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The purpose of this work is to illustrate how the theory of Muckenhoupt weights, Muckenhoupt-weighted
Sobolev spaces and the corresponding weighted norm inequalities can be used in the analysis and discretiza-
tion of partial-differential-equation-constrained optimization problems. We consider a linear quadratic
constrained optimization problem where the state solves a nonuniformly elliptic equation, a problem
where the cost involves pointwise observations of the state and one where the state has singular sources,
e.g., point masses. For all the three examples, we propose and analyse numerical schemes and provide
error estimates in two and three dimensions. While some of these problems might have been considered
before in the literature, our approach allows for a simpler, Hilbert-space-based analysis and discretization
and further generalizations.
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1. Introduction

The purpose of this work is to show how the theory of Muckenhoupt weights, Muckenhoupt-
weighted Sobolev spaces and weighted norm inequalities can be applied to analyse partial-differential-
equation(PDE)-constrained optimization problems and their discretizations. These tools have already
been shown to be essential in the analysis and discretization of problems constrained by equations
involving fractional derivatives both in space and in time (Antil & Otárola, 2015; Antil et al., 2016), and
here we extend their use to a new class of problems.

We consider three illustrative examples. While some of them have been considered before, the tech-
niques that we present in this study are new and we believe they provide simpler arguments and allow
for further generalizations. To describe them, let Ω be an open and bounded polytopal domain of Rn

(n ∈ {2, 3}), with Lipschitz boundary ∂Ω . We will be dealing with the following problems:
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• Optimization with nonuniformly elliptic equations. Let ω be a weight, that is, an almost everywhere
positive and locally integrable function and yd ∈ L2(ω, Ω). Given a regularization parameter λ > 0,
we define the cost functional

JA(y, u) = 1

2
‖y − yd‖2

L2(ω,Ω)
+ λ

2
‖u‖2

L2(ω−1,Ω)
. (1.1)

We are then interested in finding min JA subject to the nonuniformly elliptic problem

−div(A∇y) = u in Ω , y = 0 on ∂Ω , (1.2)

and the control constraints

u ∈ UA, (1.3)

where UA is a nonempty, closed and convex subset of L2(ω−1, Ω). The main source of difficulty and
originality here is that the matrix A is not uniformly elliptic, but rather satisfies

ω(x)|ξ |2 � ξT · A(x) · ξ � ω(x)|ξ |2 ∀ ξ ∈ Rn, (1.4)

for almost every x ∈ Ω . Since we allow the weight to vanish or blow up, this nonstandard ellipticity
condition must be treated with the right functional setting.
Problems such as (1.2) arise when applying the so-called Caffarelli–Silvestre extension for fractional
diffusion (Caffarelli & Silvestre, 2007; Antil & Otárola, 2015; Nochetto et al., 2015, 2016; Antil
et al., 2016), when dealing with boundary controllability of parabolic and hyperbolic degenerate
equations (Cannarsa et al., 2008; Du, 2014; Gueye, 2014) and in the numerical approximation of
elliptic problems involving measures (Agnelli et al., 2014; Nochetto et al., 2016). In addition, invoking
Rubio de Francia’s extrapolation theorem (Duoandikoetxea, 2001, Theorem 7.8), one can argue
that this is a quite general PDE-constrained optimization problem with an elliptic equation as state
constraint, since there is no Lp, only L2 with weights.

• Optimization with point observations. Let ∅ �= Z ⊂ Ω with #Z < ∞. Given a set of prescribed
values {yz}z∈Z , a regularization parameter λ > 0, and the cost functional

JZ(y, u) = 1

2

∑
z∈Z

|y(z) − yz|2 + λ

2
‖u‖2

L2(Ω)
, (1.5)

the problem under consideration reads as follows: find min JZ subject to

−Δy = u in Ω , y = 0 on ∂Ω , (1.6)

and the control constraints

u ∈ UZ , (1.7)

where UZ is a nonempty, closed and convex subset of L2(Ω). In contrast to standard elliptic PDE-
constrained optimization problems, the cost functional (1.5) involves point evaluations of the state.
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We must immediately comment that since ∂Ω is Lipschitz and f ∈ L2(Ω) then there exists r > n such
that y ∈ W 1,r(Ω) (Jerison & Kenig, 1995, Theorem 0.5; see also Jerison & Kenig, 1981; Grisvard,
1985; Dauge, 1992; Savaré, 1998; Maz’ya & Rossmann, 2010). This, on the basis of a Sobolev
embedding result, implies that y ∈ C(Ω̄) and thus that the point evaluations of the state y in (1.5)
are well defined, the latter leading to a subtle formulation of the adjoint problem (see Section 4 for
details).
Problem (1.5)–(1.7) finds relevance in numerous applications where the observations are carried out at
specific locations: for instance, in the so-called calibration problem with American options (Achdou,
2005), in the optimal control of selective cooling of steel (Unger & Tröltzsch, 2001), in the active
control of sound (Nelson & Elliott, 1992; Bermúdez et al., 2004) and in the active control of vibrations
(Fuller et al., 1996; Hernández & Otárola, 2009). See also Rannacher & Vexler (2005), Hintermüller
& Laurain (2008), Gong et al. (2014a), Brett et al. (2015), Brett et al. (2016) for other applications.
The point observation terms in the cost (1.5) tend to enforce the state y to have the fixed value yz at
the point z. Consequently, (1.5)–(1.7) can be understood as a penalty version of a PDE-constrained
optimization problem where the state is constrained at a collection of points. We refer the reader to
Brett et al. (2016, Section 3.1) for a precise description of this connection and to Leykekhman et al.
(2013) for the analysis and discretization of an optimal control problem with state constraints at a
finite number of points.
Despite its practical importance, to the best of our knowledge, there are only two references where the
approximation of (1.5)–(1.7) is addressed: Chang et al. (2015) and Brett et al. (2016). In both works
the key observation, and main source of difficulty, is that the adjoint state for this problem is only in
W 1,r

