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Abstract

The mortality rate of patients with schizophrenia is high, and life expectancy is shorter by 10 to 20 years. Metabolic
abnormalities including type 2 diabetes mellitus (T2DM) are among the main reasons. The prevalence of T2DM in patients
with schizophrenia may be epidemiologically frequent because antipsychotics induce weight gain as a side effect and the
cognitive dysfunction of patients with schizophrenia relates to a disordered lifestyle, poor diet, and low socioeconomic
status. Apart from these common risk factors and risk factors unique to schizophrenia, accumulating evidence suggests the
existence of common susceptibility genes between schizophrenia and T2DM. Functional proteins translated from common
genetic susceptibility genes are known to regulate neuronal development in the brain and insulin in the pancreas through
several common cascades. In this review, we discuss common susceptibility genes, functional cascades, and the relationship
between schizophrenia and T2DM. Many genetic and epidemiological studies have reliably associated the comorbidity of
schizophrenia and T2DM, and it is probably safe to think that common cascades and mechanisms suspected from common
genes’ functions are related to the onset of both schizophrenia and T2DM. On the other hand, even when genetic analyses
are performed on a relatively large number of comorbid patients, the results are sometimes inconsistent, and susceptibility
genes may carry only a low or moderate risk. We anticipate future directions in this field.
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Schizophrenia is found in all cultures and appears to affect 0.5%
to 1.5% of people during their lifetime (Pedersen et al., 2014).
Due to its early age of onset and subsequent tendency to per-
sist chronically, it produces great suffering for patients and their
family members (Weinberger and Harrison, 2011). The mortality
rate of patients with schizophrenia is twice as high as that of
the general population, and their life expectancy is 10-20 years
shorter (Crump et al.,, 2013; Lawrence et al., 2013). Although sui-
cide and other unnatural causes account for more than 10%

of the excess mortality, a substantial proportion of this excess
mortality is due to the increased comorbidity of various med-
ical illnesses in patients with schizophrenia (Crump et al., 2013;
Lawrence et al., 2013; Olfson et al., 2015). Patients with schizo-
phrenia have an increased risk for development of type 2 dia-
betes mellitus (T2DM). The prevalence of T2DM in patients with
schizophrenia is approximately 6% to 21%, 2 to 3 times higher
than in the general population (Mitchell et al., 2013; Stubbs
et al., 2015). T2DM manifests as persistent hyperglycemia due
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to pancreatic beta-cell dysfunction, which leads to long-term
complications. T2DM is a major risk factor for cardiovascular
disease, and cardiovascular disease is the main cause of a sub-
stantial proportion of excess deaths of patients with schizo-
phrenia (Murray et al., 2012; Lawrence et al., 2013; Olfson et al.,
2015).

The mechanisms of the increasing prevalence of T2DM in pa-
tients with schizophrenia are multifactorial. T2DM and schizo-
phrenia are caused by shared etiological factors (Ward and
Druss, 2015). Traditional risk factors include a sedentary life-
style and poor diet (Ward and Druss, 2015). Risk factors unique
to schizophrenia include low socioeconomic status, cognitive
dysfunction, and iatrogenic risk during treatment with anti-
psychotics (Ward and Druss, 2015). Some evidence suggests that
a longer duration of schizophrenia increases the risk for dia-
betes (Philippe et al., 2005; Nuevo et al., 2011). Patients who have
had schizophrenia for more than 25 years have nearly twice the
risk for diabetes as those with less than 25 years since the first
admission to hospital (Philippe et al., 2005). It has been found
that impaired hormonal regulation of appetite, in terms of low
leptin and high insulin levels, often occurs in early psychosis be-
fore antipsychotic treatment (Misiak et al., 2019; Lis et al., 2020a,
2020b). Hence, schizophrenia itself is a risk for increased onset
of diabetes. Apart from these traditional risk factors and risk fac-
tors unique to schizophrenia, recent studies show an elevated
risk of T2DM among drug-naive or first-episode patients with
schizophrenia and their relatives (Perry et al., 2016; Pillinger
etal.,2017; Rajkumar et al., 2017). A recent systematic review and
meta-analysis of glucose homeostasis in unaffected first-degree
relatives of schizophrenia patients suggested impaired glucose
tolerance in this population as well (Misiak et al., 2020). Thus,
previous evidence has strongly suggested that schizophrenia
and T2DM are caused by multiple genetic variants (Gough and
O’Donovan, 2005). Multiple twin and family studies and herit-
ability of intermediate phenotypes provide convincing evidence
for an important role of the genetic etiologies, respectively (Das
and Elbein, 2006; Demjaha et al., 2012). The risk of T2DM in pa-
tients with psychoses such as schizophrenia is elevated two- to
fourfold in association with a positive family history of diabetes
(Foley et al., 2014; Chung and Miller, 2020). Further, one-half of
patients with schizophrenia are reported to have a family history
of T2DM compared with 4.6% of healthy adult controls (Bushe
and Holt, 2004). Interestingly, the polygenic risk score related to
the onset of schizophrenia is also associated with insulin re-
sistance in first-episode and antipsychotic-naive patients with
schizophrenia (Tomasik et al., 2019). Thus, schizophrenia and
T2DM may influence each other and share susceptibility gene
variants.

