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Abstract

The scientific literature of laboratory animal research is re-
plete with papers reporting poor reproducibility of results as
well as failure to translate results to clinical trials in humans.
This may stem in part from poor experimental design and
conduct of animal experiments. Despite widespread recogni-
tion of these problems and implementation of guidelines to
attenuate them, a review of the literature suggests that exper-
imental design and conduct of laboratory animal research are
still in need of refinement. This paper will review and discuss
possible sources of biases, highlight advantages and limita-
tions of strategies proposed to alleviate them, and provide a
conceptual framework for improving the reproducibility of
laboratory animal research.
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What Is the Problem?

I n 2005, the biomedical research community was startled
by a paper entitled “Why Most Published Research Find-
ings Are False” (Ioannidis 2005). Based on systematic re-

views and simulations, the author concluded that “for most
study designs and settings, it is more likely for a research
claim to be false than true.” Was this just an alarmist claim
or is there indeed a problem with the validity of biomedical
research? Despite some debate about the validity of Ioanni-
dis’ original analysis (e.g., Goodman and Greenland 2007),
evidence has accumulated over the past 10 years that tends
to favor the latter view. This is further supported by a recent
commentary in Nature (Macleod 2011) that underscores

concerns that experimental design and conduct need to im-
prove in laboratory animal research.

Poor Reproducibility and Translational
Failure

The use of animals for research is a privilege granted to sci-
entists with the explicit understanding that this use provides
significant new knowledge without causing unnecessary
harm. However, poor reproducibility of results from animal
experiments across many research areas (c.f., Richter et al.
2009) and widespread failure to translate preclinical animal
research to clinical trials (i.e., translational failure; e.g.,
Kola and Landis 2004; Howells et al. 2014; van der Worp
et al. 2010) suggest that these expectations are not met. For
example, of more than 500 neuroprotective interventions
that were effective in animal models of ischemic stroke,
none was found to be effective in humans (O’Collins et al.
2006). A 10-year review (1991–2000) of drug development
revealed that the main causes of such attrition at the clinical
trials stage are lack of efficacy and safety, which together
account for 60% of the overall attrition rate (Kola and Landis
2004). These authors therefore concluded that animal studies
which better predict the efficacy and safety of drugs in clinical
trials are needed to reduce translational failure.

The Study of the Scientific Validity
of Laboratory Animal Research

The empirical study of the scientific validity of laboratory
animal research is an emerging field (Macleod 2011), and
several lines of evidence highlight both current and potential
problems. For example, translational failure in drug develop-
ment could indicate that the construct validity of animal
models is poor (Box 1). Construct validity refers to the degree
to which a test measures what it claims to be measuring
(Cronbach and Meehl 1955), and there is increasing concern
that the construct validity of many animal models for human
diseases is indeed questionable (e.g., Editor 2011; Nestler and
Hyman 2010). However, construct validity depends on the
specific disease that is modeled, and there is no simple meth-
od for assessing construct validity. Furthermore, improve-
ments in animal models usually go hand in hand with
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advances in research on the construct that is being modeled.
Therefore, improving the construct validity of animal models
depends on advances in research rather than adherence to
methods or policies.

Another aspect related to construct validity concerns
the health and well-being of the animals used for research.
Growing evidence indicates that current standard practices
of housing and care in laboratory animals are associated
with abnormal brain and behavioral development and other
signs of poor welfare, which may also compromise the scien-
tific validity of research findings (Garner 2005; Knight 2001;

Martin et al. 2010; Würbel 2001). Whether animal welfare
matters in terms of the scientific validity of a research finding,
however, depends on the area of research and on the specific
research question.
Although highly relevant, construct validity and animal

welfare will therefore not be further discussed in this article.
Instead, we will focus our discussion on two fundamental
aspects of scientific validity, both of which are relevant across
all fields of laboratory animal research and are determined
by experimental design and conduct: internal and external
validity.

Box 1. Glossary of Key Terms

Bias: Systematic deviation from the true value of the estimated treatment effect caused by failures in the design, conduct, or
analysis of an experiment.
• Attrition bias: The unequal distribution of dropouts or nonresponders between treatment groups. This can lead to a system-
atic difference between treatment groups and may lead to an incorrect ascription of a causal relation between the treatment
and the dependent variable.

