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Abstract

Inflammation and depression are closely inter-related; inflammation induces symptoms of depression and, conversely, 
depressed mood and stress favor an inflammatory phenotype. The mechanisms that mediate the ability of inflammation to 
induce symptoms of depression are intensively studied at the preclinical level. This review discusses how it has been possible 
to build animal models of inflammation-induced depression based on clinical data and to explore critical mechanisms 
downstream of inflammation. Namely, we focus on the ability of inflammation to increase the activity of the tryptophan-
degrading enzyme, indoleamine 2,3 dioxygenase, which leads to the production of kynurenine and downstream neuroactive 
metabolites. By acting on glutamatergic neurotransmission, these neuroactive metabolites play a key role in the development 
of depression-like behaviors. An important outcome of the preclinical research on inflammation-induced depression is 
the identification of potential novel targets for antidepressant treatments, which include targeting the kynurenine system 
and production of downstream metabolites, altering transport of kynurenine into the brain, and modulating glutamatergic 
transmission.
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Introduction
Activation of the immune system, through either infection or 
administration of cytokines, causes significant changes in eat-
ing, drinking, social, and sleeping behaviors in both rodents 
(Hart, 1987; O’Reilly et  al., 1988; Crestani et  al., 1991; Yirmiya, 
1996) and humans (Capuron et al., 2002; Vollmer-Conna et al., 
2004). Similar behavioral alterations are found in patients with 
depression. For example, depressed individuals have disturbed 
sleep patterns (Coble et al., 1979; Pigeon et al., 2004; Armitage, 
2007), greater fatigue (Demyttenaere, 2005), fewer social interac-
tions (George et al., 1989), and anhedonia (Pizzagalli et al., 2007; 
Sherdell et  al., 2012). Indeed many of these behavioral altera-
tions are diagnostic criteria for major depression as outlined by 
the DSM.

The relationship between depression and immunity has been 
researched for several decades. Initially depression was thought 

to be associated with a suppression in immunity (Schleifer et al., 
1984). Investigators came to this conclusion after finding that 
blood lymphocytes of depressed individuals had an attenuated 
proliferative response when stimulated with mitogens (Schleifer 
et al., 1984; Kronfol et al., 1986; Kronfol and House, 1989). This was 
associated with reduced natural killer cell activity (Nerozzi et al., 
1989). In addition, depressed patients were known to have ele-
vated glucocorticoids, specifically cortisol (Carroll et al., 1976), and 
a dysfunctional stress feedback system (Carroll et al., 1968). Since 
glucocorticoids were well known to dampen immune responses 
(Crabtree et al., 1979), the immunosuppression found in depressed 
patients seemed logical and corresponded nicely with the endo-
crine abnormalities. Contrary to the suggestion that depression 
was immunosuppressive, Smith (1991) proposed the macrophage 
theory of depression that drew on research demonstrating 
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interleukin (IL)-1 can lead to endocrine abnormalities and sig-
nificantly alter behavior. In addition, inflammation was seen as 
a common link between depression and other diseases that were 
often comorbid with depression. In short, Smith’s theory proposed 
that in depressed patients activated macrophages produced 
cytokines, which lead to depression (Smith, 1991). Soon, evidence 
began accumulating that depressed patients were actually show-
ing patterns of an activated inflammatory response. Depressed 
patients were reported to have an increase in leukocytes, mono-
cytes, and other inflammatory factors, including prostaglandins 
(Ohishi et  al., 1988; Maes et  al., 1992) and increased NK cells 
(Seidel et al., 1996). Maes (1995) followed up with his own studies 
on inflammation and depression and described several ways that 
inflammation could influence depression, including decreased 
bioavailability of tryptophan for the synthesis of serotonin. During 
the same time, animal studies were documenting the relationship 
between inflammation and sickness behavior (Bluthe et al., 1991, 
1992a, 1992b, 1994, 1995; Kent et al., 1992; Nadjar et al., 2005). In 
addition to reducing motor activity and food intake and increasing 
slow wave sleep, the cytokine inducers lipopolysaccharide (LPS) 
(Bluthe et al., 1992a), IL-1 (Kent et al., 1992), and tumor necrosis 
factor (TNF) (Bluthe et al., 1991, 1994) were found to decrease social 
interaction in rodents. Importantly, these effects were obtained 
whether LPS or cytokines were administered at the periphery or 
in the brain, indicating a possible central site of action for periph-
eral cytokines. Yirmiya (1996) first reported that endotoxin caused 
depressive-like behaviors in rodents that were sensitive to the 
effects of antidepressant drugs.