Accumulating evidence indicates that potential environ-
mental risk factors affecting both the premorbid phase and
after the onset of schizophrenia include exposure to stress in
early life, poor dietary habits, and a sedentary life style, as noted
above. Stress leads to the alteration of several biological mech-
anisms that has been termed “allostasis” (Misiak et al., 2014).
These processes enable adaptation to novel situations. However,
their prolonged and cumulative activation exerts systemic and
detrimental effects called the allostatic load (AL) (Juster et al.,
2016; Misiak, 2019). The AL concept can be a useful framework
for apprehending biological dysregulations related to chronic
stress. Biological alterations associated with AL (AL mediators)
in schizophrenia include a subclinical inflammatory state, en-
hanced oxidative stress levels, decreased level of neurotrophins,
and impaired hypothalamic-pituitary-adrenal (HPA) axis re-
sponse (Misiak et al., 2014). There are also markers that enable

the measurement of AL (AL index). A higher AL index has been
associated with a higher severity of positive and depressive
symptoms, working memory impairments, lower general func-
tioning, and health outcomes, including all-cause mortality
(Misiak, 2019; Piotrowski et al., 2019).

In this review, we describe the comorbidity of schizophrenia
and T2DM in genetic and functional pathways. First, we de-
scribe susceptibility genes common to schizophrenia and T2DM
(Table 1). Second, we discuss molecular mechanisms that
might explain a common functional cascade in schizophrenia
and T2DM. Third, we describe common mechanisms in schizo-
phrenia and T2DM, such as inflammation, oxidative stress, and
HPA axis dysfunction.

Common Susceptibility Genes in Schizophrenia and
T2DM

Previous family-based genome-wide linkage studies show that
schizophrenia and T2DM have a number of overlapping risk loci,
including chromosomes 1p13, 1p36, 1921-24, 1q25, 2q14, 2933,
236, 3p22, 3929, 4925, 5q13, 6p21, 6925, 7p15, 7p21, 7921, 7931
and 9p24 (Lin and Shuldiner, 2010). These loci include gene-rich
regions that will harbor multiple common candidate genes for
susceptibility to schizophrenia and T2DM. Although many of
these loci cover large distances in genomic DNA, chromosome
1g was reported to have a linkage to T2DM by several previous
studies (Das and Elbein, 2007; Tziastoudi et al., 2019). This lo-
cation has also been implicated as a schizophrenia suscepti-
bility locus (Brzustowicz et al., 2000). Therefore, these findings
have suggested that chromosome 1q may be remarkably rich in
linkage findings for co-occurrence of schizophrenia and T2DM.
Within this region of linkage, susceptibility genes for T2DM
such as endogenous retrovirus group K member 18 (Herv K-18)
and Rho guanine-nucleotide exchange factor 11 (ARHGEF11)
(Bottcher et al., 2008) have been found to be associated with
schizophrenia among sampled populations (Dickerson et al.,
2008; Mizuki et al., 2014).

The most straightforward method to identify the genetic
risk for comorbidity of schizophrenia and T2DM is searching
for overlapped candidate genes or regions of these 2 individual
diseases (Lin and Shuldiner, 2010). Common candidate genes
shared by association studies focused on each individual
disease are glutathione S-transferase mu 1 (GSTM1), gluta-
thione S-transferase theta 1 (GSTT1), neuropeptide Y (NPY), and
proteasome 26S subunit, non-ATPase 9 (PSMD9) (Itokawa et al.,
2003; Pae et al., 2004; Nordman et al., 2005; Gragnoli, 2010; Lin
and Shuldiner, 2010; Lee et al., 2013; Tang et al., 2013; Zhang
et al., 2013a). According to data from the Genetic Association
Database (http://geneticassociationdb.nih.gov/) (Becker et al.,
2004), Catalog of Published Genome-Wide Association Studies
(GWAS)  (http://www.genome.gov/gwastudies/)  (Hindorff
et al., 2009), and Type 2 Diabetes Genetic Association Database
(http://t2db.khu.ac.kr:8080/) (Lim et al., 2010), there are 196
schizophrenia susceptibility genes and 200 T2DM suscep-
tibility genes. Among them, 14 genes (annexin Al [ANXAI],
apolipoprotein E [APOE], angiotensin I converting enzyme
[ACE], GSTM1, interleukin 10 [IL10], methylenetetrahydrofolate
reductase [MTHFR], NPY, paraoxonase 1 [PON1], superoxide
dismutase 2 [SOD2], synapsin II [SYN2], tumor necrosis factor
[TNF], uncoupling protein 2 [UCP2], serine racemase [SRR], and
tetraspanin 18 [TSPAN18]) are common to both diseases (Liu
et al., 2013). These genes could be divided into 2 functional
categories. One category is inflammation-associated genes
(APOE, IL10, TNF), and the other is genes that are involved in
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Table 1. Continued

References

Samples

Method

Functions

Official full name

Location

Candidate genes

Lyssenko et al. (2008)
Zhang et al. (2013b)

2,201)

T2DM (n

Association study
Association study

insulin-like growth factor 2 Embryonic growth and

3927.2

IGF2BP2

SCZ (n = 790) vs. Con

development, decrease

insulin secretion
Molecular chaperone/

mRNA binding protein 2

1,083)

(n
SCZ (n

Hackinger et al. (2018)

