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The limited memory steepest descent method (LMSD) proposed by Fletcher is an extension of the Barzilai–
Borwein ‘two-point step size’ strategy for steepest descent methods for solving unconstrained optimization
problems. It is known that the Barzilai–Borwein strategy yields a method with an R-linear rate of conver-
gence when it is employed to minimize a strongly convex quadratic. This article extends this analysis for
LMSD, also for strongly convex quadratics. In particular, it is shown that, under reasonable assumptions,
the method is R-linearly convergent for any choice of the history length parameter. The results of numerical
experiments are also provided to illustrate behaviors of the method that are revealed through the theoretical
analysis.

Keywords: unconstrained optimization; steepest descent methods; Barzilai–Borwein methods; limited
memory methods; quadratic optimization; R-linear rate of convergence.

1. Introduction

For solving unconstrained nonlinear optimization problems, one of the simplest and most widely used
techniques is steepest descent (SD). This refers to any strategy in which, from any solution estimate, a
productive step is obtained by moving some distance along the negative gradient of the objective function,
i.e., the direction along which function descent is steepest.

While SD methods have been studied for over a century and employed in numerical software for
decades, a unique and powerful instance came about relatively recently in the work by Barzilai & Borwein
(1988), where a ‘two-point step size’ strategy is proposed and analysed. The resulting SD method,
commonly referred to as the BB method, represents an effective alternative to other SD methods that
employ an exact or inexact line search when computing the step size in each iteration.

The theoretical properties of the BB method are now well-known when it is employed to minimize
an n-dimensional strongly convex quadratic objective function. Such objective functions are interesting
in their own right, but one can argue that such analyses also characterize the behavior of the method in
the neighborhood of a strong local minimizer for any smooth objective function. In the original work
(i.e., Barzilai & Borwein, 1988), it is shown that the method converges R-superlinearly when n = 2. In
Raydan (1993), it is shown that the method converges from any starting point for any natural number n,
and in Dai & Liao (2002), it is shown that the method converges R-linearly for any such n.

In each iteration of the BB method, the step size is determined by a computation involving the
displacement in the gradient of the objective observed between the current iterate and the previous
iterate. As shown in Fletcher (2012), this idea can be extended to a limited memory steepest descent
(LMSD) method in which a sequence of m step sizes is computed using the displacements in the gradient
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R-LINEAR CONVERGENCE OF LMSD 721

over the previous m steps. This extension can be motivated by the observation that these displacements
lie in a Krylov subspace determined by a gradient previously computed in the algorithm, which in turn
yields a computationally efficient strategy for computing m distinct eigenvalue estimates of the Hessian
(i.e., matrix of second derivatives) of the objective function. The reciprocals of these eigenvalue estimates
represent reasonable step size choices. Indeed, if the eigenvalues are computed exactly, then the algorithm
terminates in a finite number of iterations; e.g., see Lai (1981), Fletcher (2012) and Section 2.

In Fletcher (2012), it is shown that the proposed LMSD method converges from any starting point
when it is employed to minimize a strongly convex quadratic function. However, to the best of our
knowledge, the convergence rate of the method for m > 1 has not yet been analysed. The main purpose
of this article is to show that, under reasonable assumptions, this LMSD method converges R-linearly
when employed to minimize such a function. Our analysis builds upon the analyses in Fletcher (2012)
and Dai & Liao (2002).

We mention at the outset that numerical evidence has shown that the practical performance of the
BB method is typically much better than known convergence proofs suggest; in particular, the empirical
rate of convergence is often Q-linear with a contraction constant that is better than that observed for
a basic SD method. Based on such evidence, we do not claim that the convergence results proved in
this article fully capture the practical behavior of LMSD methods. To explore this claim, we present the
results of numerical experiments that illustrate our convergence theory, and demonstrate that the practical
performance of LMSD can be even better than the theory suggests. We conclude with a discussion of
possible explanations of why this is the case for LMSD, in particular, by referencing a known finite
termination result for a special (computationally expensive) variant of the algorithm.

Organization

In Section 2, we formally state the problem of interest, notation to be used throughout the article, Fletcher’s
LMSD algorithm and a finite termination property for it. In Section 3, we prove that the LMSD algorithm is
R-linearly convergent for any history length. The theoretical results proved in Section 3 are demonstrated
numerically in Section 4 and concluding remarks are presented in Section 5.

Notation

The set of real numbers (i.e., scalars) is denoted as R, the set of non-negative real numbers is denoted
as R+, the set of positive real numbers is denoted as R++ and the set of natural numbers is denoted as
N := {1, 2, . . . }. A natural number as a superscript is used to denote the vector-valued extension of any
of these sets—e.g., the set of n-dimensional real vectors is denoted as R

n—and a Cartesian product of
natural numbers as a superscript is used to denote the matrix-valued extension of any of these sets—e.g.,
the set of n × n real matrices is denoted as R

n×n. A finite sequence of consecutive positive integers of
the form {1, . . . , n} ⊂ N is denoted using the shorthand [n]. Subscripts are used to refer to a specific
element of a sequence of quantities, either fixed or generated by an algorithm. For any vector v ∈ R

n, its
Euclidean (i.e., �2) norm is denoted by ‖v‖.

2. Fundamentals

In this section, we state the optimization problem of interest along with corresponding definitions and
concepts to which we will refer throughout the remainder of the article. We then state Fletcher’s LMSD
algorithm and prove a finite termination property for it, as is done in Lai (1981) and Fletcher (2012).
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722 F. E. CURTIS AND W. GUO

2.1 Problem statement

Consider the problem to minimize a strongly convex quadratic function f : R
n → R defined by a

symmetric positive definite matrix A ∈ R
n×n and vector b ∈ R

n, namely,

min
x∈Rn

f (x), where f (x) = 1
2 xT Ax − bT x. (2.1)

Formally, we make the following assumption about the problem data.

Assumption 2.1 The matrix A in problem (2.1) has r ≤ n distinct eigenvalues denoted by

λ(r) > · · · > λ(1) > 0. (2.2)

Consequently, this matrix yields the eigendecomposition A = QΛQT , where

Q = [q1 · · · qn

]
is orthogonal

and Λ = diag(λ1, . . . , λn) with λn ≥ · · · ≥ λ1 > 0

and λi ∈ {λ(1), . . . , λ(r)} for all i ∈ [n].
(2.3)

The eigendecomposition of A defined in Assumption 2.1 plays a crucial role in our analysis. In
particular, we will make extensive use of the fact that any gradient of the objective function computed
in the algorithm, a vector in R

n, can be written as a linear combination of the columns of the orthogonal
matrix Q. This will allow us to analyse the behavior of the algorithm componentwise according to the
weights in these linear combinations corresponding to the sequence of computed objective gradients.
Such a strategy has been employed in all of the aforementioned articles on BB and LMSD.

2.2 LMSD method

Fletcher’s LMSD method is stated as Algorithm LMSD. The iterate update in the algorithm is the standard
update in an SD method: each subsequent iterate is obtained from the current iterate minus a multiple
of the gradient of the objective function evaluated at the current iterate. With this update at its core,
Algorithm LMSD operates in cycles. At xk,1 ∈ R

n representing the initial point of the kth cycle, a
sequence of m positive step sizes {αk,j}j∈[m] are selected to be employed in an inner cycle composed of m
updates, the result of which is set as the initial point for cycle k + 1.