• Detection bias: Systematic differences between treatment groups in how outcomes are assessed. This can be reduced or
avoided by blinding or masking.

• Performance bias: Systematic differences in animal care and handling between treatment groups. This can be reduced or
avoided by blinding or masking.

• Selection bias: The biased allocation of subjects to treatment groups. Biased allocation can lead to systematic differences in
the baseline characteristics between groups. This can be avoided by randomized allocation and allocation concealment.

Blinding/masking: The maintenance of the persons’ (who perform the experiment, collect data, and assess outcome, etc.)
unawareness of the treatment allocation.

Types of error
• False negative (β): The failure to reject the null hypothesis when it is false. This is often due to small sample sizes
(underpowered study designs).

• False positive (α): The rejection of the null hypothesis when it is true. This is often due to some form of bias.

Randomization
• Simple: Randomized allocation of subjects to the different treatment groups based on a single sequence of random assign-
ments. This may lead to imbalanced groups and group sizes when the number of subjects is small.

• Stratified: Allocation of subjects to blocks of subjects sharing similar baseline characteristics (e.g., sex, age, body size)
followed by randomized allocation of the subjects of each block to the different treatment groups. This is intended to coun-
terbalance potential covariates across treatment groups.

Reproducibility: The ability of a result to be replicated by an independent experiment in the same or a different laboratory.

Validity
• Construct validity: The degree to which inferences are warranted from the sampling properties of an experiment (e.g.,
units, settings, treatments and outcomes) to the entities these samples are intended to represent.

• External validity: The extent to which the results of an animal experiment provide a correct basis for generalizations to
other populations of animals (including humans) and/or other environmental conditions.

• Internal validity: The extent to which the design, conduct, and analysis of the experiment eliminate the possibility of bias
so that the inference of a causal relationship between an experimental treatment and variation in an outcome measure is
warranted.

Definitions adapted from van der Worp et al. (2010) and from the Cochrane Collaboration.
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Internal and External Validity of Laboratory
Animal Research

Internal validity refers to the extent to which a causal rela-
tion between an experimental treatment and variation in an
outcome measure is warranted (Box 1). It critically depends
on the extent to which experimental design and conduct
minimize systematic error (also called bias). Already some
15 to 20 years ago, reports were published indicating that
fundamental aspects of proper scientific conduct were often
ignored, thereby compromising the internal validity of re-
search findings (Festing and Altman 2002; McCance
1995). Several recent studies suggest that not much has
changed to date. For example, a systematic review of
animal experiments conducted in publicly funded research
establishments in the United Kingdom and United States re-
vealed that only a few authors reported using randomization
(13%) or blinding (14%) to avoid bias in animal selection
and outcome assessment (Kilkenny et al. 2009). Others
found that only 3% of all studies reported an a priori sample
size calculation (Sena et al. 2007) and in even fewer cases
was a primary outcome variable defined (Macleod 2011).
Similar results were obtained from various reviews of pre-
clinical neurological research (Frantzias et al. 2011; van
der Worp et al. 2010; Vesterinen et al. 2010), indicating
that systematic bias may be widespread in laboratory animal
research.
In clinical research, similar problems became apparent

several years earlier, resulting in the CONSORT statement
intended to improve the reporting of randomized clinical
trials (Begg 1996; Moher et al. 2001; Schulz et al. 2010).
Based on the CONSORT statement and with the aim to im-
prove the reporting of animal studies, Kilkenny et al. (2010)
recently developed the Animals in Research: Reporting In
Vivo Experiments (ARRIVE) guidelines, a 20-item check-
list of information to be reported in publications of animal
research. To date, these guidelines have been endorsed by
over 430 journals, funders, universities, and learned socie-
ties (www.NC3Rs.org.uk) in the hope that such guidelines
will not only improve the quality of scientific reporting but
also the internal validity of the research.
In contrast to internal validity, external validity extends

beyond the specific experimental setting and refers to the gen-
eralizability of research findings, i.e., how applicable they are
to other environmental conditions, experimenters, study
populations, and even to other strains or species of animals
(including humans; Lehner 1996; Box 1). Poor external
validity may thus contribute to both poor reproducibility of
a research finding (e.g., when the same study replicated in a
different laboratory by a different experimenter produces dif-
ferent results) and translational failure (e.g., when a treatment
shown to be efficacious in an animal model is not efficacious
in a clinical trial in humans).
Importantly, some of the strategies employed to increase

internal validity may at the same time decrease external valid-
ity. For example, common strategies of standardizing experi-
ments by using homogenous study populations to maximize

test sensitivity inevitably compromise the external validity
of the research findings, resulting in poor reproducibility
(Richter et al. 2009, 2010, 2011; van der Worp et al. 2010;
Würbel 2000, 2002; Würbel and Garner 2007).