=822),

924), T2D (n

GWAS

parkin coregulated

6926

PACRG

comorbid (n=505); controls

(n
T2DM affected siblings/

chaperonin-binding

1,125)

Gragnoli (2010)

Association study

proteasome 26S subunit, Chaperone of 26S

12q24.31

PSMD9

families (n = 201)
SCZ (n = 1,351) vs. Con

proteasome complex

non-ATPase 9

Lee et al. (2013)

Association study

assembly Insulin gene

1,378)

(n
SCZ and T2DM database

transcription coactivator
Catalyzes synthesis of

Liu et al. (2013)

GWAS

serine racemase

17p13.3

SRR

D-serine
Synaptogenesis, modulation GWAS

Liu et al. (2013)

SCZ and T2DM database

synapsin II

3p25.2

SYN2

of neurotransmitter

release
Tetraspanin families which GWAS

Liu et al. (2013)

SCZ and T2DM database

tetraspanin 18

11p11.2

TSPAN18

regulate cell development
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oxidative stress (GSTM1, MTHFR, PON1, SOD2, UCP2). Currently,
the National Human Genome Research Institute-European
Bioinformatics Institute catalog of published GWASs lists 402
schizophrenia-susceptibility genes and 890 genes associated
with T2DM (Nagalski et al., 2016). They found 26 candidate
genes that are shared by schizophrenia and T2DM. Functional
analysis of the 79 candidate genes shared by T2DM and any of
the severe mental illnesses (schizophrenia, bipolar disorder,
and major depression) revealed several clusters of common
candidate risk genes.

Other candidate genes, such as insulin like growth factor
2 mRNA binding protein 2 (IGF2BP2) or transcription factor
7 like 2 (TCF7L2), may also contribute to the genetic basis of
the co-occurrence of schizophrenia and T2DM. The IGF2BP2
polymorphisms are associated with vulnerability to schizo-
phrenia in a Han Chinese population (Zhang et al., 2013b)
and with impaired pancreatic f3-cell function, including lower
fasting insulin levels, which reduced glucose-stimulated
insulin secretion (Lyssenko et al, 2008). The TCF7L2
polymorphisms have been detected in consistent association
with T2DM in multiple ethnic populations, including Japanese,
Chinese, Americans, and Asian Indians (Wang et al., 2013).
A GWAS in a Greek population identified genomic regions
with evidence of colocalizing schizophrenia and T2DM. In this
study, the most strongly associated variant resides within
an intron of the Parkin coregulated (PACRG) gene in schizo-
phrenia patients with T2DM vs controls, and another variant
that reached genome-wide significance resides within the in-
tron of the TCF7L2 gene (Hackinger et al., 2018). However, the
findings were negative in a GWAS performed in a Japanese
population (Kajio et al., 2014).

Though common variants of SNP polymorphisms have
only small effects, large, rare chromosomal copy number
variants (CNVs) identified by comparative genomic ana-
lyses are known to increase the risk for schizophrenia and
have relatively larger effects (Chen et al.,, 2015; Bray and
O’Donovan, 2018). Of more than 20,000 schizophrenia pa-
tients and controls, 8 CNVs (on chromosomes 1q21.1, 2p16.3,
3q29, 7q11.2, 15q13.3, distal 16p11.2, proximal 16p11.2,
and the velocardiofacial syndrome region on chromosome
22q11.2) are associated with the onset of schizophrenia at a
significant genome-wide threshold (CNV and Schizophrenia
Working Groups of the Psychiatric Genomics Consortium)
(Marshall et al., 2017; Bray and O’Donovan, 2018). It is well
known that 20%-30% of people with a 22q11.2 deletion have
schizophrenia (Murphy et al., 1999), and the prevalence of
obesity and T2DM is reported to be greater than normal in
22q11.2 deletion syndrome (Voll et al., 2017). A partial 22q11.2
deletion that includes several genes related to the neuro-
psychiatric phenotype, catechol-O-methyltransferase (COMT)
(Xiu et al., 2015) and thioredoxin reductase 2 (TXNRD2) (Kariz
et al., 2015), is associated with the onset of T2DM. Of 8 top
candidate genes for schizophrenia affected by CNVs (Luo
et al., 2014), only B-cell CLL/lymphoma 9 (BCL9) (1q21.1),
which is required in the Wnt signaling pathway, was reported
to be associated with T2DM (Anderson et al., 2015) or schizo-
phrenia (Liet al., 2011), although there are not enough studies
on the relationship between CNVs and T2DM, unlike schizo-
phrenia. Prabhanjan et al. (2016) reported 24 CNV genes in
patients with T2DM, and DLG associated protein 1 (DLGAP1), a
scaffold protein of the postsynaptic density that is related to
post-synapse neurotransmission of glutamate, is suspected
to be genetically and functionally related to schizophrenia
(Kirov et al. 2012; Rasmussen et al. 2017).
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Common Functional Cascade in Schizophrenia and
T2DM

Rho GTPase— Disturbances in synaptic connectivity during
perinatal and adolescent periods underlie the pathophysiology
of schizophrenia (McGlashan and Hoffman, 2000). Postmortem
brain studies of individuals with schizophrenia have reported
reduced dendritic spine density in the cerebral neocortex
(Glantz and Lewis, 2000; Konopaske et al., 2014). These dendritic
spine abnormalities are likely the result of disturbances in the
molecular mechanisms that contribute to spine formation,
pruning, and/or maintenance (Glausier and Lewis, 2013).
Dendritic spine morphogenesis is regulated through cytoskeletal
actin, which is concentrated highly in the spines (Fischer et al.,
1998).