Once such an inner cycle has been performed, the step sizes to be employed in the next cycle are
computed as the reciprocals of Ritz values of A, i.e., estimates of eigenvalues of A that are contained in the
spectrum of A in a certain desirable sense (e.g., see Lemma 3.6 in Section 3.2). Fletcher (2012) describes
how these can be obtained in one of three ways, all offering the same estimates (in exact arithmetic). The
most intuitive definition is that, for cycle k + 1, the estimates come as the eigenvalues of Tk := QT

k AQk ,
where Qk ∈ R

n×m satisfying QT
k Qk = I is defined by a thin QR factorization of the matrix of kth cycle

gradients, i.e., for some upper triangular matrix Rk ∈ R
m×m, such a factorization satisfies the equation

QkRk = Gk := [gk,1 · · · gk,m

]
. (2.4)

(For now, let us assume that Gk has linearly independent columns, in which case the matrix Rk in (2.4) is
nonsingular. For a discussion of situations when this is not the case, see Remark 2.2 later on.) Practically,
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R-LINEAR CONVERGENCE OF LMSD 723

however, obtaining Tk in this manner requires multiplications with A as well as storage of the n-vectors
composing the columns of Qk . Both can be avoided in the following manner. First, it can be shown from
the iterate update in Step 7 of Algorithm LMSD (e.g., see the proof of Lemma 2.3 in Section 2.3) that
gk,j+1 = gk,j − αk,jAgk,j, for all (k, j) ∈ N × [m]. This means that, with the gradient at the initial point of
cycle k + 1, namely gk+1,1 ≡ gk,m+1, and the matrix of kth-cycle reciprocal step sizes, namely,

Jk ←

⎡
⎢⎢⎢⎢⎣

α−1
k,1

−α−1
k,1

. . .

. . . α−1
k,m

−α−1
k,m

⎤
⎥⎥⎥⎥⎦, (2.5)

one has AGk =
[
Gk gk,m+1

]
Jk , which in turn means that

GT
k AGk = GT

k

[
Gk gk,m+1

]
Jk . (2.6)

Hence, by computing (upper triangular) Rk and rk from the partially extended Cholesky factorization

GT
k

[
Gk gk,m+1

] = RT
k

[
Rk rk

]
, (2.7)

one can see [by plugging (2.7) into (2.6) and using Gk = QkRk] that Tk can be computed by

Tk ←
[
Rk rk

]
JkR−1

k . (2.8)

Fletcher’s third approach, which also avoids multiplications with A, is to compute

Tk ←
[
Rk QT

k gk,m+1

]
JkR−1

k . (2.9)

However, this is less efficient than using (2.8) due to the need to store Qk and, since the QR factorization
of Gk requires ∼m2n flops, as opposed to the ∼1

2 m2n flops required for (2.8) (see Fletcher, 2012).
The choice to order the eigenvalues of Tk in decreasing order is motivated by Fletcher (2012). In

short, this ensures that the step sizes in cycle k + 1 are ordered from smallest to largest, which improves
the likelihood that the objective function and the norm of the objective gradient decrease monotonically,
at least initially, in each cycle. This ordering is not essential for our analysis, but is a good choice for any
implementation of the algorithm; hence, we state the algorithm to employ this ordering.

One detail that remains for a practical implementation of the method is how to choose the initial step
sizes {α1,j}j∈[m] ⊂ R++. This choice has no effect on the theoretical results proved in this article, though
our analysis does confirm the fact that the practical performance of the method can be improved if one
has the knowledge to choose one or more step sizes exactly equal to reciprocals of eigenvalues of A; see
Section 2.3. Otherwise, one can either provide a full set of m step sizes or carry out an initialization phase
in which the first few cycles are shorter in length, dependent on the number of objective gradients that
have been observed so far; see Fletcher (2012), for further discussion on this matter.

Remark 2.2 In (2.4), if Gk for some k ∈ N does not have linearly independent columns, then Rk is
singular and the formulas (2.8) and (2.9) are invalid, meaning that the employed approach is not able to
provide m eigenvalue estimates for cycle k. As suggested in Fletcher (2012), an implementation of the
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Algorithm LMSD Limited Memory Steepest Descent Method
1: choose an initial point x1,1 ∈ R

n, history length m ∈ [n], and termination tolerance ε ∈ R+
2: choose stepsizes {α1,j}j∈[m] ⊂ R++
3: compute g1,1 ← ∇f (x1,1)

4: if ‖g1,1‖ ≤ ε, then return x1,1

5: for k ∈ N do
6: for j ∈ [m] do
7: set xk,j+1 ← xk,j − αk,jgk,j

8: compute gk,j+1 ← ∇f (xk,j+1)

9: if ‖gk,j+1‖ ≤ ε, then return xk,j+1

10: end for
11: set xk+1,1 ← xk,m+1 and gk+1,1 ← gk,m+1

12: set Gk by (2.4) and Jk by (2.5)
13: compute Rk and rk to satisfy (2.7) and set Tk by (2.8)
14: set {θk,j}j∈[m] ⊂ R++ as the eigenvalues of Tk in decreasing order
15: set {αk+1,j}j∈[m] ← {θ−1

k,j }j∈[m] ⊂ R++
16: end for

method can address this by iteratively removing ‘older’ columns of Gk until the columns form a linearly
independent set of vectors, in which case the approach would be able to provide m̃ ≤ m stepsizes for
the subsequent (shortened) cycle. We advocate such an approach in practice and, based on the results
proved in this paper, conjecture that the convergence rate of the algorithm would be R-linear. However,
the analysis for such a method would be extremely cumbersome, given that the number of iterations in
each cycle might vary from one cycle to the next within a single run of the algorithm. Hence, in our
analysis in Section 3, we assume that Gk has linearly independent columns for all k ∈ N. In fact, we go
further and assume that ‖R−1

k ‖ is bounded proportionally to the reciprocal of the norm of the objective
gradient at the first iterate in cycle k (meaning that the upper bound diverges as the algorithm converges
to the minimizer of the objective function). These norms are easily computed in an implementation of the
algorithm; hence, we advocate that a procedure of iteratively removing ‘older’ columns of Gk would be
based on observed violations of such a bound. See the discussion following Assumption 3.4 in Section 3.

2.3 Finite termination property of LMSD

If, for some k ∈ N and j ∈ [m], the step sizes in Algorithm LMSD up through iteration (k, j) ∈ N × [m]
include the reciprocals of all of the r ≤ n distinct eigenvalues of A, then the algorithm terminates by
the end of iteration (k, j), with xk,j+1 yielding ‖gk,j+1‖ = 0. This is shown in the following lemma and
theorem, which together demonstrate and extend the arguments made, e.g., in Fletcher (2012, Section 2).

Lemma 2.3 Under Assumption 2.1, for each (k, j) ∈ N×[m], there exist weights {dk,j,i}i∈[n], such that gk,j

can be written as a linear combination of the columns of Q in (2.3), i.e.,

gk,j =
n∑

i=1

dk,j,iqi. (2.10)

724 F. E. CURTIS AND W. GUO
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R-LINEAR CONVERGENCE OF LMSD 725

Moreover, these weights satisfy the recursive property

dk,j+1,i = (1− αk,jλi)dk,j,i for all (k, j, i) ∈ N × [m] × [n]. (2.11)

Proof. Since gk,j = Axk,j − b for all (k, j) ∈ N × [m], it follows that

xk,j+1 = xk,j − αk,jgk,j,

=⇒ Axk,j+1 = Axk,j − αk,jAgk,j,

=⇒ gk,j+1 = gk,j − αk,jAgk,j,

=⇒ gk,j+1 = (I − αk,jA)gk,j,

=⇒ gk,j+1 = (I − αk,jQΛQT )gk,j,

from which one obtains that

n∑
i=1

dk,j+1,iqi =
n∑

i=1

dk,j,i(I − αk,jQΛQT )qi =
n∑

i=1

dk,j,i(qi − αk,jλiqi) =
n∑

i=1

dk,j,i(1− αk,jλi)qi.