Scope for Refinement of Laboratory
Animal Research

Taken together, there seems to be considerable scope for re-
finement of experimental design and conduct to improve both
the internal and external validity of laboratory animal re-
search. In the following sections, we will explore this in
more detail and propose potential ways of refinement as
well as promising areas of future research.

Internal Validity – Refinement
of Experimental Conduct to Avoid
Systematic Biases

Although 235 different types of bias in biomedical research
have been characterized (Chavalarias and Ioannidis 2010),
van der Worp et al. (2010) consider four types of bias to be
particularly relevant with respect to the internal validity of
laboratory animal research: selection bias, attrition bias, per-
formance bias, and detection bias.

Selection bias refers to the biased allocation of animals to
treatment groups and can be avoided by randomization
(Box 1). Because selection bias may occur either consciously
or subconsciously, methods based on active decisions by the
experimenter (e.g., picking animals “at random” from their
cages) are not considered true randomization. Tossing coins
or throwing dice provide simple ways of randomization but
for some purposes random number generators (e.g., www.
random.org) may be preferable. Even the use of allegedly
“homogeneous” study populations (such as same-sex, same-
age inbred mice raised under identical housing conditions)
does not preclude the need for randomization, because
individual differences still prevail. This is best illustrated
by studies with inbred mice showing that variation within
strains is often significantly greater than between strains
(Wahlsten 2010).

In many cases, it is possible to use stratified randomization
instead of simple randomization. In stratified randomization,
the study population is divided into discrete subpopulations
based on systematic differences in factors that are likely to af-
fect the outcome measures, such as sex, age, littermates, dis-
ease severity, treatment dose, etc. The animals of each
subpopulation are then separately allocated at random to the
different treatment groups. Through this, the factor levels de-
fining the different subpopulations are counterbalanced
among all treatment groups. The use of statistical methods de-
signed to analyze such factorial designs results in the removal
of the variation between the strata from the error term, thereby
increasing the precision and statistical power of the experi-
ment (Altman and Bland 1999).
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Selection bias may also occur when the criteria for inclu-
sion or exclusion of animals are poorly defined. Complica-
tions that require exclusion of animals are an inherent risk
in animal studies, especially with animal models involving
invasive surgical procedures (e.g., Jüni et al. 2001) and in
models of stroke (Crossley et al. 2008). For ethical reasons,
humane endpoints need to be defined a priori, and animals
that reach humane endpoints may be lost from the subsequent
analysis. However, it may also be justifiable to exclude ani-
mals for scientific reasons if complications occur that are un-
related to the experimental treatment and render the outcome
measures meaningless. To avoid bias, however, all criteria for
inclusion and exclusion of animals need to be predefined, and
the person deciding on inclusion or exclusion needs to be un-
aware of the treatment allocation (van derWorp et al. 2010). If
these criteria are not well specified, one risks the induction of
attrition bias, the unequal distribution of dropouts among
treatment groups.

Performance bias may occur whenever there is a systematic
difference in the interaction with the animals (e.g., animal
care, experimental procedures) between the treatment groups,
apart from the treatment under investigation (Jüni et al. 2001;
Box 1). For example, differences in the quality of experiment-
er handling exhibited to stressed vs. nonstressed mice may oc-
cur due to higher fearfulness and stress reactivity in the
stressed mice (Hurst and West 2010). In contrast, detection
bias occurs when the outcome is measured differently in an-
imals of different treatment groups. Again, both performance
bias and detection bias may occur either consciously or sub-
consciously, and the best way to avoid these biases is blinding
(also known as masking).