The Rho family of small GTPases (Rho GTPases), which in-
cludes Cdc42, Racl, and RhoA, is a critical regulator of actin
cytoskeleton dynamics and organization in the spines (Hall,
1998). The activation of Rho GTPases is mediated by specific
guanine-nucleotide exchange factors (GEFs) that catalyze the
exchange of bound GDP (inactive state) for bound GTP (active
state) (Van Aelst and D’Souza-Schorey, 1997). Several Rho GEFs
that localize to dendritic spines play important roles in den-
dritic spine morphogenesis by modulating the activity of Rho
GTPases (Xie et al., 2007).

ARHGEF11 is a specific GEF for RhoA (Rumenapp et al., 1999).
ARHGEF11 is expressed in the pancreas, liver, adipose tissue,
and highly in the brain (Jackson et al., 2001). ARHGEF11 variants
are associated with a higher risk for the onset of schizophrenia
in a Japanese population (Mizuki et al., 2014). ARHGEF11 inter-
acts and colocalizes with synapse marker postsynaptic density
protein 95 (PSD-95) at synapse sites and negatively regulates
the formation of dendritic spines in cortical primary neurons
(Mizuki et al., 2016). In a yeast 2-hybrid screen, ARHGEF11 inter-
acts with disrupted-in-schizophrenia 1 (DISC1) (Millar et al.,
2003). DISC1 directly interacts with PSD-95 and kalirin-7, a GEF
for Racl, and blocks access of kalirin-7 to Rac1l. This binding is
released by N-methyl-D-aspartate (NMDA) receptor activation,
allowing free access of kalirin-7 to Racl and leading to the re-
sultant activation of Racl and spine enlargement (Hayashi-
Takagi et al., 2010). On the other hand, platelet-activating factor
acetylhydrolase 1B1 (LIS1), one of the major binding partners of
DISC1, is associated with RhoA activity (Kholmanskikh et al,,
2003). Haploinsufficiency in LIS1 has also been shown to reduce
spine density, while downregulation of RhoA rescued spine mo-
tility (Sudarov et al., 2013). DISC1 may also regulate the access
of ARHGEF11 to RhoA, resulting in spine shrinkage. Regulation
of Rho GTPases by DISC1 may be crucial for proper maintenance
of the dendritic spine (Tropea et al., 2018). DISC1 (Ma et al., 2018;
Xu et al., 2018) and kalirin (Kushima et al., 2012) are also reported
to be associated with schizophrenia. Though DISC1 is not con-
sidered a common risk gene for schizophrenia by GWAS, DISC1
may play critical roles as a pathological mediator in a wide
range of psychiatric disorders (Niwa et al., 2016).

Dysfunction of insulin release from pancreatic islet f3-cells
is considered to be one of the causal factors in the etiology of
T2DM. Racl is particularly important for glucose-stimulated in-
sulin secretion (Wang and Thurmond, 2009). In contrast, RhoA
expression is increased in f-cells under diabetic conditions,
and Rho/Rho-kinase activation is involved in the suppression
of insulin biosynthesis (Nakamura et al., 2006). Thus, insulin
release from pancreatic islet f3-cells could be determined by
the resulting balance between RhoA and Racl activities. These
findings suggest that Rho GTPase signaling affects not only the

dendritic spine structure but also a number of cellular processes,
including insulin release from pancreatic islet p3-cells, and that
aberrations in Rho GTPase signaling, including its activation by
GEFs, could therefore contribute to the comorbidity of schizo-
phrenia and T2DM (Figure 1).

Wnt/B-Catenin

Wnts are secreted glycoproteins known as extracellular ligands.
Wnt/p-catenin signaling (canonical pathway) is a critical and
well-studied pathway (MacDonald et al., 2009). In the absence of
Wnt ligands, cytoplasmic -catenin protein is tightly regulated
at a low level by casein kinase 1 (CK1)-mediated phosphoryl-
ation and the regulatory adenomatous polyposis coli (APC)/
axin/glycogen synthase kinase-3 (GSK-3f) complex, leading to
its ubiquitination and subsequent proteasomal degradation
(Gao et al., 2014). In an activated state, Wnt signaling promotes
destruction of APC/axin/GSK-3f complex components and in-
hibition of 3-catenin degradation. §-Catenin accumulates in the
cytoplasm and eventually translocates into the nucleus, where
it binds with T-cell factor/lymphoid enhancer factor (TCF/LEF)
family members and induces the transcription of target genes
(Shang et al., 2017). The Wnt signaling pathway is crucial for
regulating diverse biological processes such as embryonic devel-
opment, organ formation, and cell proliferation. This pathway
plays an important role in the pathophysiology of T2DM and has
been shown to be critical for the development of the pancreas
and islets during embryonic growth (Papadopoulou and Edlund,
2005). The Wnt/p-catenin pathway also plays a role in neuronal
development (Brafman and Willert, 2017).