The result then follows since the columns of Q form an orthogonal basis of R
n. �

Theorem 2.4 Suppose that Assumption 2.1 holds and that Algorithm LMSD is run with termination
tolerance ε = 0. If, for some (k, j) ∈ N × [m], the set of computed step sizes up through iteration (k, j)
includes all of the values {λ−1

(l) }l∈[r], then, at the latest, the algorithm terminates finitely at the end of
iteration (k, j) with xk,j+1 yielding ‖gk,j+1‖ = 0.

Proof. Consider any (k, j) ∈ N × [m], such that the step size is equal to the reciprocal of an eigenvalue
of A, i.e., αk,j = λ−1

(l) for some l ∈ [r]. By Lemma 2.3, it follows that

dk,j+1,i = (1− αk,jλi)dk,j,i = (1− λ−1
(l) λi)dk,j,i = 0 for all i ∈ [n], such that λi = λ(l).

Along with the facts that Lemma 2.3 also implies

dk,j,i = 0 =⇒ dk,j+1,i = 0 for all (k, j) ∈ N × [m]

and xk+1,1 ← xk,m+1 (and gk+1,1 ← gk,m+1) for all k ∈ N, the desired conclusion follows. �

Remark 2.5 Theorem 2.4 implies that Algorithm LMSD will converge finitely by the end of the second
cycle if m ≥ r and the eigenvalues of T1 include all eigenvalues {λ(l)}l∈[r]. This is guaranteed, e.g., when
the first cycle involves m = n steps and G1 has linearly independent columns.

3. R-linear convergence rate of LMSD

Our primary goal in this section is to prove that Algorithm LMSD converges R-linearly for any choice
of the history length parameter m ∈ [n]. For context, we begin by citing two known convergence results
that apply to Algorithm LMSD, then turn our attention to our new convergence rate results.
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3.1 Known convergence properties of LMSD

In the appendix of Fletcher (2012), the following convergence result is proved for Algorithm LMSD. The
theorem is stated slightly differently here only to account for our different notation.

Theorem 3.1 Suppose that Assumption 2.1 holds and that Algorithm LMSD is run with termination
tolerance ε = 0. Then, either gk,j = 0 for some (k, j) ∈ N × [m] or the sequences {gk,j}∞k=1 for each
j ∈ [m] converge to zero.

As a consequence of this result, we may conclude that if Algorithm LMSD does not terminate finitely,
then, according to the relationship (2.10), the following limits hold:

lim
k→∞

gk,j = 0 for each j ∈ [m] and (3.1a)

lim
k→∞

dk,j,i = 0 for each (j, i) ∈ [m] × [n]. (3.1b)

Fletcher’s result, however, does not illuminate the rate at which these sequences converge to zero. Only
for the case of m = 1 in which Algorithm LMSD reduces to a BB method does the following results
from Dai & Liao (2002) (see Lemma 2.4 and Theorem 2.5 therein) provide a convergence rate guarantee.

Lemma 3.2 Suppose that Assumption 2.1 holds and that Algorithm LMSD is run with history length
m = 1 and termination tolerance ε = 0. Then, there exists K ∈ N, dependent only on (λ1, λn), such that

‖gk+K ,1‖ ≤ 1
2‖gk,1‖ for all k ∈ N.

Theorem 3.3 Suppose that Assumption 2.1 holds and that Algorithm LMSD is run with history length
m = 1 and termination tolerance ε = 0. Then, either gk,1 = 0 for some k ∈ N or

‖gk,1‖ ≤ c1ck
2‖g1,1‖ for all k ∈ N,

where, with K ∈ N from Lemma 3.2, the constants are defined as

c1 := 2

(
λn

λ1
− 1

)K−1

and c2 := 2−1/K ∈ (0, 1).

Overall, the computed gradients vanish R-linearly with constants that depend only on (λ1, λn).

3.2 R-linear convergence rate of LMSD for arbitrary m ∈ [n]
Our goal in this subsection is to build upon the proofs of the results stated in the previous subsection (as
given in the cited references) to show that, under reasonable assumptions, Algorithm LMSD possesses
an R-linear rate of convergence for any m ∈ [n]. More precisely, our goal is to show that the gradients
computed by the algorithm vanish R-linearly with constants that depend only on the spectrum of the data
matrix A. One of the main challenges in this pursuit is the fact, hinted at by Lemma 3.2 for the case of
m = 1, that the gradients computed in Algorithm LMSD might not decrease monotonically in norm.
This is one reason why the analysis in Dai & Liao (2002) is so remarkable, and, not surprisingly, it is an
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R-LINEAR CONVERGENCE OF LMSD 727

issue that must be overcome in our analysis as well. But our analysis also overcomes new challenges. In
particular, the analysis in Dai & Liao (2002) is able to be more straightforward due to the fact that, in
a BB method, a step size computation is performed after every iterate update. In particular, this means
that, in iteration k ∈ N, the current gradient gk,1 plays a role in the computation of αk,1. In LMSD, on
the other hand, a set of step sizes are computed and employed in sequence, meaning that multiple iterate
updates are performed until the next set of step sizes are computed. This means that, in each cycle, iterate
updates are performed using step sizes computed using old gradient information. Another challenge that
our analysis overcomes is the fact that the computed step sizes cannot all be characterized in the same
manner; rather, as revealed later in Lemma 3.7, each set of step sizes is spread through distinct intervals in
the spectrum of A. Our analysis overcomes all these challenges by keeping careful track of the affects of
applying each sequence of step sizes vis-à-vis the weights in (2.10) for all (k, j) ∈ N×[m]. In particular,
we show that even though the gradients might not decrease monotonically in norm and certain weights
in (2.10) might increase within each cycle, and from one cycle to the next, the weights ultimately vanish
in a manner that corresponds to R-linear vanishing of the gradients for any m ∈ [n].

Formally, for simplicity and brevity in our analysis, we make the following standing assumption
throughout this section.

Assumption 3.4 Assumption 2.1 holds, as do the following:

(i) Algorithm LMSD is run with ε = 0 and gk,j �= 0 for all (k, j) ∈ N × [m].
(ii) For all k ∈ N, the matrix Gk has linearly independent columns. Further, there exists a scalar ρ ≥ 1

such that, for all k ∈ N, the nonsingular matrix Rk satisfies ‖R−1
k ‖ ≤ ρ‖gk,1‖−1.