Since the macrophage theory was proposed, the last 2 decades 
have seen an abundant amount of investigation into the relation-
ship between inflammation and depression at both the clinical 
and preclinical levels. Patients with depression are now reported 
to have elevated levels of inflammatory markers, including pro-
inflammatory cytokines (Kim et al., 2008; Shelton and Claiborne, 
2010), C-reactive protein (Danese et  al., 2008; Vogelzangs et  al., 
2012; Morris et al., 2014), and myeloperoxidase (Vaccarino et al., 
2008). Although some studies have reported negative results 
(Carpenter et al., 2004; Basterzi et al., 2005), several meta analyses 
support the association between depression and proinflammatory 
cytokines (Howren et al., 2009; Dowlati et al., 2010). Furthermore, 
the literature indicates that only specific subtypes of depression 
are associated with inflammation. For example, patients with 
atypical depression have an increase in plasma C-reactive protein 
(Hickman et al., 2014), proinflammatory cytokines (Lamers et al., 
2013), and leukocyte numbers (Rothermundt et  al., 2001) com-
pared with healthy controls or patients with melancholic depres-
sion, although one report supports both melancholic and atypical 
patients having elevated biomarkers of inflammation (Karlovic 
et al., 2012). Interestingly, atypical depression is also character-
ized by symptoms of fatigue, hypersominia, and lethargy (Gold 
and Chorousos, 2002), which match the known behavioral effects 
of cytokines. Although not all traits of atypical depression align 
well with sickness behaviors, including weight gain and hypoac-
tivity of the hypothalamic pituitary adrenal system, it is possible 
that these are due to mechanisms other than inflammation.

Rodent models of depression are also associated with elevated 
levels of inflammation in the periphery and brain (Grippo et al., 
2005; Goshen et al., 2008; You et al., 2011). In addition, Koo and 
Duman (2008) and Goshen et al. (2008) have demonstrated that 
cytokine signaling is essential for the development of depres-
sive-like behaviors in stress-based animal models of depression. 
Further animal research has demonstrated that antidepressants 
may have antiinflammatory effects (Tynan et  al., 2012), and 
antiinflammatory drugs can prevent depressive-like behaviors 

(Kreisel et al., 2014). While a complete review of this literature 
is too large to be completed here, comprehensive reviews of the 
research on inflammation and depression can be found else-
where (Felger and Lotrich, 2013; Furtado and Katzman, 2015; 
Lotrich, 2015; Yirmiya et al., 2015).

 Importantly, a direct effect of immune stimulation on mood 
has been demonstrated in a clinical population. Capuron and 
Ravaud (1999) report that cancer patients treated with inter-
feron-alpha and/or IL-2 developed depressive-like symptoms, 
and this has been replicated by others (Bonaccorso et al., 2002; 
Kraus et al., 2002; Reichenberg et al., 2005). In addition, it has 
been highlighted that patients afflicted with disorders associ-
ated with inflammation, including diabetes, multiple sclerosis, 
and cardiac disease, show higher rates of depression. Physically 
ill patients with chronic inflammation have an improvement 
in mood when given treatments that target inflammatory 
cytokines, such as the TNF-antagonist infliximab (Tyring et al., 
2006; Feldman et  al., 2008). Furthermore, rodent studies have 
confirmed the direct relationship between immune activa-
tion and depression. For example, rodents administered pro-
inflammatory cytokines show depressive-like behaviors, such 
as increased immobility in the forced swim and tail suspen-
sion tests and reduced sucrose preference (Brebner et al., 1999; 
Makino et al., 2000; Dunn and Swiergiel, 2005; Wu and Lin, 2008).

Our research group has focused on understanding inflam-
mation-induced depression and the downstream mechanisms. 
We have taken great care in developing an animal model of 
depression that is based on the clinical literature demonstrating 
that depression develops on a background of sickness behavior 
(Dantzer et al., 2008). This review will discuss the current state of 
research on inflammation-induced depression, what is known 
about the mechanisms, and possible novel targets for the treat-
ment of inflammation-induced depression.