TCF7L2, also called TCF4, is one of the TCF/LEF family mem-
bers. The TCF7L2 gene encodes a high mobility (HMG) box that
plays an important role in the downstream Wnt/$-catenin signal
pathway (Hansson et al., 2010). Functionally, TCF7L2 is critical
for B-cell proliferation and survival as well as insulin produc-
tion and secretion (Liu and Habener, 2010) and is a key regulator
of insulin and proinsulin synthesis and processing (Zhou et al.,
2014). Although studies of TCF7L2 in brain development and
pathologies have been relatively scarce, evidence from animal
studies strongly implicates TCF7L2-dependent transcription in
the development of changes in the volume of cortical areas,
thalamo-cortical dysconnectivity, and white matter microstruc-
tural alterations (Bem et al., 2019). TCF7L2 also regulates syn-
aptic plasticity (Kennedy et al., 2016). Therefore, TCF7L2 may
contribute to the comorbidity between schizophrenia and T2DM.

DISC1 also regulates the stability of Wnt/3-catenin signaling
by an interaction with GSK3p and acts through this pathway to
regulate neural progenitor proliferation and modulate mental
homeostasis (Mao et al, 2009). Disheveled-axin domain-
containing 1 (DIXDC1), a direct interacting partner of DISCI,
contributes to psychiatric pathogenesis by regulating dendritic
spine and glutamatergic synapse density downstream of Wnt/f3-
catenin signaling (Martin et al., 2018).

Akt/GSK3

GSK3 plays several roles in differentiation and development,
intracellular trafficking, apoptosis, and regulation of gene tran-
scription (Emamian, 2012). Some studies suggest that GSK3 in
the brain could modulate synaptic plasticity (Emamian, 2012).
GSK-3f is a key player of Wnt signaling pathways (Freyberg
et al,, 2010). GSK3 is a molecule immediately downstream to
Akt, a serine/threonine kinase (Freyberg et al., 2010). GSK3 and
Akt are serine threonine kinases that were initially identified as
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Figure 1. Summary of plausible shared mechanisms for the pathogenetic association between schizophrenia and type 2 diabetes mellitus (T2DM). (A) Schematic rep-
resentation of Rho family of small GTPases (Rho GTPases) signaling cascades involved in synaptic plasticity. Rho guanine-nucleotide exchange factor 11 (ARHGEF11)
interacts and colocalizes with synapse marker postsynaptic density protein 95 (PSD-95) at synapse sites and negatively regulated the formation of dendritic spines in
cortical primary neurons (Mizuki et al., 2016). Disrupted-in-schizophrenia 1 (DISC1) directly interacts with PSD-95 and kalirin-7, a GEF for Rac1, and blocks access of
kalirin-7 to Racl. This binding is released by N-methyl-D-aspartate (NMDA) receptor activation, allowing free access of kalirin-7 to Racl and leading to the resultant
activation of Racl and spine enlargement (Hayashi-Takagi et al., 2010). (B) The role of Rho GTPase in pancreatic  cells. Racl is particularly important for glucose-
stimulated insulin secretion (Wang and Thurmond, 2009). In contrast, RhoA expression is increased in p-cells under diabetic conditions, and Rho/Rho-kinase activation
is involved in the suppression of insulin biosynthesis (Nakamura et al., 2006). Insulin release from pancreatic islet f-cells could be determined by the resulting balance
of Rho GTPase signaling. lllustrating this schematic figure, we referenced figures of Hayashi-Takagi et al., 2010 and Wang et al., 2009.

playing a role in regulating the activity of glycogen synthesis in
response to insulin receptor stimulation (Beaulieu, 2012). Insulin
signals through the tyrosine kinase activity of its receptor to ac-
tivate Akt through the phosphatidylinositol 3-kinase pathway.
Akt phosphorylates GSK-3 and inactivates it (Lovestone et al.,
2007). Of interest, DISC1 regulates pancreatic beta-cell function,
decreases beta-cell proliferation, and promotes apoptosis and
glucose intolerance in transgenic mice via regulation of GSK3f
(Jurczyk et al., 2016).

GSK3 has also been implicated in the pathogenesis of schizo-
phrenia and the actions of neurotransmission of dopamine

(Kaidanovich-Beilin et al., 2012). GSK3 is a major downstream
regulator of dopamine receptor D2 (DRD2), which is targeted by
most antipsychotics. Besides the canonical G protein-dependent
cAMP-protein kinase A signaling pathway, the non-canonical
DRD2 transduction pathway is the G protein-independent Akt/
GSK3 pathway (Beaulieu et al., 2011). Activation of DRD2 by
dopamine facilitates the arrestin 2/protein phosphatase 2A/
Akt complex and dephosphorylates and inactivates Akt, fol-
lowed by dephosphorylation (activation) of GSK3 (Beaulieu
et al,, 2011). Chronic administration of a dopamine agonist,
such as amphetamine or apomorphine, also leads to increased
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inhibitory phosphorylation of Akt and increased activation of
GSK3p (Beaulieu et al., 2011). On the other hand, antipsychotics
are able to increase Akt activation (Emamian et al., 2004; Takaki
et al., 2018). These data establish a strong relationship between
dopamine levels and Akt/GSK3p signaling (Singh, 2013). Akt
and GSK-3 may be modulated by DISC1 with indirect and direct
interactions, respectively (Dahoun et al., 2017). The Akt/GSK-3
pathway may be responsible for the co-occurrence of T2DM and
schizophrenia (Lin and Shuldiner, 2010).

