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Abstract

Modafinil, a wake-promoting drug used to treat narcolepsy, is a dopamine transporter inhibitor and is said to
have very low abuse liability; this, however, is still up for debate. We conducted a dopamine transporter
(DAT) occupancy study with modafinil (200 or 300mg) in ten healthy volunteers using positron emission
tomography (PET) with [18F]FE-PE2I, a new PET radioligand with high affinity and selectivity for the dopamine
transporter, to characterize its relation to abuse liability. Mean striatal DAT occupancies were 51.4% at 200mg
and 56.9% at 300mg. There was a significant correlation between occupancy and plasma concentration, indicat-
ing dose dependency of DAT inhibition by modafinil in the striatum, and especially in the nucleus accumbens.
This study showed that DAT occupancy by modafinil was close to that of methylphenidate, indicating that
modafinil may be near the same level as methylphenidate in relation to abuse liability in terms of dopaminergic
transmission.
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Introduction

Modafinil, which was first marketed nearly 20 years
ago in Europe as an agent to offset excessive sleepiness
associated with narcolepsy, was approved by the Food
and Drug Administration (FDA) in 1998 and by
the Pharmaceuticals and Medical Devices Agency
(PMDA, Japan) in 2007. Modafinil may enhance cognition
and is used off-label for the treatment of cognitive dys-
function in some psychiatric disorders (i.e. schizophrenia,
attention-deficit/hyperactivity disorder [ADHD])
(Minzenberg and Carter, 2008). Modafinil is increasingly
being diverted for nonmedical use by healthy individuals
with the expectation of improving cognitive performance
(Maher, 2008; Lynch et al., 2011). Although it is reported
that modafinil has very low abuse liability (low reinfor-
cing effects) in non-drug-abusing individuals (Jasinski
and Kovacević-Ristanović, 2000; Myrick et al., 2004),
the Physicians’ Desk Reference (2006) cautions that it
can produce psychoactive and euphoric effects typical
of central nervous system (CNS) stimulant drugs

(Physicians’ Desk Reference, 2006), and there is debate
about its potential for abuse (Kruszewski and Klotz,
2007). Amphetamine and methylphenidate are well-
known typical stimulant drugs. Amphetamine acts by
enhancing dopamine release and blocking dopamine
transporter (DAT), resulting in dopamine increase,
whereas methylphenidate acts mainly through blocking
DAT at the synaptic clefts. Modafinil is known to have
a blocking effect on DAT (IC50=6.4 μM, Madras et al.,
2006), thus increasing dopamine, in rhesus monkeys
(Andersen et al., 2010). Although similar mechanisms
are applicable to humans (Greenhill, 2006; Volkow
et al., 2009b), the exact mechanism of the action of mod-
afinil is not well known.

DAT plays a crucial role in the regulation of dopamine
concentration in the synaptic cleft by dopamine reuptake.
In the past, a study of modafinil use and DAT imaging
with [11C]cocaine was performed (Volkow et al., 2009b).
However, [11C]cocaine has various problems such as
poor selectivity. Recently, a new ligand, N-(3-iodoprop-
2E-enyl)-2β-carbomethoxy-3β-(4-methylphenyl)nortropane
(PE2I), with high affinity and good selectivity for DAT,
was developed (Emond et al., 1997; Halldin et al., 2003).
In human positron emission tomography (PET) studies,
[11C]PE2I showed a high specific-to-nonspecific ratio
(Halldin et al., 2003; Jucaite et al., 2006; Hirvonen et al.,
2008; Seki et al., 2010). Further, a fluoroethyl analog of
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PE2I, 18F-(E)-N-(3-iodoprop-2E-enyl)-2β-carbofluoroethoxy-
3β-(4-methylphenyl)nortropane ([18F]FE-PE2I) (inhibition
constant, 12 nM), has been developed (Varrone et al.,
2009). The quantification of DAT with [18F]FE-PE2I is less
biased than that with [11C]PE2I (Sasaki et al., 2012).

Volkow et al. reported that DAT occupancy was 53.8%
in the caudate, 47.2% in the putamen, and 39.3% in the
nucleus accumbens (NAcc) (modafinil at 200 or 400mg,
single) measured by [11C]cocaine (Volkow et al., 2009b).
Because cocaine binds other monoamine transporters be-
sides DAT (Ritz et al., 1987), the data in Volkow’s study
may be biased. On the other hand, [18F]FE-PE2I has
good selectivity for DAT in comparison to norepinephr-
ine transporter (NET) and serotonin transporter (SERT).
In vitro, FE-PE2I showed ∼10000 higher selectivity for
DAT (Ki=12 nM) as compared with SERT (Ki>1 μM). In
addition, the Ki value at rodent NET was not determined,
as the NET inhibitor maprotiline at a concentration of
10 μM did not show any effect in autographic and PET
studies (Varrone et al., 2009). In this study, we evaluated
DAT occupancy of modafinil using PET with [18F]FE-PE2I
in healthy human subjects to assess its more precise
pharmacokinetics.