Blinding is considered complete when the investigator and
everyone else involved in the experiment (animal care per-
sonnel, laboratory technicians, outcome assessors, etc.) are
unaware of the animals’ allocation to treatments. In contrast
to randomization, blinding is not always possible, for exam-
ple, when scoring behavior among treatment groups that
differ visibly (e.g., strains of mice differing in coat color).
Thus, it is important that authors explicitly report the blind-
ing status of all people whose involvement may affect the
outcome of the study (Kilkenny et al. 2010a; Moher
et al. 2010).

Other relevant sources of bias include sample sizes that are
either too small or too large, a poor definition of the primary
(and secondary) outcome variable(s), and the use of inappro-
priate statistical analyses, all of which may result in poor
statistical conclusion validity (Cozby and Bates 2011).When-
ever possible, a formal sample size calculation (and power
analysis) should be performed that specifies the minimal ef-
fect size considered to be relevant (e.g., Cohen’s d or f ), the
desired statistical power (1–β), and the level of statistical sig-
nificance (α). Some have argued that such calculations are
only applicable to “confirmatory research” but not to “explor-
atory research” since “effect sizes may be unknown” and “re-
search in the exploratory mode will often test many different
strategies in parallel, and this is only feasible if small sample
sizes are used” (Kimmelman et al. 2014). However, neither

unknown effect sizes nor the exploratory nature of research
should be taken as excuses for violating fundamental princi-
ples of good scientific practice. Tools such as NCSS PASS,
G*Power, and the resource equation method (Mead 1990)
(to name just a few) facilitate sample size calculations. This
is even possible when knowledge about the sample distribu-
tion is incomplete because usually a minimally relevant effec-
tive size can be specified a priori. Furthermore, testing many
different hypotheses in parallel using small sample sizes will
inevitably produce spurious results that undermine the reli-
ability of the research (Button et al. 2013).
Both overpowered and underpowered studies are unethical,

albeit for different reasons. Overpowered studies use more an-
imals than needed to detect a significant effect of a given size.
This is relatively rare, however, because it violates one of the
3R principles (reduction), and ethics committees are trained
to spot reduction potential. From a scientific perspective,
large sample sizes are not a problem as such, as long as a
minimal effect size is defined. However, any two treatments
will be significantly different if the measurement precision
and sample size are large enough, and so overpowered
designs may lead to bias when biologically irrelevant effect
sizes are considered relevant because of their statistical
significance. Underpowered studies are much more prevalent,
even though they are much more problematic from both
ethical and scientific points of view (c.f., Button et al.
2013). Underpowered studies are unable to detect biologi-
cally relevant effect sizes, and as a result, the animals are
essentially wasted for inconclusive research. On the other
hand, there are obvious economic incentives to keep sample
sizes small. In addition, it appears that the well-intended yet
one-sided focus of ethics committees on reduction may
further promote underpowered study designs (Demétrio
et al. 2013). In the human clinical trial literature, the ethical
and scientific costs of underpowered study designs have
long been recognized (Halpern 2002); it is crucial that formal
power calculations become standard practice in animal
research so that scientific gain is maximized while animal
use is minimized (Button et al. 2013; Kilkenny et al.
2010b; Macleod 2011).
Recent evidence from preclinical neurological research

indicates that there are also too many statistically significant
(i.e., “positive”) results in the literature (Ioannidis and
Trikalinos 2007; Tsilidis et al. 2013). These authors conclud-
ed that selective analysis and selective outcome reporting are
the most likely causes. Selective analysis occurs when several
statistical analyses are performed but only the one with the
“best” (i.e., most significant) result is presented (Ioannidis
2008; Tsilidis et al. 2013). Similarly, selective outcome re-
porting occurs when many outcome variables are analyzed
but only the variables that are significantly affected by the
treatment are reported (Tsilidis et al. 2013). While the possi-
ble merits of selective reporting are still debated (e.g.,
deWinter and Happee 2013; van Assen et al. 2014), we main-
tain that to avoid these potential biases, the primary (and sec-
ondary) outcome variable(s) as well as the statistical
approach(es) to testing for treatment effects need to be
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specified before the onset of the study. Ultimately, the best
way to achieve this would be the prospective registration of
all animal studies (see below).
Finally, as the use of the scientific method requires

reproducibility and falsifiability, the sharing of collected
data (i.e., public data archiving) and validation of published
analytical methods should become more common (Molloy
2011). Although this topic is not without issue or debate
(e.g., Alsheikh-Ali et al. 2011; Editor 2014; Nelson 2009;
Roche et al. 2014), the transparency of collected data can
only improve the quality of published scientific results.