Inflammation-Induced Depression

Inflammation-induced depression can be studied using a vari-
ety of inflammatory agents, including LPS, the viral mimetic Poly 
I:C, and Bacillus Calmette-Guerin (BCG). Treated animals lose 
weight, eat and drink less, and decrease their motor activity for 
several hours to days, depending on the nature of the inflamma-
tory agent and dose. These sickness behaviors correspond with 
elevations in proinflammatory cytokines at the periphery and in 
the brain (Laye et al., 2000; Parnet et al., 2002; André et al., 2008). 
In the LPS-induced model of depression, sickness behaviors will 
typically resolve within 24 hours, whereas BCG inoculation will 
result in sickness behavior lasting several days (O’Connor et al., 
2009a). Interestingly, when sickness behaviors have resolved, 
the rodents display depressive-like behaviors (Figure 1 for sche-
matic). For example, 24 hours after injection of LPS, when motor 
activity is back to normal and appetite present, treated animals 
show increased immobility in the forced swim test and tail sus-
pension test as well as decreased sucrose preference (Frenois 
et  al., 2007; O’Connor et  al., 2009c, Sulakhiya et  al., 2016; Ge 
et al., 2015). Sickness and depressive behaviors depend on the 
initial inflammation, as antiinflammatory agents can attenuate 
both (Bluthe et al., 1992a; Nadjar et al., 2005; Henry et al., 2008; 
O’Connor et al., 2009c). Interferon-gamma is a crucial component 
in this model, as transgenic animals with deletion of its receptor 
do not show depressive-like behaviors (O’Connor et al., 2009b). 
Likewise, many laboratories have continued to demonstrate that 
a variety of antiinflammatory compounds abrogate or attenuate 
depressive-like behaviors using this model (Ferreira Mello et al., 
2013; Ji et al., 2014; Ma et al., 2014; Wang et al., 2014; An et al., 
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2015; Ge et al., 2015; Li et al., 2015; Yao et al., 2015; Sulakhiya et al., 
2016). In addition, this model has been modified in a variety of 
ways, including altering inflammatory agents (Fischer et  al., 
2015), initiating chronic inflammation (Kubera et al., 2013; Adzic 
et al., 2015; Guan et al., 2015), or combining it with chronic stress 
exposure (Elgarf et al., 2014) to study depression.

While the primary focus of this review is depressive 
behaviors, there is a growing literature demonstrating 
inflammation-induced increases in anxiety-like behav-
iors in rodents (Salazar et  al., 2012; Bassi et  al., 2012;  
Gibney et al., 2013; Baganz et al., 2015; Savignac et al., 2016; 
Sriram et  al., 2016; Sulakhaiya et  al., 2016) and humans 
(Grigoliet et al., 2011; Reichenberg et al., 2001; Lasselin et al., 
2016). Sulakhaiya (2016) found that LPS-treated animals have 
an increase in anxiety-like behavior, as measured by the ele-
vated plus maze. Here, the LPS-treated animals spent more 
time in the closed arms and a reduction in time spent in 
the open arms. However, the animals were tested only a few 
hours after LPS administration, probably still at the peak of 
the sickness response. Testing behavioral measures of anxi-
ety shortly after LPS injection may confound the results, as 
the rodents will most likely be moving less due to sickness. 
However, some papers have demonstrated anxiety behaviors 
after sickness behaviors have resolved (Salazar et  al., 2012; 
Gibney et  al., 2013). Anxiety and depression often appear 
together in the clinical population (Brown et  al., 2001), and 
modeling both of these symptoms together can both be ben-
eficial and problematic. On one hand, the presence of both 
anxiety and depression could reflect a more relevant model 
of depression, but it is difficult to distinguish the contribu-
tion of anxiety to depressive behaviors and vice versa.

Healthy human subjects given an inflammatory agent, 
such as endotoxin or typhoid vaccination, show a signifi-
cant reduction in mood and increased anxiety (Reichenberg 
et al., 2001; Wright et al., 2005; Eisenberger et al., 2009, 2010). 
The reduction in mood is correlated with plasma IL-6 lev-
els (Brydon et al., 2008; Eisenberger et al., 2009) as is fatigue 
(Brydon et al., 2008). Interestingly, imaging studies found that 
typhoid vaccination alters neural activity of the cingulate cor-
tex and its connections with other brain areas associated with 
mood (Harrison et al., 2009). Similarly, Eisenberger et al. (2010) 
found that endotoxin treatment decreases ventral striatum 
responding to reward, further supporting that inflammation 
can alter critical neural circuits involved in depression.

Indoleamine 2,3 Deoxygenase

Insights about mechanisms downstream of inflammation have 
come from clinical studies that examined the effects of inter-
feron-alpha on mood of cancer and hepatitis C virus-infected 
patients. In both groups, the development of depressive symp-
toms was associated with decreased circulating levels of trypto-
phan (Bonaccorso et al., 2002; Capuron et al., 2002). Furthermore, 
a significant correlation between variations in tryptophan levels 
and changes in depression scores was reported. Specifically, the 
greater the fall in tryptophan levels, the more severe the symp-
toms of depression as measured by the Montgomery and Asberg 
depression rating scale (Capuron et al., 2002).