Assumption 3.4(i) is reasonable because, in any situation in which the algorithm terminates finitely, all
of our results hold for the iterations prior to that in which the algorithm terminates. Hence, by proving
that the algorithm possesses an R-linear rate of convergence for cases when it does not terminate finitely,
we claim that it possesses such a rate in all cases. As for Assumption 3.4(ii), first recall Remark 2.2.
In addition, the bound on the norm of the inverse of Rk is reasonable since, in the case of m = 1, one
finds that QkRk = Gk = gk,1 has Qk = gk,1/‖gk,1‖ and Rk = ‖gk,1‖, meaning that the bound holds
with ρ = 1. (This means that, in practice, one might choose ρ ≥ 1 and iteratively remove columns of
Gk for the computation of Tk until one finds ‖R−1

k ‖ ≤ ρ‖gk,1‖−1, knowing that, in the extreme case, there
will remain one column for which this condition is satisfied. However, for the reasons already given in
Remark 2.2, we make Assumption 3.4, meaning that Gk always has m columns.)

Remark 3.5 Our analysis hinges on properties of the step sizes computed in Steps 12–15 of Algo-
rithm LMSD as they relate to the spectrum of the matrix A. These properties do not necessarily hold
for the initial set of step sizes {α1,j}j∈[m], which are merely restricted to be in R++. However, for ease of
exposition in our analysis, rather than distinguish between the step sizes in the initial cycle (i.e., k = 1) vs.
all subsequent cycles (i.e., k ≥ 2), we proceed under the assumption that all properties that hold for k ≥ 2
also hold for k = 1. (One could instead imagine that an ‘initialization cycle’ is performed corresponding
to k = 0, in which case all of our subsequent results are indeed true for all k ∈ N.) We proceed in this
manner, without stating it as a formal assumption, since our main conclusion (see Theorem 3.13) remains
true whether or not one counts the computational effort in the initial cycle.

We begin by stating two results that reveal important properties of the eigenvalues (corresponding to
the elements of {Tk}) computed by the algorithm, which in turn reveal properties of the step sizes. The first
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result is a direct consequence of the Cauchy interlacing theorem. Since this theorem is well-known—see,
e.g., Parlett (1998)—we state the lemma without proof.

Lemma 3.6 For all k ∈ N, the eigenvalues of Tk (= QT
k AQk where QT

k Qk = I) satisfy

θk,j ∈ [λm+1−j, λn+1−j] for all j ∈ [m].

The second result provides more details about how the eigenvalues computed by the algorithm at the
end of iteration k ∈ N relate to the weights in (2.10) corresponding to k for all j ∈ [m].

Lemma 3.7 For all (k, j) ∈ N × [m], let qk,j ∈ R
m denote the unit eigenvector corresponding to the

eigenvalue θk,j of Tk , i.e., the vector satisfying Tkqk,j = θk,jqk,j and ‖qk,j‖ = 1. Then, defining

Dk :=
⎡
⎢⎣

dk,1,1 · · · dk,m,1

...
. . .

...
dk,1,n · · · dk,m,n

⎤
⎥⎦ and ck,j := DkR−1

k qk,j, (3.2)

it follows that, with the diagonal matrix of eigenvalues (namely, Λ) defined in Assumption 2.1,

θk,j = cT
k,jΛck,j and cT

k,jck,j = 1. (3.3)

Proof. For any k ∈ N, it follows from (3.2) and Lemma 2.3 [in particular, (2.11)] that Gk = QDk ,
where Q is the orthogonal matrix defined in Assumption 2.1. Then, since Gk = QkRk [recall (2.4)], it
follows that Qk = QDkR−1

k , according to which one finds

Tk = QT
k AQk = R−T

k DT
k QT AQDkR−1

k = R−T
k DT

k ΛDkR−1
k .

Hence, for each j ∈ [m], the first equation in (3.3) follows since

θk,j = qT
k,jTkqk,j = qT

k,jR
−T
k DT

k ΛDkR−1
k qk,j = cT

k,jΛck,j.

In addition, since Gk = QDk and the orthogonality of Q imply that DT
k Dk = GT

k Gk , and since Qk = GkR−1
k

with Qk having orthonormal columns (i.e., with Qk satisfying QT
k Qk = I), it follows that

cT
k,jck,j = qT

k,jR
−T
k DT

k DkR−1
k qk,j = qT

k,jR
−T
k GT

k GkR−1
k qk,j = qT

k,jQ
T
k Qkqk,j = qT

k,jqk,j = 1,

which yields the second equation in (3.3). �

The implications for Lemma 3.7 are seen later in our analysis. For now, combining Lemma 3.6,
Lemma 2.3 [in particular, (2.11)] and the fact that (2.10) implies

‖gk,j‖2 =
n∑

i=1

d2
k,j,i for all (k, j) ∈ N × [m], (3.4)

one is led to the following result pertaining to recursive properties of the weights in (2.10).
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R-LINEAR CONVERGENCE OF LMSD 729

Lemma 3.8 For each (k, j, i) ∈ N × [m] × [n], it follows that

|dk,j+1,i| ≤ δj,i|dk,j,i|, where δj,i := max

{∣∣∣∣1− λi

λm+1−j

∣∣∣∣ ,

∣∣∣∣1− λi

λn+1−j

∣∣∣∣
}

. (3.5)

Hence, for each (k, j, i) ∈ N × [m] × [n], it follows that

|dk+1,j,i| ≤ Δi|dk,j,i|, where Δi :=
m∏

j=1

δj,i. (3.6)

Furthermore, for each (k, j, p) ∈ N × [m] × [n], it follows that

√√√√ p∑
i=1

d2
k,j+1,i ≤ δ̂j,p

√√√√ p∑
i=1

d2
k,j,i, where δ̂j,p := max

i∈[p]
δj,i, (3.7)

while, for each (k, j) ∈ N × [m], it follows that

‖gk+1,j‖ ≤ Δ‖gk,j‖, where Δ := max
i∈[n]

Δi. (3.8)

Proof. Recall that, for any given (k, j, i) ∈ N × [m] × [n], Lemma 2.3 [in particular, (2.11)] states

dk,j+1,i = (1− αk,jλi)dk,j,i.

The relationship (3.5) then follows due to Lemma 3.6, which, in particular, shows that

αk,j ∈
[

1

λn+1−j
,

1

λm+1−j

]
⊆
[

1

λn
,

1

λ1

]
for all (k, j) ∈ N × [m].

The consequence (3.6) then follows by combining (3.5) for all j ∈ [m] and recalling that Step 11 yields
gk+1,1 ← gk,m+1 for all k ∈ N. Now, from (3.5), one finds that

p∑
i=1

d2
k,j+1,i ≤

p∑
i=1

δ2
j,id

2
k,j,i ≤ δ̂2

j,p

p∑
i=1

d2
k,j,i for all (k, j, p) ∈ N × [m] × [n],

yielding the desired conclusion (3.7). Finally, combining (3.6) and (3.4), one obtains that

‖gk+1,j‖2 =
n∑

i=1

d2
k+1,j,i ≤

n∑
i=1

Δ2
i d2

k,j,i ≤ Δ2
n∑

i=1

d2
k,j,i = Δ2‖gk,j‖2 for all (k, j) ∈ N × [m],

yielding the desired conclusion (3.8). �

A consequence of the previous lemma is that if Δi ∈ [0, 1) for all i ∈ [n], then Δ ∈ [0, 1), from
which (3.8) implies that, for each j ∈ [m], the gradient norm sequence {‖gk,j‖}k∈N vanishes Q-linearly.
For example, such a situation occurs when λn < 2λ1. However, as noted in Dai & Liao (2002), this is
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a highly uncommon case that should not be assumed to hold widely in practice. A more interesting and
widely relevant consequence of the lemma is that for any i ∈ [n] such that Δi ∈ [0, 1), the sequences
{|dk,j,i|}k∈N for each j ∈ [m] vanish Q-linearly. For example, this is always true for i = 1, where

δj,1 = max

{
1− λ1

λm+1−j
, 1− λ1

λn+1−j

}
∈ [0, 1) for all j ∈ [m],

from which it follows that

Δ1 =
m∏

j=1

δj,1 ∈ [0, 1). (3.9)

The following is a crucial consequence that one can draw from this observation.