0 (Ω) with r ∈ ( 2n
n+2 , n

n−1 ). With this functional setting, the authors of Brett et al. (2016) propose a
fully discrete scheme that discretizes the control explicitly using piecewise linear elements. For n = 2,
the authors obtain an O(h) rate of convergence for the optimal control in the L2 norm, provided the
control and the state are discretized using meshes of size O(h2) and O(h), respectively (see Brett et al.,
2016, Theorem 5.1). This condition immediately poses two challenges for implementation. First, it
requires keeping track of the state and control on different meshes. Second, some sort of interpolation
and projection between these meshes needs to be realized. In addition, the number of unknowns for
the control is significantly higher, thus leading to a slow optimization solver. The authors of Brett et al.
(2016) were unable to extend these results to n = 3. Using the so-called variational discretization
approach (Hinze, 2005), the control is implicitly discretized, and the authors were able to prove that
the control converges with rates O(h) for n = 2 and O(h1/2−ε) for n = 3. In a similar fashion,
the authors of Chang et al. (2015) use the variational discretization concept to obtain an implicit
discretization of the control and deduce rates of convergence of O(h) and O(h1/2) for n = 2 and
n = 3, respectively. A residual-type a posteriori error estimator is introduced, and its reliability is
proven. However, there is no analysis of the efficiency of the estimator.
In Section 4, we introduce a fully discrete scheme where we discretize the control with piecewise
constants; this leads to a smaller number of degrees of freedom for the control in comparison with
the approach of Brett et al. (2016). We circumvent the difficulties associated with the adjoint state by
working in a weighted H1 space and prove the following rates of convergence for the optimal control:
O(h| log h|) for n = 2 and O(h

1
2 | log h|) for n = 3. In addition, we provide pointwise error estimates

for the approximation of the state: O(h| log h|) for n = 2 and O(h1/2| log h|) for n = 3.

• Optimization with singular sources. Let D ⊂ Ω be linearly ordered and with cardinality l = #D < ∞.
Given a desired state yd ∈ L2(Ω) and a regularization parameter λ > 0, we define the cost
functional
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Jδ(y, u) = 1

2
‖y − yd‖2

L2(Ω)
+ λ

2
‖u‖2

Rl . (1.8)

We shall be concerned with the following problem: find min Jδ subject to

−Δy =
∑
z∈D

uzδz in Ω , y = 0 on ∂Ω , (1.9)

where δz is the Dirac delta at the point z and

u = {uz}z∈D ∈ Uδ , (1.10)

where Uδ ⊂ Rl with Uδ , again, nonempty, closed and convex. Notice that since for n > 1, δz /∈
H−1(Ω), the solution y to (1.9) does not belong to H1(Ω). Consequently, the analysis of the finite
element method applied to such a problem is not standard (Scott, 7374; Casas, 1985; Nochetto et al.,
2016). We rely on the weighted Sobolev space setting described and analysed in Nochetto et al. (2016,
Section 7.2).
The state (1.9), in a sense, is dual to the adjoint equation for (1.5)–(1.6): it is an elliptic equation
that has Dirac deltas on the right-hand side. The optimization problem (1.8)–(1.9) is of relevance in
applications where one can specify a control at finitely many prespecified points. For instance, some
works (Nelson & Elliott, 1992; Bermúdez et al., 2004) discuss applications within the context of the
active control of sound (Fuller et al., 1996; Hernández & Otárola, 2009; Hernández et al., 2010) and
in the active control of vibrations (see also Leykekhman & Vexler, 2013; Fornasier et al., 2014; Gong
et al., 2014a).
An analysis of problem (1.8)–(1.10) is presented in Gong et al. (2014b), where the authors use the
variational discretization concept to derive error estimates. They show that the control converges with
a rate of O(h) and O(h1/2) in two and three dimensions, respectively. Their technique is based on
the fact that the state belongs to W 1,r

0 (Ω) with r ∈ ( 2n
n+2 , n

n−1 ). In addition, under the assumption that
yd ∈ L∞(Ω) they improve their results and obtain, up to logarithmic factors, rates of O(h2) and O(h).
Finally, we mention that Casas et al. (2012) and Pieper & Vexler (2013) study a PDE-constrained
optimization problem without control constraints, but where the control is a regular Borel measure.
In Section 5, we present a fully discrete scheme for which we provide rates of convergence for the
optimal control: O(h2−ε) in two dimensions and O(h1−ε) in three dimensions, where ε > 0. We also
present rates of convergence for the approximation error in the state variable.