The relationship between tryptophan, serotonin, and depres-
sion has a long history in psychiatry. Tryptophan is the precur-
sor of serotonin, and because tryptophan hydroxylase is not 
saturated by its substrate, the bioavailability of tryptophan regu-
lates the amount of serotonin formed in the brain. Rodents fed 
a low tryptophan-containing diet show a decrease in serotonin 
in their brain (Biggio et al., 1974). Similarly, human subjects on a 
tryptophan-restricted diet have decreased levels of tryptophan 
and serotonin metabolites in their cerebrospinal fluid (Perez-
cruet et al., 1974). Depressed patients have high levels of tryp-
tophan metabolites in their urine (Curzon and Bridges, 1970), 
and a decrease in tryptophan in the blood and cerebrospinal 
fluid (Maes et al., 1987, 1993). The depletion of tryptophan alone 
is also associated with a depressed mood (Young et al., 1985). 
However, this is only apparent in subjects who are at risk of 
being depressed either because of a family history of depression 
or because they are in a remission phase (Riedel et  al., 2002). 
Lastly, tryptophan administration in conjunction with an MAO-
inhibitor potentiates the antidepressant drug effect (Coppen 
et al., 1963), which suggests that tryptophan depletion may be a 
critical biological component of depression.

Tryptophan is mainly metabolized via the kynurenine pathway 
(Figure  2), beginning with conversion of tryptophan to kynure-
nine by 1 of 2 enzymes, primarily tryptophan 2,3, dioxygenase or 
indoleamine 2,3, dioxygenase (IDO). These enzymes are regionally 
divided in the periphery but are both found in the brain (Saito et al., 
1991; Haber et al., 1993; Alberati-giani et al., 1997). Tryptophan 2,3, 
dioxygenase predominately metabolizes tryptophan in the liver 
(Nakamura et  al., 1980) and responds to hormonal regulations, 
such as cortisol and glucagon (Nagao et al., 1986; Nakamuras et al., 
1987). IDO is found in a variety of tissues, especially immune cells. 

Figure 1. Schematic timeline of lipopolysaccharide (LPS) model of depression. LPS administration increases peripheral cytokines and leads to sickness behaviors, 

including lack of movement and decrease in food and water intake. Around 24 hours postinjection, rodents begin eating and moving similarly to control animals as 

their sickness behaviors have resolved. Proinflammatory cytokines will cause an elevation of indoleamine 2,3 dioxygenase (IDO) 24 hours after LPS injection. During 

the same time that IDO is elevated, animals will be anhedonic and spend more time immobile in the forced swim test.
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IDO activity is induced by the cytokines interferon-gamma and 
TNF-alpha (Yoshida et al., 1981; Yoshida and Hayaishi, 1987). LPS 
administration, HIV infection, or interferon treatment increases 
metabolites of kynurenine in the periphery, brain (Heyes, 1988; 
Saito et al., 1991), and CSF (Heyes et al., 1989). The first demonstra-
tion of a role for IDO activation was in the field of reproductive 
immunology. Pregnancy is associated with a significant decrease 
in tryptophan in the plasma (Schröcksnadel et al., 1996), which 
is secondary to activation of IDO at the level of the trophoblast. 
Cytotoxic cells that are involved in the recognition of the tropho-
blast as antigenic become anergic because of the local depletion 
of tryptophan (Munn et al., 1998). Therefore, it is possible that an 
increase in IDO following inflammation could deplete tryptophan, 
resulting in a decreased serotonin concentration in the brain, and 
cause depressive-like behaviors.

To test this hypothesis, we used the LPS and BCG model of 
depression to show that activation of IDO is a late event, which 
is in agreement with the late development of depressive-like 
behavior. More specifically, we observed that LPS increased IDO 
in the brain 24 hours after injection (Lestage et al., 2002) at which 
time depressive-like behavior become apparent (Frenois et al., 
2007). This increase in enzymatic activity of IDO was associated 
with an increase in the ratio of kynurenine to tryptophan in the 
periphery and brain 24 hours post LPS (O’Connor et al., 2009c; 
Walker et al., 2013). Other inflammatory agents, including poly 
I:C and interferon alpha, cause similar behavioral and biochemi-
cal results (Gibney et al., 2013; Fischer et al., 2015). Rats injected 
with poly I:C have elevated IDO and ratio of kynurenine to tryp-
tophan in the brain (Gibney et al., 2013). Similarly, rats adminis-
tered recombinant human interferon alpha displayed increased 
immobility in the forced swim test (Fischer et al., 2015). However, 
their brain ratio of kynurenine to tryptophan was increased but 
not significantly (P < .10). Imipramine blocked the behavioral 
effects of interferon but had no effect on the kynurenine to tryp-
tophan ratio. These results are difficult to interpret for several 
reasons, including the species-specific activity of human inter-
feron alpha. Earlier studies on the behavioral effects of human 
interferon alpha showed that these are due to activation of brain 
opioids (e.g., Dafny et al., 1988). Secondly, rats are not a good spe-
cies for studying IDO activation, because the large quantities of 
nitric oxide they produce inhibit IDO (Thomas et al., 1994).