Lemma 3.9 If Δ1 = 0, then d1+k̂,ĵ,1 = 0 for all (k̂, ĵ) ∈ N × [m]. Otherwise, if Δ1 > 0, then:

(i) for any (k, j) ∈ N × [m] such that dk,j,1 = 0, it follows that dk+k̂,ĵ,1 = 0 for all (k̂, ĵ) ∈ N × [m];
(ii) for any (k, j) ∈ N × [m] such that |dk,j,1| > 0 and any ε1 ∈ (0, 1), it follows that

|dk+k̂,ĵ,1|
|dk,j,1| ≤ ε1 for all k̂ ≥ 1+

⌈
log ε1

log Δ1

⌉
and ĵ ∈ [m].

Proof. If Δ1 = 0, then the desired conclusion follows from Lemma 3.8; in particular, it follows from
the inequality (3.6) for i = 1. Similarly, for any (k, j) ∈ N × [m] such that dk,j,1 = 0, the conclusion in
part (i) follows from the same conclusion in Lemma 3.8, namely, (3.6) for i = 1. Hence, let us continue
to prove part (ii) under the assumption that Δ1 ∈ (0, 1) [recall (3.9)].

Suppose that the given condition holds with j = 1, i.e., consider k ∈ N such that |dk,1,1| > 0. Then, it
follows by Lemma 3.8 [in particular, (3.6) for j = 1 and i = 1] that

|dk+k̂,1,1|
|dk,1,1| ≤ Δk̂

1 for any k̂ ∈ N. (3.10)

Since Δ1 ∈ (0, 1), taking the logarithm of the term on the right-hand side with k̂ = �log ε1/ log Δ1�
yields

⌈
log ε1

log Δ1

⌉
log Δ1 ≤

(
log ε1

log Δ1

)
log Δ1 = log (ε1). (3.11)

Since log(·) is nondecreasing, the inequalities yielded by (3.11) combined with (3.10) and (3.6) yield the
desired result for j = 1. On the other hand, if the conditions of part (ii) hold for some other j ∈ [m], then
the desired conclusion follows from a similar reasoning, though an extra cycle may need to be completed
before the desired conclusion holds for all points in the cycle, i.e., for all ĵ ∈ [m]. This is the reason for
the addition of 1 to �log ε1/ log Δ1� in the general conclusion. �
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R-LINEAR CONVERGENCE OF LMSD 731

One may conclude from Lemma 3.9 and (2.10) that, for any (k, j) ∈ N× [m] and ε1 ∈ (0, 1), one has

|dk+k̂,ĵ,1|
‖gk,j‖ ≤ ε1 for all k̂ ≥ K1 and ĵ ∈ [m]

for some K1 ∈ N that depends on the desired contraction factor ε1 ∈ (0, 1) and the problem-dependent
constant Δ1 ∈ (0, 1), but does not depend on the iteration number pair (k, j). Our goal now is to show that
if a similar, but looser conclusion holds for a squared sum of the weights in (2.10) up through p ∈ [n−1],
then the squared weight corresponding to index p+ 1 eventually becomes sufficiently small in a number
of iterations that is independent of the iteration number k. (For this lemma, we fix j = ĵ = 1 so as to
consider only the first gradient in each cycle. This choice is somewhat arbitrary since our concluding
theorem will confirm that a similar result holds for any j ∈ [m] and ĵ = j.) For the lemma, we define the
following constants that depend only on p, the spectrum of A (which, in particular, yields the bounds and
definitions in Lemma 3.8) and the scalar constant ρ ≥ 1 from Assumption 3.4:

δ̂p :=
(

1+ δ̂2
1,p + δ̂2

1,pδ̂
2
2,p + · · · +

m−1∏
j=1

δ̂2
j,p

)
∈ [1,∞), (3.12a)

Δ̂p+1 := max

{
1

3
, 1− λp+1

λn

}m

∈ (0, 1), (3.12b)

and K̂p :=
⎡
⎢⎢⎢

log
(

2δ̂pρεpΔ
−(Kp+1)

p+1

)
log Δ̂p+1

⎤
⎥⎥⎥ . (3.12c)

Lemma 3.10 For any (k, p) ∈ N× [n− 1], if there exists (εp, Kp) ∈ (0, 1
2δ̂pρ

)×N independent of k with

p∑
i=1

d2
k+k̂,1,i

≤ ε2
p‖gk,1‖2 for all k̂ ≥ Kp, (3.13)

then one of the following holds:

(i) Δp+1 ∈ [0, 1) and there exists Kp+1 ≥ Kp dependent only on εp, ρ and the spectrum of A with

d2
k+Kp+1,1,p+1 ≤ 4δ̂2

pρ
2ε2

p‖gk,1‖2; (3.14)

(ii) Δp+1 ∈ [1,∞) and, with Kp+1 := Kp + K̂p + 1, there exists k̂0 ∈ {Kp, . . . , Kp+1} with

d2
k+k̂0,1,p+1

≤ 4δ̂2
pρ

2ε2
p‖gk,1‖2. (3.15)

Proof. By Lemma 3.8 [in particular, (3.6) with j = 1 and i = p+ 1] and (3.4), it follows that

d2
k+k̂,1,p+1

≤
(
Δk̂

p+1dk,1,p+1

)2 = Δ2k̂
p+1d2

k,1,p+1 ≤ Δ2k̂
p+1‖gk,1‖2 for all k̂ ∈ N. (3.16)
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732 F. E. CURTIS AND W. GUO

If Δp+1 ∈ [0, 1), then (3.16) immediately implies the existence of Kp+1, dependent only on εp, ρ and the
spectrum of A such that (3.14) holds. Hence, let us continue under the assumption that Δp+1 ≥ 1, where

one should observe that ρ ≥ 1, δ̂p ≥ 1, εp ∈ (0, 1
2δ̂pρ

), Kp ∈ N and Δp+1 ≥ 1 imply 2δ̂pρεpΔ
−Kp
p+1 ∈ (0, 1),

meaning that K̂p ∈ N. To prove the desired result, it suffices to show that if

d2
k+k̂,1,p+1

> 4δ̂2
pρ

2ε2
p‖gk,1‖2 for all k̂ ∈ {Kp, . . . , Kp+1 − 1}, (3.17)

then (3.15) holds at the beginning of the next cycle (i.e., when k̂0 = Kp+1). From Lemma 3.7, Lemma 3.8
[in particular, (3.7)], (3.13) and (3.17), it follows that with {ck+k̂,j,i}ni=1 representing the elements of the
vector ck+k̂,j and the matrix Dk+k̂,p representing the first p rows of Dk+k̂ , one finds

p∑
i=1

c2
k+k̂,j,i
≤ ‖Dk+k̂,p‖2

2‖R−1
k+k̂
‖2‖qk+k̂,j‖2

≤
(

1+ δ̂2
1,p + δ̂2

1,pδ̂
2
2,p + · · · +

m−1∏
j=1

δ̂2
j,p

)(
p∑

i=1

d2
k+k̂,1,i

)
ρ2‖gk+k̂,1‖−2

≤ δ̂2
p(ε

2
p‖gk,1‖2)ρ2(4δ̂2

pρ
2ε2

p)
−1‖gk,1‖−2 ≤ 1

4 for all k̂ ∈ {Kp, . . . , Kp+1 − 1} and j ∈ [m].