Materials and methods

Subjects

Ten healthy volunteers (age range, 20–39 years; mean
age±S.D., 34±1.6 years at 200mg; 3 males, 2 females;
29.2±3.8 years at 300mg; 2 males, 3 females) were en-
rolled in the study. We recruited ten subjects, and none
were excluded due to drug usage. None had a history
of present or past psychiatric, neurological or somatic dis-
orders, or alcohol-related problems. All subjects were
non-smokers and stopped caffeine intake 48 h prior to
PET scan. The study was approved by the review board
of Nippon Medical School Hospital, Japan. After thor-
ough explanation of the study, written informed consent
was obtained from all participants.

Study design

The experiments were designed as an open-label protocol.
Two PET scans were performed, separated by an interval
of more than 1wk. The first PET scan was done prior to,
and the second scan 2.5 h after taking modafinil. We
planned the second scan to aim at the Tmax of modafinil,
which is 2.5 h, where Tmax is the time after administration
of a drug when the maximum plasma concentration is
reached. Each subject underwent PET scan with one
dose of modafinil, either 200 or 300mg.

PET procedures

PET scans were carried out with an Eminence
SET-3000GCT-X (Shimadzu Corp., Japan) scanner to
measure regional brain radioactivity. A head fixation

device was used during the scans. A 10-min transmission
scan was done to correct for attenuation. Dynamic PET
scan was performed for 60min after intravenous bolus in-
jection of [18F]FE-PE2I. Injected radioactivity was 185.5–
191.1 (mean±S.D.; 188.8±1.90) MBq at baseline condition
and 179.0–190.8 (185.5±3.5) MBq at drug condition.
Specific radioactivity was 100.1–253.2 (174.8±63.9) GBq/
μmol at baseline condition and 95.6–398.4 (195.0±77.1)
GBq/μmol at drug condition.

MRI procedures

Magnetic resonance (MR) images of the brain were
acquired with 1.5 T MR imaging, Intera 1.5 T Achieve
Nova (Philips Medical Systems, Best, Netherlands).
T1-weighted MR images were obtained at 1-mm slices.

Plasma concentration of modafinil

The plasma concentration of modafinil was measured.
Venous blood samples were taken 2.5 h after adminis-
tration of modafinil (just before the second PET scan), col-
lected in tubes containing EDTA-2Na, and centrifuged at
3000 rpm for 10min at 4 °C. Separated plasma samples
were stored at −80 °C until analysis. The plasma concen-
tration of modafinil was measured by a validated method
using high-performance liquid chromatography-tandem
mass spectrometry (LC-MS/MS) with a target lower
quantification limit of 0.1 μg/ml (Mitsubishi Chemical
Medience Corp., Japan).

Data analysis

MR images were coregistered to summated PET images
with the mutual information algorithm using PMOD
(version 3.3; PMOD Technologies Ltd, Switzerland).
Regions of interest (ROIs) were defined for the striatum
(caudate, putamen, and NAcc) and cerebellar cortex.
ROIs were drawn manually on overlaid summated PET
and coregistered MR images of each subject. ROIs of
caudate and putamen were drawn on horizontal slices,
and that of NAcc was drawn on coronal slices, while
also referring to the brain atlas.

The average values of right and left ROIs were used for
the analysis. Group discussions were held between
researchers and clinical technologists to confirm the
scan quality. In fact, one participant (Subject 6) was
re-scanned at baseline after a sufficient interval due to
head motion. Data were not subjected to motion correc-
tion. DAT binding was quantified using a simplified ref-
erence tissue model (Lammertsma and Hume, 1996; Ito
et al., 2001). The cerebellum was used as reference region
because of its negligible DAT density (Sasaki et al., 2012).

These models allow the estimation of binding potential
(BPND), which was defined as fND×Bmax/Kd, where fND is
the free fraction of ligand in the nondisplaceable tissue
compartment, Bmax is the transporter density, and Kd is
the dissociation constant (Innis et al., 2007).
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DAT occupancy by modafinil in the striatum was cal-
culated by the following equation:

Occupancy (%) = (BPbase − BPdrug)/BPbase × 100,

where Occupancy is DAT occupancy, BPbase is BPND

under drug-free condition, and BPdrug is BPND under
drug-taking condition.