Do Reporting Guidelines Help?

The common approach to reducing poor experimental con-
duct has been the implementation of reporting guidelines.
This started with the CONSORT statement to improve the
reporting of human clinical trials about 20 years ago (Begg
1996; Moher et al. 2001; Schulz et al. 2010) and was recently
extended to animal research by the ARRIVE guidelines
(Kilkenny et al. 2010b). Similar reporting guidelines are
available for other areas of research, such as STROBE for
epidemiology (von Elm et al. 2007), PRISMA for systematic
reviews and meta-analyses (Moher 2009), and several others
listed by the EQUATOR Network (www.equator-network.
org). More recently, it has been proposed that animal experi-
ments should be preregistered (Chambers 2013), similarly to
clinical trials which according to the Declaration of Helsinki
(WMA 2013) must be registered in a publicly accessible
database (e.g., www.ClinicalTrials.gov) before recruitment
of the first subject. Preregistration should help to avoid “inap-
propriate research practices, including inadequate statistical
power, selective reporting of results, undisclosed analytic
flexibility, and publication bias” (Chambers 2013). All of
these initiatives reflect the pervasive nature of bias in biomed-
ical research.
So, do reporting guidelines improve experimental con-

duct? Although there is only indirect evidence, there is
good reason to believe that they do indeed. For example, sys-
tematic reviews and meta-analyses in preclinical research on
stroke, multiple sclerosis, and Parkinson’s disease indicate
that poor reporting of study quality attributes (e.g., randomi-
zation, blinding, sample size calculation, etc.) correlates with
overstated treatment effects (Rooke et al. 2011; Sena et al.
2007; Vesterinen et al. 2010). It is therefore plausible that bet-
ter reporting correlates with better quality of study conduct.
Although, theoretically, the reporting of accurate study qual-
ity may be faked, such outright fraud is hopefully uncommon.
It is more likely that the advocacy of reporting guidelines will
raise awareness of the importance of rigorous experimental
conduct (Landis et al. 2012). Nevertheless, a recent analysis
of papers published in the PLoS and Nature journals after the
endorsement of the ARRIVE guidelines found as yet very lit-
tle improvement in reporting standards, indicating that au-
thors are still ignoring, and referees and editors are not
enforcing, these guidelines (Baker et al. 2014).

External Validity – Refinement
of Experimental Design to Avoid
Spurious Results

Reproducibility is a cornerstone of the scientific method, and
poor reproducibility threatens the credibility of the entire field
of animal research (Johnson 2013; Richter et al. 2009).
Although better internal validity will also improve the repro-
ducibility of results, reproducibility of a result is primarily
a function of external validity (Richter et al. 2009;
Würbel 2000).

By definition, external validity refers to the applicability of
results to other environmental conditions, experimenters,
study populations, and even to other strains or species of an-
imals (including humans; Lehner 1996; Box 1). External va-
lidity therefore defines how generalizable results are. This
also includes reproducibility, which is defined as the ability
of a result to be replicated by an independent experiment ei-
ther in the same or in a different laboratory (Box 1). However,
the relationship between external validity and reproducibility
is not so straightforward. External validity (i.e., the range of
conditions to which a result can be generalized) is an inherent
feature of a result; some results are more externally valid than
others. For example, pre-pulse inhibition (PPI) of the startle
reflex to acoustic stimuli is highly conserved across many spe-
cies, including mice and humans, and is fairly robust against
variation in environmental conditions (Geyer et al. 2002).
Thus, PPI has very high external validity. Because of this,
PPI is also highly reproducible across different laboratories
despite considerable variation in conditions among laborato-
ries. In contrast, the locomotor activity of mice on an elevated
zero-maze or plus-maze has very little external validity, as it
is highly sensitive to test conditions (e.g., handling; Hurst and
West 2010), and differences between strains of mice are high-
ly inconsistent despite considerable efforts to equate condi-
tions across laboratories (e.g., Crabbe et al. 1999; Richter
et al. 2011). Therefore, experiments should be designed in
ways that permit for estimation of the external validity of
the results. This can only be achieved if relevant features of
the study design, such as animal characteristics and environ-
mental conditions, are varied systematically (Würbel
2000, 2002).

