0.905) or MAP (F3,29=0.7, p=0.553),

but activity was higher at baseline in the 3-mg

group, compared to vehicle group (F3,29=4.4, p=
0.011). Two telemetry probes malfunctioned due to

low batteries in the l-AG/vehicle groups, which did

not impact social interaction data which remained

(n=15), but reduced the number for the activity, HR

and MAP by two for the l-AG+vehicle group (i.e.

n=13).
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Fig. 2. Systematic (intraperitoneal) injection of the highest dose of CRF1 receptor antagonist 30 min prior to lactate challenge

attenuates lactate-induced (a) anxiety (and reduced social interaction time during the 5-min test), (c) ‘flight’- (increased general

activity) associated behaviour and changes (from 5-min baseline) in (b) tachycardia, and (d) pressor responses in rats made

panic-prone with chronic reductions of GABA synthesis in the DMH/PeF [i.e. local infusions of L-allylglycine (L-AG), a GAD

enzyme inhibitor]. The grey shaded area represents duration of intravenous NaLac infusions. The * symbol indicates between-

subject differences between the 3 mg [(c) locomotor activity)] or 40 mg [(b) heart rate, and (d) blood pressure] CRF1 receptor

antagonist drug group and vehicle group using Tukey’s HSD post-hoc test protected by ANOVA. The # symbol indicates within-

subject time-points in the vehicle+L-AG+lactate group that are significantly different than the x1 min pre-lactate infusion

time-point using one-way Dunnet’s post-hoc test protected by one-way ANOVA analysing within-subject time effects. There was

no significant baseline activity between groups [see panels (b–d) for baseline values for each treatment group for activity, heart

rate (HR) and mean arterial blood pressure (MAP) ¡S.E.M.].
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Effects of a prior treatment with alprazolam on

behavioural and cardiovascular responses in

L-AG-treated rats following NaLac challenges

Intraperitoneal injections of alprazolam (3 mg/kg)

30 min prior to lactate challenge attenuated lactate-

induced reduction in social interaction time (F2,15=
19.9, p=0.000; Fig. 4a) and changes (from baseline) in

HR (treatmentrtime effect : F19,190=2.0, p=0.011; and

a within-subjects increase in HR post-i.v. infusion in

L-AG+vehicle group (time effect : F19,100=, p=0.11 ;

Fig. 4b) in panic-prone rats. A homogeneity test

for variance (i.e. Levene’s Test of Equality of Error

Variances) revealed unequal variance in the HR

over time in the L-AG+vehicle group (F19,100=3.3,

p<0.001), therefore a non-parametric Kruskal–Wallis

post-hoc test was used to compare pre-i.v. infusion HR

(tx1 m) to each post-i.v. infusion HR. Panic-prone rats

displayed no change in general activity (treat-

mentrtime effect : F7,70=0.6, p=0.737; Fig. 4c) or MAP

(treatmentrtime effect : F19,190=0.4, p=0.987 ; Fig. 4d)

following NaLac. There was no significant differences

in baseline activity (t5=x0.2, p=0.853), HR (t5=x0.3,

p=0.770) or MAP (t5=x0.04, p=0.970) in any rat

prior to NaLac infusion (see figure legends with base-

line activity, HR and MAP¡S.E.M.).

Discussion

In the present study, systemically injecting panic-

prone rats with the highest dose of CRF1 receptor an-

tagonist (JNJ19567470/CRA5626), prior to NaLac,

blocked all NaLac-induced panic-like behaviour and

cardiovascular responses. Pretreating rats with the

CRF1 antagonist not only had acute anti-panic effects,

but also did not alter baseline levels of locomotor ac-

tivity and actually increased the duration of social ex-

plorations, suggesting lack of any sedating effects, a

common side-effect of benzodiazepines (Baldwin et al.

2005; Bandelow et al. 2008; Nutt et al. 2002). The rats

receiving the 3 mg/kg dose of CRF1 receptor antag-

onist did show an increase in locomotor behaviour

following NaLac which lasted longer than the vehicle

group. However, the 3 mg/kg group had no increases

in anxiety behaviour, HR or MAP responses to NaLac

compared to the vehicle group. By itself, the locomotor

data is not a measure of anxiety or panic (e.g. increases

in exercise would not be panic or anxiety). However,

an increase in locomotion in the presence of anxiety

behaviour (here we used a social anxiety test) and

panic-associated cardio-excitatory responses, is po-

tentially indicative of flight-associated panic behav-

iour. Overall, this suggests that the 3 mg/kg dose was
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Fig. 3. Systematic (intraperitoneal) injection of three separate

doses of CRF1 receptor antagonist did not alter (a) ‘flight’ –

(increased general activity) associated behaviour,

(b) tachycardia, and (c) pressor responses in L-AG

administered over time prior to sodium lactate (NaLac)

challenge (between x20 min to onset of NaLac challenge).