Along with Lemma 3.7, this implies that

θk+k̂,j =
n∑

i=1

λic
2
k+k̂,j,i
≥ 3

4λp+1 for all k̂ ∈ {Kp, . . . , Kp+1 − 1} and j ∈ [m]. (3.18)

Together with Lemma 2.3 [see (2.11)] and αk+k̂+1,j = θ−1
k+k̂,j

for all j ∈ [m], the bound (3.18) implies

d2
k+k̂+2,1,p+1

=
(

m∏
j=1

(
1− αk+k̂+1,jλp+1

)2

)
d2

k+k̂+1,1,p+1

≤ Δ̂2
p+1d2

k+k̂+1,1,p+1
for all k̂ ∈ {Kp, . . . , Kp+1 − 1}. (3.19)

Applying this bound recursively, it follows with Kp+1 = Kp + K̂p + 1 and (3.16) for k̂ = Kp+1 that

d2
k+Kp+1,1,p+1 ≤ Δ̂

2K̂p
p+1d2

k+Kp+1,1,p+1 ≤ Δ̂
2K̂p
p+1Δ

2(Kp+1)

p+1 ‖gk,1‖2 ≤ 4δ̂2
pr2ε2

p‖gk,1‖2,

where the last inequality follows by the definition of K̂p in (3.12c). �

We have shown that small squared weights in (2.10) associated with indices up through p ∈ [n− 1]
imply that the squared weight associated with index p + 1 eventually becomes small. The next lemma
shows that these latter squared weights also remain sufficiently small indefinitely.
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R-LINEAR CONVERGENCE OF LMSD 733

Lemma 3.11 For any (k, p) ∈ N × [n− 1], if there exists (εp, Kp) ∈ (0, 1
2δ̂pρ

)×N independent of k such

that (3.13) holds, then, with ε2
p+1 := (1+ 4 max{1, Δ4

p+1}δ̂2
pρ

2)ε2
p and Kp+1 ∈ N from Lemma 3.10,

p+1∑
i=1

d2
k+k̂,1,i

≤ ε2
p+1‖gk,1‖2 for all k̂ ≥ Kp+1. (3.20)

Proof. For the same reasons as in the proof of Lemma 3.10, the result follows if Δp+1 ∈ [0, 1). Hence,
we may continue under the assumption that Δp+1 ≥ 1 and define Δ̂p+1 ∈ (0, 1) and K̂p ∈ N as in (3.12).
By Lemma 3.10, there exists k̂0 ∈ {Kp, . . . , Kp+1} such that

d2
k+k̂,1,p+1

≤ 4δ̂2
pρ

2ε2
p‖gk,1‖2 when k̂ = k̂0. (3.21)

If the inequality in (3.21) holds for all k̂ ≥ k̂0, then (3.20) holds with ε2
p+1 = (1+ 4δ̂2

pρ
2)ε2

p . Otherwise,

let k̂1 ∈ N denote the smallest natural number such that

d2
k+k̂,1,p+1

≤ 4δ̂2
pρ

2ε2
p‖gk,1‖2 for all k̂0 ≤ k̂ ≤ k̂1, (3.22)

but

d2
k+k̂1+1,1,p+1

> 4δ̂2
pρ

2ε2
p‖gk,1‖2. (3.23)

As in the arguments that lead to (3.19) in the proof of Lemma 3.10, combining (3.13) and (3.23) implies

d2
k+k̂1+3,1,p+1

≤ Δ̂2
p+1d2

k+k̂1+2,1,p+1
.

Generally, this same argument can be used to show that

k̂ ≥ Kp and d2
k+k̂+1,1,p+1

> 4δ̂2
pρ

2ε2
p‖gk,1‖2 imply d2

k+k̂+3,1,p+1
≤ Δ̂2

p+1d2
k+k̂+2,1,p+1

.

Since Δ̂p+1 ∈ (0, 1), this fact and (3.23) imply the existence of k̂2 ∈ N such that

d2
k+k̂+1,1,p+1

> 4δ̂2
pρ

2ε2
p‖gk,1‖2 for all k̂1 ≤ k̂ ≤ k̂2 − 2, (3.24)

but

d2
k+k̂2,1,p+1

≤ 4δ̂2
pρ

2ε2
p‖gk,1‖2,

while, from above,

d2
k+k̂+3,1,p+1

≤ Δ̂2
p+1d2

k+k̂+2,1,p+1
for all k̂1 ≤ k̂ ≤ k̂2 − 2. (3.25)
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734 F. E. CURTIS AND W. GUO

Moreover, by Lemma 3.8 [in particular, (3.6)] and (3.22), it follows that

d2
k+k̂1+1,1,p+1

≤ Δ2
p+1d2

k+k̂1,1,p+1
≤ 4Δ2

p+1δ̂
2
pρ

2ε2
p‖gk,1‖2 (3.26a)

and d2
k+k̂1+2,1,p+1

≤ 4Δ4
p+1δ̂

2
pρ

2ε2
p‖gk,1‖2. (3.26b)

Combining (3.25) and (3.26b), it follows that

d2
k+k̂+3,1,p+1

≤ 4Δ̂2
p+1Δ

4
p+1δ̂

2
pρ

2ε2
p‖gk,1‖2 for all k̂1 ≤ k̂ ≤ k̂2 − 2.

Overall, since (3.12b) ensures Δ̂p+1 ∈ (0, 1), we have shown that

d2
k+k̂,1,p+1

≤ 4Δ4
p+1δ̂

2
pρ

2ε2
p‖gk,1‖2 for all k̂ ∈ {k̂0, . . . , k̂2}. (3.27)

Repeating this argument for later iterations, we arrive at the desired conclusion. �

The following lemma is a generalization of Lemma 3.2 for any m ∈ [n]. Our proof is similar to that
of Lemma 2.4 in Dai & Liao (2002). We provide it in full for completeness.

Lemma 3.12 There exists K ∈ N dependent only on the spectrum of A such that

‖gk+K ,1‖ ≤ 1
2‖gk,1‖ for all k ∈ N.

Proof. By Lemma 3.11, if for some (εp, Kp) ∈ (0, 1
2δ̂pρ

)× N independent of k, one finds

p∑
i=1

d2
k+k̂,1,i

≤ ε2
p‖gk,1‖2 for all k̂ ≥ Kp, (3.28)

then for ε2
p+1 := (1+ 4 max{1, Δ4

p+1}δ̂2
pρ

2)ε2
p and some Kp+1 ≥ Kp independent of k, one finds

p+1∑
i=1

d2
k+k̂,1,i

≤ ε2
p+1‖gk,1‖2 for all k̂ ≥ Kp+1. (3.29)

Since Lemma 3.9 implies that for any ε1 ∈ (0, 1), one can find K1 independent of k such that (3.28) holds
with p = 1, it follows that, independent of k, there exists a sufficiently small ε1 ∈ (0, 1) such that

ε2
1 ≤ · · · ≤ ε2

n ≤ 1
4 .