To determine if IDO was important, we used pharmaco-
logical and genetic tools to demonstrate that activation of this 
enzyme was necessary for the development of depressive-like 
behavior, but not sickness behavior. In particular, we found that 
the IDO inhibitor, 1-methyl tryptophan, blocked the depressive-
like behavior but did not significantly alter inflammation or 
sickness behaviors (O’Connor et al., 2009c). In a similar manner, 
deletion of the gene coding for IDO, ido1, abrogated the develop-
ment of BCG-induced depression-like behavior (O’Connor et al., 
2009a). After demonstrating that IDO is necessary for the devel-
opment of depression in our model, the next logical question 
was whether serotonin depletion was ultimately responsible 
for the alteration in behavior. However, there was no evidence 
of a decrease in serotonin levels or serotonin turnover in the 
brain in response to inflammatory mediators. LPS resulted in an 
increase, not a decrease, in serotonin turnover (O’Connor et al., 
2009c), and similar results have been obtained in models using 
Poly I:C in rats (Gibney et al., 2013). This ultimately indicates that 
IDO was altering behavior through another mechanism in this 
model. The effect of LPS on serotonin levels has not been uni-
versal, with some papers reporting a decrease in serotonin fol-
lowing LPS at similar time points (Ji et al., 2014; Yeh et al., 2015). 
These differences may be due to region of analysis, as O’Connor 
et al. (2009c) examined whole brain, whereas others report dif-
ferences in specific regions, including the nucleus accumbens 
(Yeh et al., 2015) and prefrontal cortex (Ji et al., 2014). It is also 
possible that different strains of mice may produce different 
results, as strains vary in serotonin levels at baseline and in 
response to stress (Shanks et al., 1991).

Kynurenine Metabolites

The majority of kynurenine found in the brain during inflam-
mation comes from the periphery (Gál and Sherman, 1980; Kita 
et al., 2002). It is transported into the brain via the L-type amino 
acid transporter, also known as solute carrier family 7.  Once 
within the brain, kynurenine produces a variety of neuroac-
tive metabolites, including quinolinic acid and kynurenic acid. 
Both quinolinic acid and kynurenic acid act at the level of the 
NMDA receptors, but in opposing directions. Kynurenic acid is 
an antagonist of the NMDA receptors (but evidence also suggest 

Figure  2. Simplified tryptophan metabolism by the kynurenine pathway. Tryptophan is most commonly metabolized into kynurenine via one of two enzymes: 

indoleamine 2,3 dioxygenase (IDO) or tryptophan 2,3, dioxygenase. Kynurenine can be further broken down into a variety of metabolites that are neuroactive, includ-

ing 3-hydroxykynurenine (3HK), quinolinic acid, and kynurenic acid. The conversion from 3-hydroxyanthranillic acid to quinolinic acid, represented by a dashed line, 

requires 2 reactions. The first is an enzymatic and the other is nonenzymatic. Alternatively, tryptophan can also produce serotonin.

D
ow

nloaded from
 https://academ

ic.oup.com
/ijnp/article/19/9/pyw

028/2488254 by guest on 19 April 2024



Remus et al. | 5

it binds to acetylcholine nicotinic receptors) and decreases glu-
tamate release in the brain (Birch et al., 1988). Quinolinic acid 
is an agonist of the NMDA receptor (Stone and Perkins, 1981), 
which can cause excitotoxicity and significant damage to neu-
rons (Foster et al., 1983; Schwarcz et al., 1983; Amori et al., 2009). 
These 2 metabolites are produced in different cell types in the 
brain, with quinolinic acid primarily produced in microglia in a 
kynurenine monooxygenase (KMO)-dependent pathway (Espey 
et  al., 1997) and kynurenic acid produced in astrocytes in a 
kynurenine aminostransferase-dependent pathway (Guidetti 
et al., 2007).