Multiple genetic, functional, and animal studies have shown
that COMT is significantly associated with schizophrenia (Luo
et al,, 2014). COMT is a prime candidate for ameliorating the
cognitive dysfunction of schizophrenia (Tunbridge et al., 2006).
COMT polymorphism is also associated with hyperglycemia and
hemoglobin A1C in T2DM (Hall et al., 2016). Furthermore, COMT
is related to the Akt/GSK3 cascade. The COMT Val108/158Met
genotype is related to Akt phosphorylation, and information
on functional interactions between COMT and AKt may provide
novel insights into the pathogenesis of schizophrenia (Sei et al.,
2010).

Increasing evidence reveals regulatory interactions between
dopamine and the central renin-angiotensin system (Oh and
Fan, 2019). ACE catalyzes the conversion of angiotensin I to the
active hypertensive peptide angiotensin II. Angiotensin II in-
duces dopamine release in mesolimbic dopaminergic neurons
(Rodriguez et al., 2020). Although several studies reported that
ACE activity is inconsistent in patients with schizophrenia,
higher ACE activity is associated with cognitive dysfunction in
patients with schizophrenia (Rodriguez et al., 2020). Because
angiotensin II increases hepatic glucose production and de-
creases insulin sensitivity, ACE inhibitor and angiotensin re-
ceptor blockers are reported to reduce the occurrence of T2DM
(Gillespie et al., 2005).

Common Mechanisms in Schizophrenia and T2DM

Inflammation Abnormality—Inflammation is a necessary re-
sponse to infection, harmful chemicals, and tissue damage
(Muller, 2018). Inflammation comes at the cost of a transient
decline in tissue function, which in turn contributes to altering
the homeostasis and becomes the pathogenesis of diseases
(Medzhitov, 2010). The long-term effects of inflammatory medi-
ators induce neuroinflammatory disease in the brain as well as
metabolic disease in the pancreas (Bauer and Teixeira, 2019).
The origins of inflammatory and immune activation in
schizophrenia include (1) genetic predisposition; (2) prenatal ex-
posure to infections (Brown and Derkits, 2010), maternal inflam-
mation during pregnancy (Canetta et al., 2014), and obstetric
complications (Cannon et al., 2002); (3) gastrointestinal perme-
ability and the gut microbiome (Severance et al., 2016); (4) psy-
chological trauma (Popovic et al., 2019; Stilo and Murray, 2019)
and other environmental exposures such as a low level of serum
vitamin D (Davis et al., 2016) and substance use (Miller et al.,,
2018); and (5) abnormalities in brain insulin action (Agarwal
et al., 2020). These inflammations affect the development and
activity of microglial cells, which work in the primary inflam-
mations in the central nervous system (Howes and McCutcheon,
2017). Findings from the current meta-analysis seem to support
elevated levels of pro-inflammatory marker cytokines, such as
interleukin-6 (IL-6), IL-1f, and tumor necrosis factor A (TNF-A), in
the blood and cerebrospinal fluid of patients with schizophrenia
(Goldsmith et al., 2016; Capuzzi et al.,, 2017). Inflammatory
markers have been found to be increased in the first episode of
schizophrenia, and manifested alterations in the severity and

resistance to treatment in various stages of the illness (Fineberg
and Ellman, 2013; Upthegrove et al., 2014; Capuzzi et al., 2017).
Furthermore, these inflammatory markers are associated with
negative symptoms, indicating loss of brain matter and cogni-
tive impairment in patients with schizophrenia (Garcia-Rizo
et al,, 2012; Fillman et al., 2013; Meyer, 2013).

Low-grade inflammation has also been described as a risk
factor for future development of T2DM. Many studies reported
increased levels of pro-inflammatory markers, such as IL-6,
IL-1B, and TNF-A, which are predictive components in patients
with T2DM (Rehman and Akash, 2016). Pediatric studies, which
have the advantage of not being influenced by other diseases,
medications, or active tobacco smoking, have demonstrated
that IL-1p, IL-6, TNF-A, and other markers are increased in in-
sulin resistance (Reinehr, 2019). Thus, pro-inflammatory me-
diators could promote insulin resistance and fB-cell failure,
ultimately resulting in the development of T2DM. Psychological
stress can be considered to have a significant role in the onset
and progression of diabetes (Afrisham et al., 2019). Although the
liver and adipose tissue are important sites for the activation
of inflammation pathways, chronic stress directly activates the
innate immune system, which, in turn, activates the production
of IL-6 and other cytokines (Pickup, 2004). With a genetic predis-
position, subsequent stress contributes a vulnerability factor for
inflammation-associated schizophrenia. Multiple genome-wide
association studies have shown that the major histocompati-
bility complex on chromosome 6p, which is known to play a key
role in the immune system, is an important region for allelic as-
sociation in schizophrenia (Ripke, 2014). In particular, alleles of
complement C4 within the human leukocyte antigen were found
to be associated with schizophrenia, and C4 promotes synaptic
elimination (Sekar et al., 2016). C4 levels also correlate with body
mass index (Copenhaver et al., 2019). IL-1B, IL6, and IL6R genes
were associated with schizophrenia in a meta-analysis (Hudson
and Miller, 2018) and an association study (Kapelski et al., 2015).
Variants in IL1B, IL6, and other cytokine genes were associated
with T2DM in multiple studies (Achyut et al., 2007; Arora et al.,
2011; Banerjee and Saxena, 2014). An altered immune system
and inflammatory components induced by chronic stress were
associated with the molecular mechanisms of diabetes in
schizophrenia (van Beveren et al., 2014; Ward and Druss, 2015).