The relationship between dose or plasma concentration
and DAT occupancy by modafinil is shown by the follow-
ing equation:

Occupancy (%) = D/(ED50 +D) × 100 orC/(EC50 + C)
× 100.

D is the dose of modafinil, C is the concentration of
modafinil, ED50 is the dose required to achieve 50% occu-
pancy, and EC50 is the plasma concentration required to
achieve 50% occupancy (Arakawa et al., 2010; Tateno

et al., 2013). Correlations between dose or plasma concen-
tration of modafinil and DAT occupancy in the striatum
were examined.

Results

Figure 1 depicts the uptake of [18F]FE-PE2I at baseline
and post-dose scans for subject 2, whose data were typical
of those of the other subjects. Subject characteristics,
binding potentials, striatal DAT occupancies, and plasma
concentrations are shown in Table 1. Subject 1, who had
a very low plasma concentration, showed low DAT occu-
pancy. Mean striatal occupancies were 51.4±6.6% at
200mg and 56.9±16.2% at 300mg. Plasma concentrations
were 5.0±0.4 μg/ml at 200mg and 8.2±3.1 μg/ml at
300mg. Correlations between dose or plasma concen-
tration of modafinil and DAT occupancy in the striatum

[18F]FE-PE21

High

Low

Control Modafinil

Fig. 1. Uptake of [18F]FE-PE2I in a section of the striatum normalized to cerebellar uptake at baseline (left) and 2.5 h after the
administration of modafinil (right) in subject 2.

Table 1. Subject Characteristics, Binding Potential, and Dopamine Transporter Occupancy

Subject
Number Gender Age, yr

Dose,
mg

Plasma
Concentration
of MF, μg/mL

BPND at striatum DAT occupancy, %

Baseline Modafinil Striatum Caudate Putamen
Nucleus
Accumbens

1 Male 25 300 0.5 3.58 3.00 16.3 17.6 13.0 26.2
2 Female 34 300 12.4 3.61 1.00 72.3 76.5 70.0 74.2
3 Male 34 300 8.4 3.96 1.54 61.0 67.0 60.2 54.8
4 Female 24 300 10.5 3.87 1.14 70.5 75.1 69.8 68.0
5 Female 29 300 9.0 3.27 1.17 64.2 64.7 64.7 65.3
Mean (SD) 29.2 (4.3) 8.2 (3.1) 3.66 (0.20) 1.57 (0.57) 56.9 (16.2) 60.2 (17.0) 55.5 (17.0) 57.7 (13.8)
6 Male 36 200 4.0 2.73 1.16 57.6 60.1 56.7 61.1
7 Male 31 200 5.0 3.22 1.41 56.2 59.0 56.3 45.2
8 Male 35 200 5.4 2.87 1.51 47.4 47.8 47.1 48.8
9 Female 35 200 5.0 2.65 1.62 39.1 44.3 38.7 33.0
10 Female 33 200 5.4 3.01 1.29 57.1 59.0 53.2 69.5
Mean (SD) 34 (1.8) 5.0 (0.4) 2.90 (0.17) 1.40 (0.14) 51.4 (6.6) 54.5 (6.7) 51.2 (6.6) 51.5 (11.0)

BPND; Binding Potential; DAT, Dopamine Transporter; MF, Modafinil; SD, Standard Deviation.
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are shown in Fig. 2a, b. There was a significant correlation
between DAT occupancy and plasma concentration. The
EC50 value was 4.7 μg/ml (r=0.92). Furthermore, when
we viewed the three striatal regions separately, EC50 was
4.1 μg/ml (r=0.93) in the caudate, 4.9 μg/ml (r=0.93) in the
putamen, and 4.7 μg/ml (r=0.70) in the NAcc. With the
exception of the single data set of subject 1, showing ex-
tremely low plasma concentration and DAT occupancy,
DAT occupancy correlated well with the modafinil dose,
and the ED50 value was 170.9mg (r=0.72).

Discussion

DAT occupancy was 51.4% (39.1–57.6%) at 200mg and
56.9% (16.3–72.3%) at 300mg in the striatum after single

modafinil administration. Mean occupancy at 300mg
was 67.0±4.3% when we excluded the data of subject 1,
who showed an irregularly low value of 16.3%. DAT oc-
cupancy at 300mg was much higher than that at 200mg
except for that single sample with extremely low DAT
occupancy. Furthermore, the correlation between DAT
occupancy and the plasma concentration of modafinil
was significant. As mentioned above, we confirmed
that DAT occupancy by modafinil increased in a dose-
dependent manner.