Hence, for any k ∈ N, it follows that there exists K = Kn such that

‖gk+k̂,1‖2 =
n∑

i=1

d2
k+k̂,1,i

≤ 1
4‖gk,1‖2 for all k̂ ≥ K ,

as desired. �
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R-LINEAR CONVERGENCE OF LMSD 735

We are now prepared to state our final result, the proof of which follows in the same manner as
Theorem 3.3 follows from Lemma 3.2 in Dai & Liao (2002). We prove it in full for completeness.

Theorem 3.13 The sequence {‖gk,1‖} vanishes R-linearly.

Proof. IfΔ ∈ [0, 1), then it has already been argued (see the discussion following Lemma 3.8) that {‖gk,1‖}
vanishes Q-linearly. Hence, let us continue assuming that Δ ≥ 1. By Lemma 3.12, there exists K ∈ N

dependent only on the spectrum of A such that,

‖g1+Kl,1‖ ≤ 1
2‖g1+K(l−1),1‖ for all l ∈ N.

Applying this result recursively, it follows that

‖g1+Kl,1‖ ≤ ( 1
2 )

l‖g1,1‖ for all l ∈ N. (3.30)

Now, for any k ≥ 1, let us write k = Kl + k̂ for some l ∈ {0} ∪ N and k̂ ∈ {0} ∪ [K − 1]. It follows that

l = k/K − k̂/K ≥ k/K − 1.

By this fact, (3.8) and (3.30), it follows that for any k = Kl + k̂ ∈ N, one has

‖gk,1‖ ≤ Δk̂−1‖g1+Kl,1‖ ≤ ΔK−1( 1
2 )

k/K−1‖g1,1‖ ≤ c1ck
2‖g1,1‖,

where

c1 := 2ΔK−1 and c2 := 2−1/K ∈ (0, 1),

which implies the desired conclusion. �

4. Numerical demonstrations

The analysis in the previous section provides additional insights into the behavior of Algorithm LMSD
beyond its R-linear rate of convergence. In this section, we provide the results of numerical experiments
to demonstrate the behavior of the algorithm in a few types of cases. The algorithm was implemented and
the experiments were performed in Matlab. It is not our goal to show the performance of Algorithm LMSD
for various values of m, say to argue whether the performance improves or not as m is increased. This is
an important question for which some interesting discussion is provided by Fletcher (2012). However, to
determine what is a good choice of m for various types of cases would require a larger set of experiments
that are outside of the scope of this article. For our purposes, our only goal is to provide some simple
illustrations of the behavior as shown by our theoretical analysis.

Our analysis reveals that the convergence behavior of the algorithm depends on the spectrum of
the matrix A. Therefore, we have constructed five test examples, all with n = 100, but with different
eigenvalue distributions. For the first problem, the eigenvalues of A are evenly distributed in [1, 1.9]. Since
this ensures that λn < 2λ1, our analysis reveals that the algorithm converges Q-linearly for this problem;
recall the discussion after Lemma 3.8. All other problems were constructed so that λ1 = 1 and λn = 100,
for which one clearly finds λn > 2λ1. For the second problem, all eigenvalues are evenly distributed in
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736 F. E. CURTIS AND W. GUO

Table 1 Spectra of A for five test problems along with outer and (total) inner iteration counts
required by Algorithm LMSD and maximum value of the ratio ‖R−1

k ‖/(‖gk,1‖−1) observed
during the run of Algorithm LMSD. For each spectrum, a set of eigenvalues in an interval
indicates that the eigenvalues are evenly distributed within that interval

m = 1 m = 5

Problem Spectrum k j ρ k j ρ

1 {λ1, . . . , λ100} ⊂ [1, 1.9] 13 13 1 3 14 ∼ 6× 103

2 {λ1, . . . , λ100} ⊂ [1, 100] 124 124 1 23 114 ∼ 1× 104

3 {λ1, . . . , λ20} ⊂ [1, 2] 112 112 1 16 79 ∼ 2× 105

{λ21, . . . , λ40} ⊂ [25, 26]
{λ41, . . . , λ60} ⊂ [50, 51]
{λ61, . . . , λ80} ⊂ [75, 76]
{λ81, . . . , λ100} ⊂ [99, 100]

4 {λ1, . . . , λ99} ⊂ [1, 2] 26 26 1 4 20 ∼ 2× 1016

λ100 = 100

5 λ1 = 1 16 16 1 5 25 ∼ 2× 1010

{λ2, . . . , λ100} ⊂ [99, 100]

[λ1, λn]; for the third problem, the eigenvalues are clustered in five distinct blocks; for the fourth problem,
all eigenvalues, except one, are clustered around λ1; and for the fifth problem, all eigenvalues, except
one, are clustered around λn. Table 1 shows the spectrum of A for each problem.

Table 1 also shows the numbers of outer and (total) inner iterations required by Algorithm LMSD
(indicated by column headers ‘k’ and ‘j’, respectively) when it was run with ε = 10−8 and either m = 1
or m = 5. In all cases, the initial m step sizes were generated randomly from a uniform distribution over
the interval [λ−1

100, λ−1
1 ]. One finds that the algorithm terminated in relatively few outer and inner iterations

relative to n, especially when many of the eigenvalues are clustered. This dependence on clustering of the
eigenvalues should not be surprising since, recalling Lemma 3.6, clustered eigenvalues makes it likely
that an eigenvalue of Tk will be near an eigenvalue of A, which in turn implies by Lemma 2.3 that the
weights in the representation (2.10) will vanish quickly. On the other hand, for the problems for which the
eigenvalues are more evenly spread in [1, 100], the algorithm required relatively more outer iterations,
though still not an excessively large number relative to n. For these problems, the performance was mostly
better for m = 5 vs. m = 1, in terms of both outer and (total) inner iterations.

In Table 1, we also provide the maximum over k of the ratio ‖R−1
k ‖/(‖gk,1‖−1) (indicated by the column

header ‘ρ’) observed during the run of the algorithm for each test problem and each m. The purpose of
this is to confirm that Assumption 3.4 indeed held in our numerical experiments, but also to demonstrate
for what value of ρ the assumption holds. As explained following Assumption 3.4, for m = 1, the ratio
was always equal to 1. As for m = 5, on the other hand, the ratio was sometimes quite large, though it
is worthwhile to remark that the ratio was typically much smaller than this maximum value. We did not
observe any predictable behavior about when this maximum value was observed; sometimes it occurred
early in the run, while sometimes it occurred toward the end. Overall, the evolution of this ratio depends
on the initial point and path followed by the algorithm to the minimizer.
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R-LINEAR CONVERGENCE OF LMSD 737

Fig. 1. Weights in (2.10) for problem 1 with history length m = 1 (left two plots) and m = 5 (right two plots).

Fig. 2. Weights in (2.10) for problem 2 with history length m = 1 (left two plots) and m = 5 (right two plots).

As seen in our analysis (inspired by Raydan, 1993; Dai & Liao, 2002; Fletcher, 2012), a more refined
look into the behavior of the algorithm is obtained by observing the step-by-step magnitudes of the
weights in (2.10) for the generated gradients. Hence, for each of the test problems, we plot in Figs 1– 5
these magnitudes (on a log scale) for a few representative values of i ∈ [n]. Each figure consists of four
sets of plots: the first and third show the magnitudes corresponding to {gk,1} (i.e., for the first point in
each cycle) when m = 1 and m = 5, respectively, while the second and fourth show the magnitudes at
all iterations (including inner ones), again when m = 1 and m = 5, respectively. In a few of the images,
the plot ends before the right-hand edge of the image. This is due to the log of the absolute value of the
weight being evaluated as −∞ in Matlab.