Before we embark on further discussions, we must remark that while the introduction of a weight as
a technical instrument does not seem to be completely new, the techniques that we use and the range
of problems that we can tackle is. For instance, for integro-differential equations where the kernel g is
weakly singular, the authors of Burns & Ito (1995) study the well-posedness of the problem in the weighted
L2(g, (−r, 0)) space. Numerical approximations for this problem with the same functional setting were
considered in Ito & Turi (1991), where convergence is shown, but no rates are obtained. These ideas were
extended to neutral delay-differential equations in Fabiano & Turi (2003) and Fabiano (2013), where a
weight is introduced in order to renorm the state space and obtain dissipativity of the underlying operator.
In all these works, however, the weight is essentially assumed to be smooth and monotone, except at the
origin where it has an integrable singularity (Ito & Turi, 1991; Burns & Ito, 1995) or at a finite number
of points where it is allowed to have jump discontinuities (Fabiano & Turi, 2003; Fabiano, 2013). All
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these properties are used to obtain the aforementioned results. In contrast, our approach hinges only
on the fact that the introduced weights belong to the Muckenhoupt class A2 (see Definition 2.1 below)
and the pertinent facts from real and harmonic analysis and approximation theory that follow from this
definition. Additionally, we obtain convergence rates for the optimal control variable that are, in terms
of approximation, optimal for problem (1.1)–(1.3), nearly optimal in two dimensions and suboptimal in
three dimensions for (1.5)–(1.7) and suboptimal for problem (1.8)–(1.10). Finally, we must point out that
the class of problems we study is quite different from those considered in the references given above.

Our presentation will be organized as follows. Notation and general considerations will be introduced
in Section 2. Section 3 presents the analysis and discretization of problem (1.1)–(1.3). Problem (1.5)–
(1.7) is studied in Section 4. The analysis of problem (1.8)–(1.10) is presented in Section 5. Finally, in
Section 6, we illustrate our theoretical developments with a series of numerical examples.

2. Notation and preliminaries

Let us fix notation and the setting in which we will operate. In what follows, Ω is a convex, open and
bounded domain of Rn (n ≥ 1) with polytopal boundary. The handling of curved boundaries is somewhat
standard but leads to additional technicalities that will only obscure the main ideas we are trying to
advance. By A � B we mean that there is a nonessential constant c such that A ≤ cB. The value of this
constant might change at each occurrence.

2.1 Weights and weighted spaces

Throughout our discussion we call a weight a function ω ∈ L1
loc(R

n), such that ω(x) > 0 for a.e. x ∈ Rn.
In particular, we are interested in the so-called Muckenhoupt weights (Turesson, 2000; Duoandikoetxea,
2001).

Definition 2.1 (Muckenhoupt class.) Let r ∈ (1, ∞) and ω be a weight. We say that ω ∈ Ar if

Cr,ω := sup
B

(
−
∫

B
ω(x) dx

) (
−
∫

B
ω1/(1−r)(x) dx

)r−1

< ∞,

where the supremum is taken over all balls B ⊂ Rn.

Every weight induces a measure ω dx. For a measurable E ⊂ Rn, we define

ω(E) =
∫

E
ω(x) dx, ω−1(E) =

∫
E
ω−1(x) dx. (2.1)

From the fact that ω ∈ Ar , many fundamental consequences for analysis follow. For instance, the
induced measure ω dx is not only doubling but also strong doubling (cf. Nochetto et al., 2016, Proposition
2.2). We introduce the weighted Lebesgue spaces

Lr(ω, Ω) =
{

v ∈ L0(Ω) :
∫

Ω

|v(x)|rω(x) dx < ∞
}

856 H. ANTIL ET AL.
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WEIGHTS, PDE-CONSTRAINED OPTIMIZATION AND ERROR ESTIMATES 857

and note that Nochetto et al. (2016, Proposition 2.3) shows that their elements are distributions; therefore
we can define weighted Sobolev spaces

W k,r(ω, Ω) = {v ∈ Lr(ω, Ω) : Dκv ∈ Lr(ω, Ω) ∀ κ : |κ| ≤ k},

which are complete and separable, and smooth functions are dense in them (cf. Turesson, 2000,
Proposition 2.1.2, Corollary 2.1.6). We define H1(ω, Ω) = W 1,2(ω, Ω).

We define Wk,r
0 (ω, Ω) as the closure of C∞

0 (Ω) in Wk,r(ω, Ω) and set H1
0 (ω, Ω) = W 1,2

0 (ω, Ω). On
these spaces, the following Poincaré inequality holds:

‖v‖Lr (ω,Ω) � ‖∇v‖Lr (ω,Ω) ∀ v ∈ W 1,r
0 (ω, Ω), (2.2)

where the hidden constant is independent of v, depends on the diameter of Ω and depends on ω only
through Cr,ω.

The literature on the theory of Muckenhoupt-weighted spaces is rather vast, so we only refer the
reader to Turesson (2000), Duoandikoetxea (2001) and Nochetto et al. (2016) for further results.

2.2 Finite element approximation of weighted spaces

Since the spaces W 1,r(ω, Ω) are separable for ω ∈ Ar (r > 1), and smooth functions are dense, it is
possible to develop a complete approximation theory using functions that are piecewise polynomial. This
is essential, for instance, to analyse the numerical approximation of (1.2) with finite element techniques.
Let us then recall the main results from Nochetto et al. (2016) concerning this scenario.