Interestingly, this is contrary to conventional wisdom in
laboratory animal science. The gold standard of experimental
design adopted from the pure sciences (mathematics, physics,
chemistry) is to hold constant all factors except for the inde-
pendent variable(s) under investigation. This has become a
central dogma in laboratory animal science that is referred
to as standardization. Thus, laboratory animal science text-
books advise researchers to standardize their experiments
by using genetically uniform animals, selecting these for
maximal phenotypic uniformity (e.g., same age, sameweight,
etc.), and keeping all environmental and procedural factors
constant (Beynen, Festing, et al. 2001; Beynen, Gärtner,
et al. 2001). Such homogenization of study populations
may compromise both the external validity and reproducibil-
ity of the results, an effect that has been referred to as the
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standardization fallacy (Würbel 2000, 2002). The same falla-
cy was highlighted 80 years ago by the eminent Ronald
A. Fisher (1935, p. 102): “The exact standardisation of exper-
imental conditions, which is often thoughtlessly advocated as
a panacea, always carries with it the real disadvantage that a
highly standardised experiment supplies direct information
only with respect to the narrow range of conditions achieved
by standardisation. Standardisation, therefore, weakens rather
than strengthens our ground for inferring a like result, when,
as is invariably the case in practice, these conditions are
somewhat varied.”

Indeed, despite rigorous standardization of the experimen-
tal conditions across laboratories, several multi-laboratory
studies revealed large proportions of results that were idiosyn-
cratic to one laboratory (Crabbe et al. 1999; Richter et al.
2011; Wolfer et al. 2004). The reason for this may be that
many environmental factors (e.g., staff, noise, etc.) cannot
be equalized between laboratories, so that different laborato-
ries inevitably standardize to different local environments
(Richter et al. 2009; Würbel and Garner 2007). Therefore,
standardization may actually be a cause of, rather than a
cure for, poor reproducibility (Richter et al. 2009). Thus,
not surprisingly, van der Worp et al. (2010) listed homoge-
nous study populations as a main source of poor external
validity in preclinical animal research, which to some extent
may also contribute to translational failure.

Some scientists have argued that we simply need to report
more parameters that may potentially affect outcome mea-
sures (e.g., Arndt and Surjo 2001; Philip et al. 2010; Surjo
and Arndt 2001). In this case, however, reporting guidelines
will not help, and the attempt to promote extensive lists of
methodological detail to facilitate interpretation of conflict-
ing findings has been referred to as the listing fallacy (Wür-
bel 2002). If anything, such lists may induce interpretation
bias by attracting attention to differences in the listed param-
eters, although there may be many more parameters that
were not considered, were considered to be irrelevant or
too difficult to assess, or simply could not be listed. As
long as a particular parameter has not been varied systemati-
cally within a given experiment, it is no more likely to ex-
plain conflicting findings than any other parameter, listed
or unlisted, that differed between the respective experiments
(Würbel 2002).

Statistical and Experimental Solutions

Among studies investigating behavioral differences between
different inbred and mutant strains of mice (behavioral pheno-
typing), current estimates of the proportion of irreproducible
results (false discovery proportion, FDP) from multi-
laboratory studies range between 30 and 60% (Benjamini
et al. 2014; Kafkafi et al. 2005, 2014). It is likely that similar
FDPs apply to other areas of research.

Various solutions have been proposed to reduce the risk of
obtaining such spurious results. For example, Johnson (2013)
suggested lowering the critical P value of statistical signifi-
cance from 0.05 to 0.005 or even 0.001 to match conventional

evidence thresholds used in Bayesian testing. Assuming that
approximately one-half of the hypotheses tested by scientists
are true, Johnson (2013) estimated that between 17% and
25% of marginally significant scientific findings are false
positives. However, to avoid lowering the proportion of false
positives and increasing the proportion of false negatives,
sample sizes would have to be increased by about 50% to
100% to achieve similar statistical power (Johnson 2013).
Moreover, a general decrease of critical P values does not
take into account that both external validity and reproducibil-
ity depend on the nature of the measured effect.
Kafkafi and colleagues (2005, 2014) have therefore pro-