A difference between baseline activity of the 3-mg and vehicle

group was noted [see * in panel (c)]. There were no other

significant differences between baseline activity between

groups for heart rate (HR) or mean arterial blood pressure

(MAP) [see panels (a–c) for baseline values for each treatment

group for activity, HR and MAP¡S.E.M.].
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not exacerbating anxiety/panic responses to the lac-

tate challenge. The CRF1 antagonist also did not have

any effect on baseline blood pressure, HR or activity

over time in the interval between CRF1 antagonist

injections and NaLac infusion, although there is a

possibility that the CRF1 receptor antagonist was de-

creasing cardiovascular and general activity measures

selectively at the time of NaLac infusion with a net

effect being blockade of the panic-like responses dur-

ing NaLac infusion. However, previous studies have

shown that the effects of this CRF1 antagonist is de-

pendent on the behavioural state of the rodents (for

review see Hokfelt et al. 2003). Overall, these data

suggest that blocking CRF1 receptors may provide

an acute anti-panic drug similar to high potency

benzodiazepines such as alprazolam, without the

accompanying adverse effects.

Although there are significant limitations in being

able to predict the efficacy of novel treatments in

psychiatric patients based on animal models, this

particular model has shown robust validity as an an-

imal model of panic attacks. This preclinical model

involves chronic inhibition of GABA synthesis (with

L-AG, a glutamic acid decarboxylase inhibitor) in

the DMH/PeF, a key panic-generating brain region

(Shekhar, 1994). This produces ‘panic-prone’ rats

that are highly anxious and exhibit panic-like cardio-

respiratory responses to i.v. NaLac infusions similar to

(c) 18

14

16

C
ha

ng
e 

in
 a

ct
iv

ity
 (c

ou
nt

s/
m

in
)

fr
om

 b
as

el
in

e

12

6

8

10

2

−2

−4

4

0

(d ) 25

15

20

C
ha

ng
e 

in
 M

A
P 

(m
m

H
g)

fr
om

 b
as

el
in

e

5

10

0

−5

−10

(b) 60

40

C
ha

ng
e 

in
 H

R
 (b

ea
ts

/m
in

)
fr

om
 b

as
el

in
e

20

0

−20

−40

(a)
Pre L-AG+NaLac

25
* *

20

S
oc

ia
l i

nt
er

ac
tio

n 
tim

e 
(s

)

15

10

5

0

L-AG+Veh+NaLac
L-AG+Alpr+NaLac

L-AG+Veh+NaLac

Baseline

−5 −4 −3 −2 −1 1 2 3 4 5

Time (min)

−5 −2.5 2.5 5 7.5 10 1512.5

Time (min)

6 7 8 9 10 11 12 13 14 15

−5 −4 −3 −2 −1 1 2 3 4 5

Time (min)
6 7 8 9 10 11 12 13 14 15

Sodium lactate infusion

Sodium lactate infusion

*
*

* *# # # #
#

# # #
387±6
390±11

L-AG+Alpr+NaLac

L-AG+Veh+NaLac

1.5±1.3
2.0±1.7

Baseline

Sodium lactate infusionBaseline

L-AG+Alpr+NaLac
Baseline activity (counts+ S.E.M.)

L-AG+Veh+NaLac

115±8
115±9

L-AG+Alpr+NaLac

Baseline MAP (mmHg+ S.E.M.)

Baseline HR 
(beats/min+ S.E.M.)

Fig. 4. Systematic (intraperitoneal) injection of alprazolam 30 min prior to lactate challenge attenuates lactate-induced (a) anxiety

(and reduced social interaction time during the 5-min test) associated behaviour and changes (from 5 min baseline) in

(b) tachycardia responses in rats made panic-prone with chronic reductions of GABA synthesis in the DMH/PeF [i.e. local

infusions of L-allylglycine (L-AG), a GAD enzyme inhibitor]. Panic-prone rats did not display changes in (c) general activity or

(d) mean arterial blood pressure following sodium lactate (NaLac). The grey shaded area represents duration of intravenous

NaLac infusions. The * symbol indicates between-subject differences (vehicle vs. alprazolam) using Tukey’s HSD post-hoc test

protected by ANOVA. The # symbol indicates within-subject time-points in the vehicle+L-AG+lactate group that are

significantly different from the x1 min pre-lactate infusion time-point using a Kruskal–Wallis test protected by one-way

ANOVA analysing within-subject time effects. There was no significant baseline activity between groups [see panels (b–d) for

baseline values for each treatment group for activity, heart rate (HR) and mean arterial blood pressure (MAP)¡S.E.M.].
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patients with panic disorder (Johnson & Shekhar,

2006 ; Johnson et al. 2008b ; Shekhar & Keim, 1997,

2000 ; Shekhar et al. 1996, 2006). The model has es-

tablished robust face validity (Johnson & Shekhar,

2006 ; Johnson et al. 2008b ; Shekhar & Keim, 1997,

2000 ; Shekhar et al. 1996, 2006). It has also demon-

strated excellent predictive validity both for panic-

inducing agents that elicit panic attacks in patients

with panic disorder [e.g. NaLac, yohimbine, and

inhalations of CO2 (Shekhar & Keim, 1997)], and

for anti-panic drugs, including known therapeutic

agents such as benzodiazepine and antidepressants

(Shekhar, 1994; Shekhar & Keim, 2000), as well as

emerging novel therapies such as group II metabo-

tropic glutamate agonists (Shekhar & Keim, 2000).