Let T = {T} be a conforming triangulation (into simplices or n-rectangles) of Ω . We denote by
T = {T } a family of triangulations, which for simplicity we assume quasiuniform. The mesh size of
T ∈ T is denoted by hT . Given T ∈ T, we define the finite element space

V(T ) = {
vT ∈ C0(Ω̄) : vT |T ∈ P(T), vT |∂Ω = 0

}
, (2.3)

where, if T is a simplex, P(T) = P1(T)—the space of polynomials of degree at most 1. In the case that
T is an n-rectangle, P(T) = Q1(T)— the space of polynomials of degree at most 1 in each variable.
Notice that, by construction, V(T ) ⊂ W 1,∞

0 (Ω) ⊂ W 1,r
0 (ω, Ω) for any r ∈ (1, ∞) and ω ∈ Ar .

The results of Nochetto et al. (2016) show that there exists a quasi-interpolation operator ΠT :
L1(Ω) → V(T ), which is based on local averages over stars and thus is well defined for functions in
L1(Ω). This operator satisfies the following stability and approximation properties:

‖ΠT v‖Lr (ω,Ω) � ‖v‖Lr (ω,Ω) ∀ v ∈ Lr(ω, Ω),

‖v − ΠT v‖Lr (ω,Ω) � hT ‖v‖W1,r (ω,Ω) ∀ v ∈ W 1,r(ω, Ω),

‖ΠT v‖W1,r (ω,Ω) � ‖v‖W1,r (ω,Ω) ∀ v ∈ W 1,r(ω, Ω),

‖v − ΠT v‖W1,r (ω,Ω) � hT ‖v‖W2,r (ω,Ω) ∀ v ∈ W 2,r(ω, Ω).

Finally, to approximate the PDE-constrained optimization problems described in Section 1, we define
the space of piecewise constants by

U(T ) = {
vT ∈ L∞(Ω) : vT |T ∈ P0(T)

}
. (2.4)
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2.3 Optimality conditions

To unify the analysis and discretization of the PDE-constrained optimization problems introduced and
motivated in Section 1 and thoroughly studied in subsequent sections, we introduce a general framework
following the guidelines presented in Lions (1971), Ito & Kunisch (2008), Gamallo & Hernández (2009),
Hinze et al. (2009), Tröltzsch (2010) and los Reyes (2015). Let U and H be Hilbert spaces denoting the
so-called control and observation spaces, respectively. We introduce the state trial and test spaces Y1 and
X1, and the corresponding adjoint test and trial spaces Y2 and X2, which we assume to be Hilbert. In
addition, we introduce the following items:

(a) a bilinear form a : (Y1 +Y2)× (X1 +X2) → R which, when restricted to either Y1 ×X1 or Y2 ×X2,
satisfies the conditions of the Banach-Nečas-Babuška (BNB) theorem (see Ern & Guermond, 2004,
Theorem 2.6);

(b) a bilinear form b : U × (X1 + X2) → R which, when restricted to either U × X1 or U × X2, is
bounded (the bilinear forms a and b will be used to describe the state and adjoint equations);

(c) an observation map C : Dom(C) ⊂ Y1 + Y2 → H, which we assume linear; in addition, we assume
that Y2 ⊂ Dom(C) and that the restriction C|Y2 : Y2 → H is continuous;

(d) a desired state yd ∈ H;
(e) a regularization parameter λ > 0 and a cost functional

Dom(C) × U � (y, u) �→ J(y, u) = 1

2
‖Cy − yd‖2

H
+ λ

2
‖u‖2

U
. (2.5)

All our problems of interest can be cast as follows. Find min J(y, u) subject to

y ∈ Y1 : a(y, v) = b(u, v) ∀ v ∈ X1, (2.6)

and the constraints

u ∈ Uad, (2.7)

where Uad ⊂ U is nonempty, bounded, closed and convex. We introduce the control to state map S :
U → Y1 which to a given control, u ∈ U, associates a unique state, y(u) = Su ∈ Y1, that solves the state
equation (2.6). As a consequence of (a) and (b), the map S is a bounded and linear operator. If, for every
control u ∈ U, we have Su ∈ Dom(C), we can eliminate the state variable y from (2.5) and introduce the
reduced cost functional

U � u �→ j(u) = 1

2
‖CSu − yd‖2

H
+ λ

2
‖u‖2

U
. (2.8)

Then, our problem can be cast as follows: find min j(u) over Uad. As described in (e) we have λ > 0 so
that j is strictly convex. In addition, Uad is weakly sequentially compact in U. Consequently, standard
arguments yield existence and uniqueness of a minimizer (Tröltzsch, 2010, Theorem 2.14). In addition,
the optimal control ū ∈ Uad can be characterized by the variational inequality

j′(ū)(u − ū) ≥ 0 ∀ u ∈ Uad,
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where j′(w) denotes the Gâteaux derivative of j at w (Tröltzsch, 2010, Lemma 2.21). Under certain
assumptions (see Theorem 2.2 below), this variational inequality can be equivalently written as

b(u − ū, p̄) + λ(ū, u − ū)U ≥ 0 ∀ u ∈ Uad, (2.9)

where p̄ = p̄(ū) denotes the optimal adjoint state and solves

p̄ ∈ X2 : a(v, p̄) = (Cȳ − yd , Cv)H ∀ v ∈ Y2. (2.10)

The optimal state ȳ = ȳ(ū) ∈ Y1 is the solution to (2.6) with u = ū.

The justification of (2.9)–(2.10) is the content of the next result.