posed to raise the benchmark for significant results in a
more specific way. According to their random laboratory
model, laboratories should be considered as a sample, repre-
senting the population of all potential laboratories, and the
interaction noise (the treatment x laboratory variance) should
be added as a random factor to the individual animal noise
(the within-laboratory variance). Similarly to the suggestion
of lowering P values (Johnson 2013), this inflation of within-
laboratory variance would generate a larger yardstick for the
significance of treatment effects (Benjamini et al. 2014;
Kafkafi et al. 2005, 2014), albeit in a more specific way.
Using data from several multi-laboratory studies, the authors
showed that this method may reduce the FDP considerably
without losing too much statistical power. The difficulty
with this approach is that such specificity will be achieved
only if the treatments and measures are first tested across
several laboratories to obtain accurate estimates of between-
laboratory variance. This approach may thus not be applica-
ble to animal experiments in general but may be useful for
standard preclinical tests of efficacy and toxicity in drug
development, as well as for specific large scale projects,
such as the International Mouse Phenotyping Consortium
(Brown and Moore 2012a, 2012b; Mallon et al. 2012) which
aims to determine the phenotypes of thousands of mutant
lines with a battery of standard tests (Benjamini et al. 2014;
Kafkafi et al. 2005, 2014).
Besides these statistical approaches, others have proposed

mimicking between-laboratory variability experimentally.
These proposals range from conducting an independent
replicate study to conducting real multi-laboratory stud-
ies. For example, the Reproducibility Initiative has estab-
lished a service to facilitate independent replicate studies
(http://validation.scienceexchange.com/), while the Multi-
PARTconsortium aims to develop a platform for international
multicenter preclinical stroke trials based on randomized
clinical trial design (www.dcn.ed.ac.uk/multipart/).
In addition to such true replications, there are several other

ways in which studies may be designed to provide an esti-
mate of the external validity and reproducibility of results.
For example, Richter and colleagues (2010, 2011) proposed
the heterogenization of study populations (rather than ho-
mogenization through standardization) by systematically
varying a few selected factors. In principle, any aspect of
the animals (e.g., genotype, sex, age, body condition, etc.)
and their environment (e.g., housing conditions,
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experimental protocol) may be used for such heterogeniza-
tion. By varying two environmental factors using a 2 × 2 fac-
torial design, Richter and colleagues (2010) successfully
mimicked variation between independent replicates conduct-
ed within their own laboratory (see also Jonker et al. 2013;
Wolfinger 2013;Würbel et al. 2013). However, a similar sim-
ple form of heterogenization did not account for between-
laboratory variation in a true multi-laboratory study (Richter
et al. 2011). Further research is therefore needed to develop
heterogenization protocols that mimic between-laboratory
variability more effectively.
In the meantime, simple precautions may be taken as pro-

posed by Paylor (2009), for example, by splitting experiments
into small batches of animals that are tested some time apart
instead of testing them in one large batch, by using multiple
experimenters for testing and data collection instead of using
only one, or by spreading test sessions across time of day in-
stead of testing all animals at the same time of day. Assessing
the effects of batch, experimenter, or time of day, respectively,
will reveal whether such minor variations of conditions affect
results and will therefore indicate whether reproducibility
across larger variations of conditions (such as between labo-
ratories) may be at stake.

Conclusions

Reproducibility and falsifiability are cornerstones of the
scientific method, and it is because of these principles that sci-
ence is often viewed as self-correcting, at least in the long
term. The common consensus is that failures in reproducibil-
ity of animal research are not a consequence of scientific mis-
conduct (e.g., Collins and Tabak 2014). However, negligence
in experimental design, conduct, and publication (whether
conscious or not) continue to plague animal research and,
despite numerous initiatives to curb these effects, they contin-
ue to persist (Baker et al. 2014).
Facing these problems and underlying causes, as discussed

here, is hopefully a step towards effective refinement of
experimental design and conduct. The ARRIVE guidelines
provide a useful tool for improving the internal validity of
animal research, and several strategies have been put forward
for improving external validity as well. Nevertheless, it seems
that greater pressure must be placed on researchers, reviewers,
and journal editors to not only endorse such methods of
refinement but to rigorously enforce them. Otherwise, the
credibility and ethical justification of animal research may
be permanently undermined.
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