Finally, in a series of preclinical studies, that also

used this animal model of panic vulnerability, a

novel translocator protein agonist (which enhances

the central inhibitory effects of GABA) was effective

in blocking NaLac-induced panic-like responses,

which in follow-up clinical trials also showed anti-

panic properties, further strengthening its predictive

validity (Rupprecht et al. 2009). The construct validity

of this model is supported by the fact that neural

circuits of the DMH/PeF regulate behavioural and

autonomic components of the ‘fight-or-flight’ re-

sponse in rats (Andreatini et al. 2001; DiMicco et al.

2002), and are implicated in eliciting panic-like

responses in humans (Boshuisen et al. 2002) and

animals (Johnson et al. 2008b). Furthermore, panic

disorder patients have deficits in central GABA ac-

tivity (Goddard et al. 2001) and pharmacological

restoration of central GABA activity prevents panic

attacks (Goddard et al. 2004), in agreement with pre-

diction from this model.

Good clinical safety profile has recently been dem-

onstrated for CRF1 antagonists in preliminary clinical

studies in patients with major depression. In subjects

with major depression, CRF1 antagonists appear to

demonstrate some preliminary clinical efficacy in im-

proving sleep (Held et al. 2004) and possibly other

symptoms of depression (Zobel et al. 2000) without

disrupting normal stress hormone response or having

other metabolic side-effects (Kunzel et al. 2003, 2005).

In the only published study of CRF1 antagonists in

subjects with an anxiety disorder, utilizing subjects

with chronic generalized anxiety, CRF1 antagonist

failed to demonstrate clinical efficacy in contrast to a

serotonin reuptake inhibitor which was the active

comparator (Coric et al. 2010), suggesting that CRF1

antagonists may not be effective in persistent, chronic

anxiety states such as generalized anxiety disorder

without acute episode of stress such as major

depression or episodic stressful events such as panic

attacks. Therefore, CRF1 antagonists, like benzodiaze-

pines, which show robust anti-anxiety and anti-panic

effects with both acute treatments, may be ideal drugs

for acutely blocking a panic attack. Such a stress load-

dependent effect of CRF1 antagonists is consistent with

previous data showing that CRF1 antagonists do not

have an effect on the HPA axis (Keck et al. 2001;

Steckler et al. 2006) or most behavioural tests of anxiety

related behaviour (Keck et al. 2001; Steckler et al. 2006)

in the absence of a stressor.

The exact mechanisms by which CRF1 antagonists

may elicit anti-panic effects are still unknown, and

several possible pathways can be considered. As

previously noted by Johnson et al. (2008b), NaLac-

induced panic response is associated with robust

activation of the central nucleus of the amygdala in

this model. Similar activation of CRF-positive neurons

of the central nucleus of the amygdala was also noted

by Choi et al. (2005) utilizing the doxapram model of

panic induction. Thus, the amygdalar CRF neuronal

activation may be a common mechanism associated

with a panic-like response and CRF1 receptor antag-

onists could blunt the effects of CRF released.

Similarly, amygdala CRF neurons also project to the

brain stem and activate the locus coeruleus and dorsal

raphe neurons, other key panic-generating systems

which show selective responses in this panic model

(Johnson et al. 2008a, b). A CRF1 antagonist could

potentially reduce panic response by thus reducing

norepinephrine and serotonin release. Finally,

we have strong evidence that panic attacks may be

associated with hyperactive orexin neurons that are

exclusive to the DMH/PeF and lateral hypothalamus

(de Lecea et al. 1998; Sakurai, 2007) ; are known to

regulate wakefulness and vigilance (Sakurai, 2007) ;

and are excited by CRF and CRF1 receptor agonists

(Winsky-Sommerer et al. 2004). Therefore, blockade of

the CRF1 receptor may blunt a multitude of acute

panic-generating systems and induce a robust anti-

panic effect.

In conclusion, the present data suggest that selective

CRF1 receptor antagonists could be a novel target for

developing anti-panic drugs that are as effective as

benzodiazepines in acute treatment without their del-

eterious side-effects such as sedation, cognitive im-

pairment and dependence.
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