Theorem 2.2 (Optimality conditions.) Assume that, for every u ∈ U, we have Su ∈ Dom(C). In addition,
assume that one of the following two conditions holds:

(i) For every u ∈ U we have Su ∈ Y2 and there exists D ⊂ X1 ∩ X2 that is dense in X2.
(ii) There exists D ⊂ Y1 ∩ Y2 that is dense in Y1 and the solution p̄ to (2.10) belongs to X1. Finally, if

{yn}∞
n=1 ⊂ D is such that, as n → ∞, we have yn → y in Y1, then Cyn → Cy in H.

In this setting, the pair (ȳ, ū) ∈ Y1 × U is optimal if and only if ȳ = Sū and ū satisfies (2.9), where
p̄ ∈ X2 is defined by (2.10).

Proof. Owing to the particular form of the reduced functional, given in (2.8), the necessary and sufficient
condition for optimality reads

0 ≤ (CSū − yd , CS(u − ū))H + λ(ū, u − ū)U ∀ u ∈ Uad.

Recall that ȳ = Sū. To simplify the discussion, set y = Su. We now proceed depending on the assumptions:

(i) In this setting, we immediately see, in view of (a) and (c), that (2.10) is well posed and that
v = y − ȳ ∈ Y2, i.e., v is a valid test function in (2.10). With this particular value of v we get

a(y − ȳ, p̄) = (Cȳ − yd , C(y − ȳ))H.

Notice that the right-hand side of this expression is the first term on the right-hand side of the
variational inequality. By definition of S we have, for every vy ∈ X1,

a(y − ȳ, vy) = b(u − ū, vy). (2.11)

In this last identity, we would like to set vy = p̄ so that we obtain

b(u − ū, p̄) = a(y − ȳ, p̄) = (Cȳ − yd , C(y − ȳ))H,

and this immediately yields (2.9). However p̄ �∈ X1 so we must justify this by a different argument.
Let {pn}∞

n=1 ⊂ D be such that pn → p̄ in X2. Setting vy = pn in problem (2.11), which is a valid test
function, now yields

a(y − ȳ, pn) = b(u − ū, pn) → b(u − ū, p̄), n → ∞,
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since, by assumption, the form b is continuous on U×X2. On the other hand, the form a is continuous
on Y2 × X2 and, since y − ȳ ∈ Y2 and p̄ ∈ X2, we obtain

a(y − ȳ, pn) → a(y − ȳ, p̄), n → ∞,

which allows us to conclude.
(ii) Under these assumptions we once again obtain that (2.10) is well posed. In addition, since p̄ ∈ X1,

we can set vy = p̄ in problem (2.11) to obtain

a(y − ȳ, p̄) = b(u − ū, p̄).

The issue at hand now is that setting v = y − ȳ in (2.10) would allow us to conclude. However,
y − ȳ �∈ Y2 and so we argue as follows. Let {yn}∞

n=1 ⊂ D be such that, as n → ∞, it converges to
y − ȳ in Y1. The assumptions then imply that Cyn → C(y − ȳ) in H. The continuity of a in Y1 × X1

gives

a(yn, p̄) → a(y − ȳ, p̄) = b(u − ū, p̄).

On the other hand, setting v = yn in (2.10) yields

a(yn, p̄) = (Cȳ − yd , Cyn)H → (Cȳ − yd , C(y − ȳ))H,

which allows us to conclude. �

2.4 Discretization of PDE-constrained optimization problems

Let us now, in the abstract setting of Section 2.3, study the discretization of problem (2.5)–(2.7). Since
our ultimate objective is to approximate the problems described in Section 1 with finite element methods,
we will study the discretization of (2.5)–(2.7) with Galerkin-like techniques.

Let h > 0 be a parameter and assume that, for every h > 0, we have at hand finite-dimensional
spaces Uh ⊂ U, Xh

1 ⊂ X1, Xh
2 ⊂ X2, Yh

1 ⊂ Y1 and Yh
2 ⊂ Y2. We define Uh

ad = Uh ∩ Uad, which we
assume nonempty. About the pairs (Xh

i , Yh
i ), for i = 1, 2, we assume that they are such that a satisfies a

BNB condition uniformly in h (see Ern & Guermond, 2004, Section 2.2.3). In this setting, the discrete
counterpart of (2.5)–(2.7) reads as follows: find

min J(yh, uh) (2.12)

subject to the discrete state equation

yh ∈ Yh
1 : a(yh, vh) = b(uh, vh) ∀ vh ∈ Xh

1, (2.13)

and the discrete constraints

uh ∈ Uh
ad. (2.14)
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As in the continuous case, we introduce the discrete control to state operator Sh, which to a discrete
control, uh ∈ Uh, associates a unique discrete state, yh = yh(uh) = Shuh, which solves (2.13). Here Sh is
a bounded and linear operator.