With our previous data demonstrating that serotonin was 
not depleted in our model, we hypothesized that the elevations 
in kynurenine metabolites could contribute to depressive-like 
behaviors. Indeed, LPS administration caused an elevation in 
quinolinic acid but not kynurenic acid in the brain as well as 
other KMO-dependent kynurenine metabolites (Walker et  al., 
2013). Blockade of quinolinic acid access to NMDA receptors by 
ketamine was effective at eliminating depressive-like behaviors 
in LPS-induced depression, but did not alter sickness behaviors 
or inflammation due to LPS (Walker et al., 2013). Ketamine did 
not alter IDO activity itself either, which suggests depressive 
behaviors are due to the overactivation of the NMDA recep-
tor, which could be modulated by quinolinic acid. Walker et al. 
(2013) also reported elevations in another potentially harmful 
metabolite, 3-hydroxykynurenine (3HK). 3HK is known to be 
neurotoxic (Okuda et al., 1996), causes mitochondrial dysfunc-
tion (Reyes-Ocampo et al., 2015), and elevates reactive oxygen 
species (Shoki et al., 1998; Jeong et al., 2004). While 3HK itself 
may alter behavior through neurotoxic effects, it can cause 
substantially more damage in the presence of quinolinic acid 
(Guidetti and Schwarcz, 1999). So it is possible that both of these 
metabolites work in concert to alter neuronal functioning and 
change behavior.

The clinical literature also reports significant changes in 
kynurenine pathway metabolites in depressed patients. For 
example, the ratio of kynurenic acid to quinolinic acid was sig-
nificantly reduced in depressed patients, and this ratio was sig-
nificantly correlated with both anhedonia (Savitz et al., 2015b) 
and volume reductions in mood-related brain regions (Savitz 
et  al., 2015a). In addition, patients who attempted suicide 
have elevated quinolinic acid levels in the CSF compared with 
healthy controls (Bay-Richter et al., 2014). In humans with trau-
matic brain injury, there is an increase in IDO and quinolinic 
acid in the CSF and brains of patients who had a worse recov-
ery (Yan et al., 2015). Adding further evidence to a role for IDO 
and quinolinic acid in depression, the metabolites of kynure-
nine are elevated in depressed patients in the CSF without any 
corresponding change in CSF tryptophan (Raison et  al., 2010). 
Other papers have failed to show alterations in kynurenine or 
its metabolites in the plasma of depressed patients (Dahl et al., 
2015; Meier et al., 2015), and one reported a decrease in plasma 
kynurenine levels (Hennings et  al., 2013). While Meier et  al. 
(2015) did not see changes in kynurenine, they did report that 
depressed patients have altered kynurenic acid/quinolinic acid 
and kynurenic acid/3HK ratios. These differences, though, were 
no longer significant after controlling for sex. Upon examination 
of their data, they report that differences in males were driving 
the significant effects, suggesting that sex may be a contribut-
ing factor. Another possible explanation for the negative find-
ings is that only a subpopulation of patients may show elevated 
kynurenine levels. This corresponds well with the data report-
ing only a portion of depressed individuals have elevated pro-
inflammatory cytokines (as discussed above). Likewise, plasma 

kynurenine levels were increased in individuals who attempted 
suicide compared with healthy controls and other patients 
with depression (who had not attempted suicide), so severity 
of depression may be relevant (Sublette et al., 2011). It is impor-
tant to note that kynurenine data need to be interpreted with 
caution, since they do not necessarily reflect ongoing low-grade 
inflammation. Cortisol-driven activation of the liver enzyme 
tryptophan 2,3 dioxygenase can also lead to marked elevations 
in circulating kynurenine. The best way to distinguish inflam-
mation-driven elevations of kynurenine from other causes 
would be to measure the levels of neopterin, or other markers 
of immune activation, which is never done (Wildner et al., 2002).

It is also important to mention that mechanisms other than 
the kynurenine metabolites are being investigated in the inflam-
mation-induced depression model, including brain derived 
neurotrophic factor (Zhang et al., 2014), leptin (Kurosawa et al., 
2015), glucocorticoids (Adzic et al., 2015), and alterations in neu-
rotransmitters, such as adrenaline/noradrenaline (Sekio and 
Seki et al., 2014; Zhu et al., 2015), dopamine (Yeh et al., 2015), 
and acetylcholine (Ming et al., 2015).