Thus, inflammation may be a common underlying mech-
anism for schizophrenia and diabetes mellitus, which are highly
comorbid with each other (Khandaker et al., 2017).

Oxidative Stress

Oxidative stress is defined as an imbalance between the pro-
duction of reactive oxygen species and their elimination by a
protective mechanism (antioxidant system), which can lead to
chronic inflammation (Hussain et al., 2016). Oxidative stress is
harmful because excess reactive oxygen species attacks bio-
logical molecules such as proteins and DNA (Yoshikawa and
Naito, 2002). An accumulation of oxidative damage to biological
molecules is involved in the pathogenesis of various diseases,
including metabolic diseases, diabetes complications, and
neurodegenerative disorders (Emiliani et al., 2014). Multiple
lines of evidence have identified increased oxidative stress in
patients with schizophrenia (Koga et al., 2016). Most studies
examined markers of oxidative status in the blood, such as en-
dogenous antioxidants glutathione (GSH) (Barron et al.,, 2017).
A recent extensive review found that peripheral markers of GSH
were consistently decreased but found equivocal results for
other antioxidants such as superoxide dismutase and catalase

20z 1udy 0z uo 1senb Aq G£/££09/29€/5/v/81one/dull/woo dno-ojwspese//:sdiy woly pepeojumog



Mizukietal. | 375

Genetics

==

Common biological pathway

Molecular . Oxidative Neuroendocrine
g Inflammation .
basis stress dysfunction
> Poor diet
Schizophrenia T2DM
. Sedentary
lifestyle
Obesity ————
L. | Antipsychotics ——

Figure 2. Mechanisms that underlie the association between schizophrenia and type 2 diabetes mellitus (T2DM). The mechanisms of the increasing prevalence of
T2DM in patients with schizophrenia are multifactorial. Poor diet and sedentary lifestyle are included in the traditional risk factors. Iatrogenic risk during treatment
with antipsychotics is included in risk factors unique to schizophrenia (Ward and Druss, 2015). Accumulating evidence suggests shared genetic susceptibility and bio-

logical common pathway of both schizophrenia and T2DM.

(Koga et al., 2016). Genetic studies have shown associations be-
tween oxidative stress gene polymorphisms and schizophrenia,
including genetic variations in a subunit or GSH cysteine ligase,
the enzyme responsible for GSH synthesis, and several gluta-
thione S-transferases (GST), utilizing GSH as a co-factor (Gysin
et al.,, 2007; Gravina et al., 2011). Meta-analysis studies have
found the association of the most important genes of the GST
family, GSTM1 and GSTT1 variants, with T2DM (Tang et al., 2013;
Zhang et al., 2013a). However, unlike genetic association studies,
the available GWASs have not provided convincing evidence
for an oxidative stress-related genetic predisposition to schizo-
phrenia (Maas et al., 2017).

PON1 is a candidate for a gene that overlaps schizophrenia
and T2DM. PON1 enzyme is known to have a protective effect
against oxidative stress (Menini and Gugliucci, 2014; Bigagli and
Lodovici, 2019). In this context, PON1 activity is inversely associ-
ated with inflammatory responses. Drug-naive first-episode pa-
tients with schizophrenia show an inverse relationship between
decreased activity of the enzyme PON1 and increased cytokine
levels, including IL-6, IL-4, and IL-10 (Brinholi et al., 2015). PON1
activity is also decreased in T2DM and related to f3-cell function
(Meneses et al., 2019).

MTHEFR is a key enzyme for 1-carbon metabolism and DNA
methylation. MTHFR polymorphisms (C677T and A1298C) are re-
lated to enzymatic activity, and an approximately 20% reduction
of MTHFR enzyme activity is shown in patients with schizo-
phrenia (Wan et al., 2018). Interestingly, these polymorphisms
are frequently reported in the onset of T2DM and diabetic neph-
ropathy (Mtiraoui et al., 2007).

HPA Axis Dysfunction

The HPA axis, a neuroendocrine system, plays a fundamental
role in the maintenance of reactions to stress and affects the
physiologic adaptive reactions of the organism to stressors
(Nicolaides et al., 2015). HPA is involved in the homeostasis

of metabolic, cardiovascular, and reproductive systems, as
well as the immune system (van den Brink et al., 2018). The
central stress system triggers the synthesis and secretion of
corticotropin-releasing hormone (CRH) in the paraventricular
nuclei of the hypothalamus (Chrousos, 1995). Through the
hypophysial portal system, CRH reaches the anterior pitu-
itary gland and releases adrenocorticotropic hormone (ACTH)
into the systemic circulation. On binding to the glucocorticoid
receptors of the adrenocortical cells, ACTH subsequently in-
duces glucocorticoid synthesis and secretion, which control
CRH and ACTH release via a negative feedback loop (van den
Brink et al., 2018). Consequently, the blood glucocorticoid con-
centration is increased by the stress reaction. Glucocorticoids
are steroid hormones that regulate multiple aspects of glu-
cose homeostasis. Glucocorticoids promote gluconeogenesis
in the liver by induction of gluconeogenesis enzymes and de-
crease glucose uptake and utilization by antagonizing the in-
sulin response in skeletal muscle and adipose tissue (Chiodini
et al., 2007). Therefore, excess or long-lasting (chronic) gluco-
corticoid exposure causes hyperglycemia and insulin resist-
ance. In patients with T2DM, glucocorticoid secretion has
been suggested to be a possible link between insulin resist-
ance and the features of metabolic syndrome (Chiodini et al.,
2007).