The pair (ȳh, ūh) ∈ Yh
1 ×Uh

ad is optimal for (2.12)–(2.14) if ȳh = ȳh(ūh) solves (2.13) and the discrete
control ūh satisfies the variational inequality

j′h(ūh)(uh − ūh) ≥ 0 ∀ uh ∈ Uh
ad,

or, under similar assumptions to those of Theorem 2.2, equivalently,

b(uh − ūh, p̄h) + λ(ūh, uh − ūh)U ≥ 0 ∀ uh ∈ Uh
ad, (2.15)

where the discrete adjoint variable p̄h = p̄h(ūh) solves

p̄h ∈ Xh
2 : a(vh, p̄h) = (Cȳh − yd , Cvh)H ∀ vh ∈ Yh

2. (2.16)

To develop an error analysis for the discrete problem described above, we introduce ΠU, the U-
orthogonal projection onto Uh. We assume that ΠUUad ⊂ Uh

ad. In addition, we introduce two auxiliary
states that will play an important role in the discussion that follows. We define

ŷh ∈ Yh
1 : a(ŷh, vh) = b(ū, vh) ∀ vh ∈ Xh

1, (2.17)

i.e., ŷh is defined as the solution to (2.13) with uh replaced by ū. We also define

p̂h ∈ Xh
2 : a(vh, p̂h) = (Cŷh − yd , Cvh)H ∀ vh ∈ Yh

2, (2.18)

that is, p̂h is the solution to (2.16) with ȳh replaced by ŷh.
The main error estimate with this level of abstraction reads as follows.

Lemma 2.3 (Abstract error estimate.) Let (ȳ, ū) ∈ Y1 × Uad and (ȳh, ūh) ∈ Yh
1 × Uh

ad be the continuous
and discrete optimal pairs that solve (2.5)–(2.7) and (2.12)–(2.14), respectively. If

p̄h − p̂h ∈ Xh
1 ∩ Xh

2, ȳh − ŷh ∈ Yh
1 ∩ Yh

2, (2.19)

then, we have the estimate

‖ū − ūh‖2
U

� ‖p̄ − p̂h‖2
X2

+ j′(ū)(ΠUū − ū) + ‖ΠUū − ū‖2
U

+
⎛
⎝ sup

vp∈Y
h
2

(C(ȳh − ŷh), Cvp)H

‖vp‖Y2

⎞
⎠

2

,
(2.20)

where the hidden constant depends on λ−1 but does not depend on h.

Proof. Since by definition Uh
ad ⊂ Uad and by assumption ΠUUad ⊂ Uh

ad, we set u = ūh and uh = ΠUū in
(2.9) and (2.15), respectively. Adding the ensuing inequalities we obtain

λ‖ū − ūh‖2
U

≤ b(ūh − ū, p̄ − p̄h) + b(ΠUū − ū, p̄h) + λ(ūh, ΠUū − ū)U. (2.21)
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Define I = b(ūh − ū, p̄ − p̄h). In order to estimate this term, we add and subtract p̂h to obtain

I = b(ūh − ū, p̄ − p̂h) + b(ūh − ū, p̂h − p̄h). (2.22)

Since p̂h is the unique solution to (2.18), we have

a(vp, p̄h − p̂h) = (C(ȳh − ŷh), Cvp)H ∀ vp ∈ Yh
2. (2.23)

Similarly, since ŷh solves (2.17), we derive

a(ȳh − ŷh, vy) = b(ūh − ū, vy) ∀ vy ∈ Xh
1.

Set vp = ȳh − ŷh and vy = p̄h − p̂h. By assumption (2.19), which reads p̄h − p̂h ∈ Xh
1 ∩ Xh

2 and
ȳh − ŷh ∈ Yh

1 ∩ Yh
2, vp and vy are admissible test functions. Thus,

b(ūh − ū, p̂h − p̄h) = (C(ȳh − ŷh), C(ŷh − ȳh))H ≤ 0.

This and the continuity of the bilinear form b allow us to bound (2.22) as follows:

I ≤ b(ūh − ū, p̄ − p̂h) ≤ λ

4
‖ū − ūh‖2

U
+ ‖b‖2

λ
‖p̄ − p̂h‖2

X2
,

where ‖b‖ denotes the norm of the bilinear form b.
Let us now analyse the remaining terms in (2.21), which we denote by II. To do this, we rewrite II as

follows:

II = b(ΠUū − ū, p̄) + λ(ū, ΠUū − ū)U + λ(ūh − ū, ΠUū − ū)U

+ b(ΠUū − ū, p̂h − p̄) + b(ΠUū − ū, p̄h − p̂h).

Now, notice that

b(ΠUū − ū, p̄) + λ(ū, ΠUū − ū)U = j′(ū)(ΠUū − ū)

and

λ(ūh − ū, ΠUū − ū)U ≤ λ

4
‖ū − ūh‖2

U
+ 1

λ
‖ū − ΠUū‖2

U
.

Next, since the bilinear form b is continuous, we arrive at

b(ΠUū − ū, p̂h − p̄) ≤ ‖b‖
2

‖ΠUū − ū‖2
U

+ ‖b‖
2

‖p̄ − p̂h‖2
X2

.

The remaining term, which we will denote by III, is treated by using, again, that the bilinear form b is
continuous. This implies that

III := b(ΠUū − ū, p̄h − p̂h) ≤ ‖b‖
2

‖ΠUū − ū‖2
U

+ ‖b‖
2

‖p̄h − p̂h‖2
X2

.
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From (2.23) and the fact that the discrete spaces satisfy a discrete BNB condition uniformly in h we
conclude

‖p̄h − p̂h‖X2 � sup
vp∈Y

h
2

(C(ȳh − ŷh), Cvp)H

‖vp‖Y
h
2

.

Collecting these derived estimates we bound the term II.
By placing the estimates that we have obtained for I and II in the inequality (2.21), we arrive at the

claimed result. �

The use of this simple result will be illustrated in the following sections.