Clinical Implications: Pharmacological 
Targets beyond Inflammation

Inflammation is at the origin of the biological cascade that 
causes depressive behaviors, but it may not always be possible 
or reasonable to treat inflammation. By exploring downstream 
mechanisms, it is possible to uncover novel targets for antide-
pressant therapies (Figure 3). So far, a number of possible tar-
gets have been uncovered, including kynurenine metabolites 
and enzymes, blood-brain barrier transport mechanisms, and 
glutamatergic neurotransmission. Note all of these targets are 
working under the assumption that inflammation-induced 
depression is due to kynurenine metabolites, specifically quino-
linic acid, that act on glutamatergic neurons in the brain.

Directly targeting kynurenine production and therefore 
decreasing its downstream neurotoxic metabolites is one poten-
tial avenue for treatment. The most direct method would be to 
prevent kynurenine accumulation by blocking IDO activity with 
an inhibitor of the enzyme. Currently, 3 IDO inhibitors, D1-MT, 
INCB024360, and GDC-0919 (formerly NLG-919), are being tested 
in patients with solid tumors to suppress immunotolerance of 
the tumor and enhance response to cancer therapy (Table 1). The 
specificity of action on IDO1 varies between the drugs (Li et al., 
2010). INCB024360 has high specificity for IDO1 (Li Et al., 2010), 
while D-1MT has broader effects (for review, see Lob et al., 2009 
and Moon et al., 2015). These clinical trials will give insight into 
the feasibility of administering IDO inhibitors in the long term, 
which, if successful, could be considered as possible therapeu-
tics in specific populations of depressed patients. It may also be 
possible to target other enzymes, such as KMO. KMO catalyzes 
kynurenine into 3-HK and can be used to create quinolinic acid 
in microglia cells. Recently, KMO inhibitors have been proposed 
as potential therapeutic targets for Huntington’s disease (Toledo-
Sherman et al., 2015), and it may be worthwhile to explore these 
molecules in inflammation-induced depression. Kynurenine 
can alternatively produce kynurenic acid if it is metabolized by 
KATs instead of KMO, and because kynurenic acid has opposing 
roles of quinolinic acid, it could counteract its effects. Indeed, 
studies have demonstrated that administering nicotinylana-
line will increase kynurenic acid and have a protective effect 
on neurons (Russi et  al., 1992). Another potential mechanism 
to modulate the kynurenine metabolism pathway is aerobic 
exercise. There is already evidence of antidepressant effect of 
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exercise in rodents (Duman et al., 2008; Marais et al., 2009; Patki 
et al., 2014) and humans (Silveira et al., 2013). Overexpression 
of peroxisome proliferator-activated receptor-γ coactivator 1α, a 
protein elevated in skeletal muscle after exercise, made mice 
resistant to stress-induced depression by enhancing the enzy-
matic activity of kynurenine amino transferases and increas-
ing production of the neuroprotective kynurenine metabolite 
kynurenic acid (Agudelo et al., 2014).

The majority of kynurenine in the central nervous system 
is transported from the periphery. This transport is mediated 
through L-type amino acid transporter (Fukui et  al., 1991). 
Tryptophan, kynurenine, and other large neutral amino acids, 
such as leucine, compete at the transporter for entry into the 
brain. Recent data from our laboratory indicate that it is pos-
sible to block depressive-like behaviors following LPS injection 
with the amino acid l-leucine. It is hypothesized that leucine 
would outcompete kynurenine for transport into the brain and 
thus decrease central kynurenine levels. This does seem to be 
the case, as our preliminary findings demonstrate that there is 
a significant reduction in the ratio of kynurenine to tryptophan 
of the brain in leucine-treated rodents who were administered 
LPS (Walker et  al., 2015). These data indicate that blood-brain 
transport mechanisms are a viable target for antidepressant 
treatment.

Excessive levels of glutamate are excitotoxic to neurons 
(Lucas and Newhouse, 1957), and glutamate dysfunction is a pos-
sible cause of depression (for review, see Paul and Skolnick, 2003; 