Epidemiological studies have revealed that HPA activity
plays a role in the pathophysiology of schizophrenia. Pro-
inflammatory cytokines such as IL-1, IL-6, or TNF are also
involved in activating the HPA axis (Chrousos, 1995; Meyer,
2013). Although there are contradictory reports (Ciufolini
et al., 2014), schizophrenia is associated with elevated base-
line and challenge-induced HPA activity (Walker et al., 2008).
Furthermore, control of the HPA axis was also impaired in
drug-naive and first-episode patients with schizophrenia
(Ryan et al., 2004), and baseline cortisol levels are higher in
prodromal (clinically high risk) patients (Walker et al., 2013).
However, these findings are not universal, and there is limited
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agreement about elevations in glucocorticoids (Bradley and
Dinan, 2010).

Other Endocrine Systems (Prolactin)

The prolactin (PRL) pathway may contribute to the comorbidity
of schizophrenia and T2DM (Gragnoli et al., 2016). PRL lies on
locus 6p22.3, which is strongly associated with T2DM in the
GWAS replication study (Lu et al., 2012). PRL plays a role in
regulation of beta-cell mass (Nielsen et al., 2001), islet regener-
ation and proliferation (Nyblom et al., 2009), and insulin secre-
tion (Sorenson and Brelje, 2009). Low PRL levels are related to
a higher T2DM risk in both sexes (Balbach et al., 2013). On the
other hand, higher PRL levels were associated with lower glu-
cose levels and higher insulin sensitivity (Wagner et al., 2014).

PRL levels are also associated with schizophrenia. First-
episode drug-naive male schizophrenia patients have serum
PRL levels 3 times higher than healthy male controls (Albayrak
et al,, 2014). It has also been shown that the PRL level is nega-
tively associated with the severity of positive psychosis symp-
toms in drug-naive male patients with schizophrenia (Ramsey
et al., 2013). Furthermore, PRL polymorphism is associated with
schizophrenia, especially in male patients (Rybakowski et al.,
2012). Although increased or decreased PRL levels have not
been found consistently across studies or by gender difference
(Rajkumar, 2014), PRL dysfunction may sustain disrupted mental
development and T2DM-related metabolism.

Other candidate genes, PRL-releasing hormone receptor
(PRLRH), PRL receptor (PRLR), oxytocin (OXT), oxytocin receptor
(OXTR), and NPY, may also correlate with the PRL pathway and
contribute to schizophrenia and T2DM. However, genetic data on
PRLRH, PRLR, OXT, OXTR, and NPY in human T2DM and schizo-
phrenia patients are scarce (Postolache et al., 2019).

CONCLUSION

We summarized the genetics and functional mechanisms
underlying the comorbidity of schizophrenia and T2DM
(Figure 2). Even when genetic analyses are performed on a rela-
tively large number of comorbid patients, the results are some-
times inconsistent, and susceptibility genes may also have only
a low or moderate risk to the onset of both. Genetic association
studies have revealed the number of common risk variants
underlying diseases, but these variants explain only a propor-
tion of heritability. Among the reasons for the complexity in
this field are suspected to be the following: (1) the heterogen-
eity of schizophrenia; (2) many environmental factors, such as
lifestyle and vulnerability to life events, which are related to
genetic factors; and (3) both genetic and environmental factors
that affect common mechanisms in schizophrenia and T2DM,
such as abnormal inflammation, oxidative stress, and HPA axis
dysfunction. It is very difficult to distinguish purely environ-
mental factors from purely genetic factors. A new approach is
to estimate environmental factors statistically compensated by
digitized intermediate phenotypes directly related to genetic
factors, such as cognitive function, structural or functional mag-
netic resonance imaging analysis, and cerebral blood flow.

On the other hand, based on many genetic and epidemio-
logical studies, the comorbidity of schizophrenia and T2DM is
established, and it is probably safe to assume that common
cascades and mechanisms suspected from common genes’
functions in the brain or pancreas are related to the onset of
schizophrenia and T2DM. At the point of preemptive medicine,

genetic and epidemiological information will be used in making
decisions for the prevention and treatment of schizophrenia
and T2DM. Though introduction of new medications or supple-
ments that are effective in these cascades and mechanisms may
be expected, 1 target point may not be adequate because each
common cascade and mechanism is also closely linked. In the
future, in addition to more comprehensive whole genome and
epigenome analyses of schizophrenia and T2DM, a more pre-
cise approach such as familial and rare gene analyses of CNVs
of comorbid patients, further subdivision of the diagnoses of
schizophrenia, and the following basic functional research may
eliminate these difficulties and clarify the treatment target for
patients with the same phenotype but different causes.
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