Remark 2.4 (Discrete spaces.) In all the examples we will consider below we will have Xh
1 = Xh

2 =
Yh

1 = Yh
2 = V(T ) algebraically but normed differently, V(T ) being the finite element space defined in

(2.3). Consequently, the assumptions of Theorem 2.2 and (2.19) are trivial.

3. Optimization with nonuniformly elliptic equations

In this section, we study the problem (1.1)–(1.3) under the abstract framework developed in Section 2.3.
Let Ω ⊂ Rn be a convex polytope (n ≥ 1) and ω ∈ A2(R

n), where the A2-Muckenhoupt class is given
by Definition 2.1. In addition, we assume that A : Ω → Mn is symmetric and satisfies the nonuniform
ellipticity condition (1.4).

3.1 Analysis

Owing to the fact that the diffusion matrix A satisfies (1.4) with ω ∈ A2(R
n), as shown in Fabes et al.

(1982), the state equation (1.2) is well posed in H1
0 (ω, Ω), whenever u ∈ L2(ω−1, Ω). For this reason,

we set

• H = L2(ω, Ω) and C = id;

• U = L2(ω−1, Ω);

• X1 = X2 = Y1 = Y2 = H1
0 (ω, Ω), and

a(v1, v2) =
∫

Ω

∇v2(x)
TA(x)∇v1(x) dx,

which, as a consequence of (1.4) with ω ∈ A2(R
n) and the Poincaré inequality (2.2), is bounded,

symmetric and coercive in H1
0 (ω, Ω);

• b(·, ·) = (·, ·)L2(Ω); notice that, if v1 ∈ L2(ω−1, Ω) and v2 ∈ H1
0 (ω, Ω) then

b(v1, v2) = (v1, v2)L2(Ω) ≤ ‖v1‖L2(ω−1,Ω)‖v2‖L2(ω,Ω) � ‖v1‖L2(ω−1,Ω)‖∇v2‖L2(ω,Ω),

where we have used the Poincaré inequality (2.2);

• the cost functional as in (1.1).
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For a, b ∈ R, a < b, we define the set of admissible controls by

UA = {
u ∈ L2(ω−1, Ω) : a ≤ u ≤ b a.e. x ∈ Ω

}
, (3.1)

which is closed, bounded and convex in L2(ω−1, Ω). In addition, since λ > 0 the functional (1.1) is strictly
convex. Consequently, the optimization problem with nonuniformly elliptic state equation (1.1)–(1.3) has
a unique optimal pair (ȳ, ū) ∈ H1

0 (ω, Ω) × L2(ω−1, Ω) (Tröltzsch, 2010, Theorem 2.14). Notice that, in
this setting, the conditions of Theorem 2.2(i) are trivially satisfied. In fact, set D = C∞

0 (Ω) and notice
that, for u ∈ L2(ω−1, Ω), we have Su ∈ Y1 = Y2 ⊂ Dom(C) = L2(ω, Ω). Consequently, the first-order
necessary and sufficient optimality condition (2.9) reads

(p̄, u − ū)L2(Ω) + λ(ū, u − ū)L2(ω−1,Ω) ≥ 0 ∀ u ∈ UA, (3.2)

where the optimal state ȳ = ȳ(ū) ∈ H1
0 (ω, Ω) solves

a(ȳ, v) = (ū, v)L2(Ω) ∀ v ∈ H1
0 (ω, Ω) (3.3)

and the optimal adjoint state p̄ = p̄(ū) ∈ H1
0 (ω, Ω) solves

a(v, p̄) = (ȳ − yd , v)L2(ω,Ω) ∀ v ∈ H1
0 (ω, Ω). (3.4)

The results of Fabes et al. (1982), again, yield that the adjoint problem is well posed.

3.2 Discretization

Let us now propose a discretization for problem (1.1)–(1.3) and derive a priori error estimates based on
the results of Section 2.4. Given a family T = {T } of quasi-uniform triangulations of Ω we set

• Uh = U(T ), where the discrete space U(T ) is defined in (2.4);

• Uh
ad = Uh ∩ UA, where the set of admissible controls UA is defined in (3.1);

• ΠU is the L2(ω−1, Ω)-orthogonal projection onto U(T ), which we denote by Πω−1 and is defined by

(Πω−1 v)|T = 1

ω−1(T)

∫
T
ω−1(x)v(x) dx ∀ T ∈ T , (3.5)

where ω−1(T) is defined as in (2.1); the definition of UA yields that Πω−1UA ⊂ Uh
ad;

• Xh
1 = Xh

2 = Yh
1 = Yh

2 = V(T ), where the discrete space V(T ) is defined in (2.3).

Notice that, since Xh
1 = Xh

2 = Yh
1 = Yh

2, the assumptions of Theorem 2.2 and (2.19) are trivially satisfied;
see Remark 2.4.

We obtain the following a priori error estimate.
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Corollary 3.1 (A priori error estimate) Let ū and ūh be the continuous and discrete optimal controls,
respectively. If ȳ, p̄ ∈ H2(ω, Ω) then

‖ū − ūh‖L2(ω−1,Ω) �
∥∥ū − Πω−1 ū

∥∥
L2(ω−1,Ω)

+ ‖ωp̄ − Πω−1(ωp̄)‖L2(ω−1,Ω)

+ hT (‖ȳ‖H2(ω,Ω) + ‖p̄‖H2(ω,Ω)),

where the hidden constant is independent of hT .