Sanacora et al., 2012). In both the LPS-induced and stress-based 
models of depression, ketamine, an NMDA antagonist, can block 
depressive-like behaviors (Li et  al., 2011; Walker et  al., 2013). 
Targeting glutamate activity can be done by enhancing gluta-
mate reuptake or decreasing glutamate release by facilitating 
GABA or other molecules that can decrease glutamatergic activ-
ity. Astrocytes play an important role in the uptake of glutamate, 
which helps limit and prevent damage due to excitotoxicity. 
Astrocytes uptake glutamate through transporters and convert 
glutamate into glutamine, which can then be released back into 
the extracellular space and picked up by neurons. Microglia 
can also take up glutamate from the environment, but, impor-
tantly, upon immune activation microglia will release gluta-
mate, which may contribute to excitotoxicity (Takaki et al., 2012; 
Thomas et al., 2014). A variety of factors, including LPS or TNF, 
can increase glutamate release from microglia (Thomas et al., 
2014), and glutamate exits through two systems in microglia. 
The first is through the cell adhesion hemichannel (Takeuchi 
et al., 2006), and the other is System Xc-, the glutamate/cysteine 
antiporter (Piani and Fontana, 1994; Kigerl et al., 2012). In addi-
tion, microglial release of glutamate decreases astrocytes’ ability 
to uptake glutamate, which results in greater neuronal damage 
(Takaki et al., 2012). In addition, LPS alone can cause glutamate 
efflux from astrocytes through the release of ATP (Pascual et al., 
2012). Likewise, quinolinic acid can prevent the uptake of gluta-
mate by astrocytes through a decrease in the glutamate trans-
porter (Tavares et  al., 2002). There is an indication that both 

Figure 3. Possible therapeutic interventions for lipopolysaccharide (LPS)-induced model of depression. This figure demonstrates several possible therapeutic targets 

(green circles with red font) in our LPS-induced model of depression. One potential antidepressant route would be to block the production of kynurenine by administer-

ing inhibitors of indoleamine 2,3 dioxygenase (IDO), such as 1-methyl tryptophan. Downstream kynurenine metabolites are damaging to neurons, and therapies that 

inhibit their production would also be effective. For example, kynurenine 3-monoxygenase (KMO) inhibitors may be used to decrease 3-hydroxykynurenine (3-HK) or 

quinolinic acid production. As the majority of kynurenine in the brain is transported from the periphery, a reasonable intervention would be to prevent the transport of 

kynurenine. Tryptophan and kynurenine are both transported into the brain by L-type amino acid transporter. L-type amino acid transporter has a high affinity for leu-

cine, and leucine administration could result in a decrease in kynurenine transport and thereby reduce downstream kynurenine metabolites in the brain. Lastly, upon 

activation microglia can release glutamate and inhibit the uptake of glutamate by astrocytes that can cause excessive glutamatergic activity. This excessive glutamater-

gic activity can lead to excitotoxicity or an increase in oxidative damage. Administration of inhibitors to prevent the release of glutamate from microglia would reduce 

glutamate receptor activation and possibly prevent depressive-like behaviors. Likewise, LPS and quinolinic acid can interfere with glutamate uptake in astrocytes. The 

use of riluzole has been demonstrated to increase astrocyte uptake of glutamate, and block glutamate release. GLT-1, glutamate transporter; TLR, Toll-Like Receptor.
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the release of glutamate from microglia and the modulation of 
astrocytes due to LPS can be reversed when treated with antago-
nists of 1 of the 2 transporters that microglia use to export glu-
tamate (Domercq et al., 2007; Takeuchi et al., 2008). Riluzole is a 
drug used to treat amytrophic lateral sclerosis. It enhances the 
expression of glutamate transporters on astrocytes (Carbone 
et al., 2012), resulting in increased astrocytic glutamate uptake 
in rats (Frizzos et al., 2004; Yoshizumi et al., 2012), and decreases 
glutamate release from neurons (Wang et al., 2004). Riluzole has 
antidepressant effects as determined by the forced swim test 
(Gourley et al., 2012) and can reverse depression due to chronic 
stress in rodents (Banasr et al., 2010). Indeed, riluzole has been 
tested humans with depression with promising results (Zarate 
et al., 2005; Sanacora et al., 2007; Ibrahim et al., 2012; Brennan 
et al., 2010). This drug could be worth investigating in inflamma-
tion-induced depression. Overall, targeting the glutamate trans-
port systems within microglia and astrocytes could be another 
viable method to eliminate depressive-like behaviors.

Final Remarks

Depression is a debilitating and recurring disorder that is esti-
mated to affect nearly 20% of the population. The most com-
mon antidepressant therapies are oral medications that show 
variable response rates and take weeks to improve the moods 
of patients. The current medications therefore still have much 
room for improvement. While antiinflammatory agents have 
been tested as antidepressants, with some success in spe-
cial populations of patients, targeting a more specific mecha-
nism could have a greater response rate and be applicable to 
a wider range of patients. The inflammation-induced model of 
depression has uncovered the tryptophan-kynurenine path-
way as critical for depression, and it has provided a variety of 
new targets for antidepressant therapies. With further analysis 
of these downstream pathways, it is possible to also discover 

mechanisms that are more broadly applicable to other models 
of depression.
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