This is the first study of pharmacological PET with
[18F]FE-PE2I. Most PET studies of DAT in the past were
performed with ([11C]or[18F])CFT (Wong et al., 1993;
Laakso et al., 1998), [11C]altropane (Madras et al., 1998),
[11C]cocaine (Fowler et al., 1989), [11C]β-CIT (Farde
et al., 1994), and other radioligands. Those radioligands
have a rather low affinity, which is reflected by a low up-
take in the striatum (Fowler et al., 1989). Additionally,
they are not selective for DAT, having relatively high
affinity for SERT and NET (Ritz et al., 1987). The pharma-
cological properties of PE2I have demonstrated that it has
high affinity for DAT (Ki=17 nM) and is one of the most
selective DAT ligands (Emond et al., 2008). [11C]PE2I
and [18F]FE-PE2I have been utilized for PET studies
(Seki et al., 2010; Varrone et al., 2011, 2012; Odano
et al., 2012; Sasaki et al., 2012). Varrone et al. confirmed
in vivo that [18F]FE-PE2I, developed from [11C]PE2I, has
high affinity and selectivity for DAT and shows faster
kinetics and more favorable metabolism than [11C]PE2I,
with less production of radiometabolites that could inter-
fere with the quantification (Varrone et al., 2011).
Quantification of DAT with [18F]FE-PE2I should be able
to produce less biased results compared to studies using
[11C]PE2I (Sasaki et al., 2012).

Only one PET study of modafinil was performed in the
past. Volkow et al. reported DAT occupancy of 53.8%
in the caudate, 47.2% in the putamen, and 39.3% in the
NAcc (modafinil at 200 or 400mg, single) as measured
by [11C]cocaine (Volkow et al., 2009b). In addition to
obtaining almost the same occupancy in the caudate
and putamen, we could calculate ED50 and confirm
dose dependency in the striatum, and especially in the
NAcc. There might be two reasons for this result. First,
although the value of BPND by [11C]cocaine is <1, that
by [18F]FE-PE2I is 2–4 at baseline. Second, because
SERT exists, as does DAT, in the striatum, the binding
of [11C]cocaine does not precisely reflect the quantity of
DAT (Staley et al., 1995; Gurevich and Joyce, 1996;
Varnas et al., 2004). Based on the above-mentioned
data, DAT occupancy as measured by [18F]FE-PE2I in
our study could possibly be the most precise figure to
date.

Modafinil is increasingly being diverted for nonmedi-
cal use by healthy individuals with the expectation that
it will improve cognitive performance (Lynch et al.,
2011), although the degree of abuse liability of modafinil
is controversial and there is debate surrounding its
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Fig. 2. (a) DAT occupancy in the striatum with [18F]FE-PE2I
and one dose of modafinil. Dotted line is fitted while excluding
one sample for subject 1 (open circle) that showed extremely
low occupancy. ED50 was 170.9mg (r=0.72) except for one
sample showing extremely low occupancy. (b) DAT occupancy
in the striatum with [18F]FE-PE2I and plasma concentration of
modafinil. EC50 was 4.7 μg/ml (r=0.92). DAT=dopamine
transporter.

700 W. Kim et al.

D
ow

nloaded from
 https://academ

ic.oup.com
/ijnp/article/17/5/697/729714 by guest on 10 April 2024



potential for abuse (Kruszewski and Klotz, 2007). There
are some arguments regarding the relationship between
abuse liability and dopamine increase by blocking
dopamine transporters (Greenhill, 2006; Volkow et al.,
2009a). The dopamine-enhancing effects of modafinil
in the striatum may help explain reports of its abuse,
since this pharmacological effect is considered crucial
for drug reinforcement (Myrick et al., 2004). Therefore,
it is important to measure occupancy in the striatum
(especially NAcc) for evaluating the degree of abuse.