The figures show that the magnitudes of the weights corresponding to i = 1 always decrease mono-
tonically, as proved in Lemma 3.9. The magnitudes corresponding to i = 2 also often decrease monoton-
ically, but, as seen in the results for Problem 5, this is not always the case. In any case, the magnitudes
corresponding to i = 50 and i = 100 often do not decrease monotonically, though, as proved in our
analysis, one observes that the magnitudes demonstrate a downward trend over a finite number of cycles.
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738 F. E. CURTIS AND W. GUO

Fig. 3. Weights in (2.10) for problem 3 with history length m = 1 (left two plots) and m = 5 (right two plots).

Fig. 4. Weights in (2.10) for problem 4 with history length m = 1 (left two plots) and m = 5 (right two plots).

Fig. 5. Weights in (2.10) for problem 5 with history length m = 1 (left two plots) and m = 5 (right two plots).
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Fig. 6. Constants in (3.6) for problem 1 with history length m = 1 (left plot) and m = 5 (right plot).

Fig. 7. Constants in (3.6) for problem 2 with history length m = 1 (left plot) and m = 5 (right plot).

Even further insight into the plots of these magnitudes can be gained by observing the values of the
constants {Δi}i∈[n] for each problem and history length. Recalling (3.6), these constants bound the increase
that a particular weight in (2.10) might experience from one point in a cycle to the same point in the
subsequent cycle. For illustration, we plot in Figs 6–10 these constants. Values less than 1 are indicated
by a black bar, while values greater than or equal to 1 are indicated by a gray bar. Note that, in Fig. 9, all
values are small for both history lengths except Δ100. In Fig. 10, Δ1 is less than 1 in both figures, but the
remaining constants are large for m = 1 while being small for m = 5.

5. Conclusion

We have shown that the LMSD method proposed by Fletcher (2012) possesses an R-linear rate of con-
vergence for any history length m ∈ [n], when it is employed to minimize a strongly convex quadratic
function. Our analysis effectively extends that in Dai & Liao (2002), which covers only the m = 1
case. We have also provided the results of numerical experiments to demonstrate that the behavior of the
algorithm reflects certain properties revealed by the theoretical analysis.
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Fig. 8. Constants in (3.6) for problem 3 with history length m = 1 (left plot) and m = 5 (right plot).

Fig. 9. Constants in (3.6) for problem 4 with history length m = 1 (left plot) and m = 5 (right plot).

Fig. 10. Constants in (3.6) for problem 5 with history length m = 1 (left plot) and m = 5 (right plot).
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One might wonder whether the convergence rate of LMSD is the same when Ritz values are replaced
by harmonic Ritz values; see Fletcher (2012, Section 7). We answer this in the affirmative in the appendix.
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Appendix. LMSD with harmonic Ritz values

As explained in Fletcher (2012, Section 7), an alternative limited memory steepest descent method
(LMSD) is one that replaces Ritz values of A with harmonic Ritz values (see also Curtis & Guo, 2016).
In the case of m = 1, this reduces to replacing the ‘first’ with the ‘second’ BB step size formula;
see in Barzilai & Borwein (1988, (5)–(6)). In this appendix, we briefly describe the differences in
the computations involved in this alternative approach, then argue that the resulting algorithm is also
R-linearly convergent. In fact, much of the analysis in Section 3.2 remains true for this alternative
algorithm, so here we only highlight the minor differences.

First, let us briefly review the differences in the computations involved in this alternative algorithm.
For this, we follow the description in Fletcher (2012). Recalling that Tk = QT

k AQk , the Ritz values used
in Algorithm LMSD can be viewed as being determined by the eigensystem (QT

k AQk)V = (QT
k Qk)VΘ ,

i.e., the solution of this system has Θ = diag(θk,1, . . . , θk,m). Including another instance of A on both sides
of this system, one obtains the generalized eigensystem (QT

k A2Qk)V = (QT
k AQk)VΘ , the eigenvalues of

which are referred to as harmonic Ritz values of A (see Paige et al., 1995). Defining Pk := QT
k A2Qk , the
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742 F. E. CURTIS AND W. GUO

eigenvalues are those of (P−1
k Tk)

−1, which we shall denote as {μk,j}j∈[m] ⊂ R++ in decreasing order. The
alternative LMSD method is simply Algorithm LMSD with {μk,j}j∈[m] in place of {θk,j}j∈[m]. As explained
in Fletcher (2012), the matrix Pk , like Tk , can be computed with relative little computation and storage,
and without explicit access to A. In particular, if Gk has linearly independent columns, one can compute
upper triangular Rk ∈ R

m×m, rk ∈ R
m and ξk ∈ R from the Cholesky factorization

[
Gk gk,m+1

]T [
Gk gk,m+1

] = [Rk rk

ξk

]T [
Rk rk

ξk

]
, (A.1)

then, with Jk again from (2.5), compute

Pk ← R−T
k JT

k

[
Rk rk

ξk

]T [
Rk rk

ξk

]
JkR−1

k . (A.2)

One also finds that Pk = T T
k Tk + ζkζ

T
k , where ζ T

k =
[
0 ξk

]
JkR−1

k (see Curtis & Guo, 2016).
Let us now argue that this alternative LMSD method is R-linearly convergent. For this, we first show

that the harmonic Ritz values satisfy the same property as shown for the Ritz values in Lemma 3.6.

Lemma A.1 Given Tk from (2.8) and Pk from (A.2), the eigenvalues {μk,j}j∈[m] of (P−1
k Tk)

−1 satisfy

μk,j ∈ [λm+1−j, λn+1−j] for all j ∈ [m].

Proof. One can apply, e.g., Theorem 2.1 from Beattie (1998) with ‘K’= A, ‘M’= I , and ‘P’= Qk , the
proof of which follows from min–max characterizations of the eigenvalues. �

Given Lemma A.1, one can verify that the results shown in Lemmas 3.8 and 3.9 also hold for our
alternative LMSD method. The result in Lemma 3.10 remains true as well, though the argument for this
requires a slight addition to the proof. First, we need the following known property that the Ritz and
harmonic Ritz values are interlaced (e.g., see Curtis & Guo, 2016, Theorem 3.3).

Lemma A.2 Given Tk from (2.8) and Pk from (A.2), the eigenvalues {θk,j}j∈[m] of Tk and the eigenvalues
{μk,j}j∈[m] of (P−1

k Tk)
−1 are interlaced in the sense that

μk,1 ≥ θk,1 ≥ μk,2 ≥ θk,2 ≥ · · · ≥ μk,m ≥ θk,m > 0.

Using this result, let us now argue that Lemma 3.10 remains true. Indeed, our previous proof remains
valid through the statement of (3.18). Then, combining (3.18) with Lemma A.2, one may conclude that

μk+k̂,j ≥ θk+k̂,j ≥ 3
4λp+1 for all k̂ ∈ {Kp, . . . , Kp+1 − 1} and j ∈ [m].

The remainder of the proof then follows as before with αk+k̂+1,j = μ−1
k+k̂,j

for all j ∈ [m]. A similar
modification is needed in the proof of Lemma 3.11 since it employs a similar argument as in the proof of
Lemma 3.10. This way, one can verify that Lemma 3.11 remains true for the alternative LMSD method.
Finally, as for Lemma 3.12 and Theorem 3.13, our proofs follow as before without any modifications.
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