Modafinil is used in doses ranging from 200 to 600mg
(Schwartz et al., 2005), and the dosage in our and
Volkow’s studies was within the clinical dosage range.
Spencer et al. also reported that the DAT occupancy of
armodafinil (optical isomer of modafinil) was 40.4% at
100mg and 65.2% at 250mg in the striatum measured
by [11C]altropane (Spencer et al., 2010). From these
reports, we can say with confidence that the DAT occu-
pancy of modafinil (or armodafinil) at a clinical dose is
approximately 40–70%. Additionally, the occupancies of
methylphenidate and bupropion, representative of DAT
inhibitors, have been measured by PET with various radi-
oligands. As for bupropion, Meyer et al. reported its DAT
occupancy (300mg p.o.) as less than 22% in the striatum
with [11C]RTI32 (Meyer et al., 2002), Learned-Coughlin
et al. reported a DAT occupancy of bupropion
sustained-release (SR) (150mg p.o.) of 26% in the striatum
with [11C]βCIT-FE (Learned-Coughlin et al., 2003), and
Volkow et al. also reported a DAT occupancy of radafax-
ine ((+)-isomer of hydroxybupropion, 40mg p.o) of 20%
in the striatum with [11C]cocaine (Volkow et al., 2005).
As for methylphenidate, Volkow et al. reported a DAT
occupancy of 12–74% in the striatum with [11C]cocaine
at clinically relevant doses of 5–60mg (Volkow et al.,
1998). Spencer et al. reported a DAT occupancy of dex-
methylphenidate of 48–67% in the striatum with [11C]
altropane at clinically relevant doses of 20–40mg
(Spencer et al., 2012). In general, it is said that abuse
of methylphenidate is most common (Kollins et al.,
2001; Maher, 2008; Bruggisser et al., 2012; Sembower
et al., 2013), and a low risk of abuse by bupropion has
been reported (Chevassus et al., 2012). The degree of
abuse risk seems to correspond with DAT occupancy,
considering the data of these two stimulants. Our study
showed that DAT occupancy of modafinil was near that
of methylphenidate at a clinical dose. So, we suggest
that modafinil is at a level similar to methylphenidate
with respect to abuse liability; modafinil may have not
a little risk of abuse. Stimulant abuse is a serious public
health problem that affects almost every community,
and this also points to some potential adverse conse-
quences for the modafinil user (Greenhill, 2006). This
study suggests that the measurement of DAT occupancy
by PET with [18F]FE-PE2I may be able to evaluate the
risk of abuse by stimulants.

There are several limitations to the current study,
urging caution in how these results are interpreted.

First, in our study one sample showed an extremely low
plasma concentration. This result may be ascribable to a
personal diversity of absorption, distribution, metabolism
and excretion (Robertson and Hellriegel, 2003). However,
this subject also showed low DAT occupancy, and the
data, in total, had no effect on our interpretation of this
study. Second, in this study we measured DAT occu-
pancy alone. Madras et al. reported that modafinil is a
dopamine (IC50=6.4 μM) serotonin (IC50=35.6 μM) norepi-
nephrine (IC50>500 μM) reuptake inhibitor (Madras et al.,
2006). Abuse is considered to have a relation with
dopamine, but we should investigate the occupancy of
SERT/NET to learn the properties of modafinil. Third,
we measured drug concentrations in plasma only before
PET-scan in this study. As the drug concentrations in
plasma can change rapidly in time periods close to
Tmax, it might have been suitable to measure drug con-
centrations directly before and after the PET-scan for
the purpose of assessing their more precise pharmacoki-
netics. Fourth, because we did not perform any respective
motion corrections in the process analyzing the data,
although we did confirm the scan quality, head motion
may have had some influence on the data. Fifth, we per-
formed PET-scan once only for a single administration.
The relationship between chronic dosing and occupancy
is unclear. There is a difference in abuse liability between
short- and long-acting oral methylphenidate (Spencer
et al., 2006). Therefore, we might be able to evaluate
abuse liability better by measuring the time-course of
DAT occupancy. Finally, this study was conducted with
both genders as subjects. Modafinil is considered to
have a gender effect mainly during the clearance process
(Wong et al., 1999). In this regard, we must evaluate the
abuse risk related to plasma concentration and/or DAT
occupancy under strict consideration of the gender
difference.

In conclusion, this is the first study of pharmacological
PET by [18F]FE-PE2I. Modafinil blocked DAT dose-
dependently in the human brain with similar numerical
values of earlier literature, but our data suggest that the
present results with [18F]FE-PE2I are more precise.
There was a significant correlation between DAT occu-
pancy and plasma concentration of modafinil, and DAT
occupancy by modafinil was at almost the same level as
that of methylphenidate, so we suggest that modafinil
may resemble methylphenidate in terms of abuse liability.
By this study, we found with considerable certainty the
possibility that the DAT occupancy of stimulants may
reflect abuse liability at a clinical dose.
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