Proof. We invoke Lemma 2.3 and bound each one of the terms in (2.20). First, since ȳ, p̄ ∈ H2(ω, Ω),
the results of Nochetto et al. (2016) imply that

‖p̄ − p̂h‖H1(ω,Ω) � hT

(‖ȳ‖H2(ω,Ω) + ‖p̄‖H2(ω,Ω)

)
.

Indeed, since p̄ solves (3.4) and p̂h solves (2.18), the term p̄ − p̂h satisfies

a(vh, p̄ − p̂h) = (ȳ − ŷh, vh)L2(ω,Ω) ∀ vh ∈ V(T ).

Adding and subtracting the terms ΠT p̄ and p̄ appropriately, where ΠT denotes the interpolation operator
described in Section 2.2, and using the coercivity of a we arrive at

‖p̄ − p̂h‖H1
0 (ω,Ω) � ‖p̄ − ΠT p̄‖H1

0 (ω,Ω) + ‖ȳ − ŷh‖H1
0 (ω,Ω).

Using the regularity of p̄ and ȳ we obtain the claimed bound.
We now handle the second term involving the derivative of the reduced cost j. Since it can be

equivalently written using (2.9), invoking the definition of Πω−1 given by (3.5), we obtain

j′(ū)(Πω−1 ū − ū) = (p̄, Πω−1 ū − ū)L2(Ω) + λ(ū, Πω−1 ū − ū)L2(ω−1,Ω)

= (ωp̄ − Πω−1(ωp̄), Πω−1 ū − ū)L2(ω−1,Ω) − λ‖Πω−1 ū − ū‖2
L2(ω−1,Ω)

� ‖ωp̄ − Πω−1(ωp̄)‖2
L2(ω−1,Ω)

+ ‖Πω−1 ū − ū‖2
L2(ω−1,Ω)

.

The Poincaré inequality (2.2), in conjunction with the stability of the discrete state equation (2.13),
yields

(ȳh − ŷh, vh)L2(ω,Ω) � ‖ȳh − ŷh‖H1
0 (ω,Ω)‖vh‖H1

0 (ω,Ω)

� ‖ū − ūh‖L2(ω−1,Ω)‖vh‖H1
0 (ω,Ω)

for all vh ∈ V(T ). This yields control of the last term in (2.20).
These bounds yield the result. �

Remark 3.2 (Regularity of ȳ and p̄.) The results of Corollary 3.1 rely on the fact that ȳ, p̄ ∈ H2(ω, Ω).
Reference Cavalheiro (2011) provides sufficient conditions for this to hold.
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Theorem 3.3 (Rate of convergence.) In the setting of Corollary 3.1, if we additionally assume that
ωp̄ ∈ H1(ω−1, Ω) then we have the optimal error estimate

‖ū − ūh‖L2(ω−1,Ω) � hT

(‖ȳ‖H2(ω,Ω) + ‖p̄‖H2(ω,Ω) + ‖ωp̄‖H1(ω−1,Ω) + ‖ū‖H1(ω−1,Ω)

)
,

where the hidden constant is independent of hT .

Proof. We bound
∥∥ū − Πω−1 ū

∥∥
L2(ω−1,Ω)

and ‖ωp̄ − Πω−1(ωp̄)‖L2(ω−1,Ω). Using that ωp̄ ∈ H1(ω−1, Ω)

and a Poincaré-type inequality (Nochetto et al., 2016, Theorem 6.2), we obtain

‖ωp̄ − Πω−1(ωp̄)‖L2(ω−1,Ω) � hT ‖ωp̄‖H1(ω−1,Ω).

Now, to estimate the term Πω−1 ū − ū, it is essential to understand the regularity properties of ū. From
Tröltzsch (2010, Section 3.6.3), ū solves (3.2) if and only if

ū = max

{
a, min

{
b, −1

λ
ωp̄

}}
.

The assumption ωp̄ ∈ H1(ω−1, Ω) immediately yields ū ∈ H1(ω−1, Ω) (Kinderlehrer & Stampacchia,
1980, Theorem A.1), which allows us to derive the estimate

‖ū − Πω−1 ū‖L2(ω−1,Ω) � hT ‖ū‖H1(ω−1,Ω).

Collecting the derived results we arrive at the desired estimate. �

4. Optimization with point observations

Here, we consider problem (1.5)–(1.7). Let Ω ⊂ Rn be a convex polytope, with n ∈ {2, 3}. We recall that
Z ⊂ Ω denotes the set of observable points with #Z < ∞.

4.1 Analysis

To analyse problem (1.5)–(1.7) using the framework of weighted spaces, we must begin by defining a
suitable weight. If #Z = 1, define dZ = 1/2, otherwise, since #Z < ∞, we set dZ = min{|z − z′| :
z, z′ ∈ Z , z �= z′} > 0. For each z ∈ Z , we then define

dz(x) = 1

2dZ
|x − z|, �z(x) = dz(x)n−2

log2 dz(x)

and the weight

�(x) = �z(x), #Z = 1, �(x) =

⎧⎪⎪⎨
⎪⎪⎩

�z(x), ∃ z ∈ Z : dz(x) < 1
2 ,

22−n

log2 2
otherwise,

#Z > 1. (4.1)
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As Nochetto et al. (2016, Lemma 7.5) and Aimar et al. (2014) show, with this definition we have � ∈ A2.
With this A2 weight at hand we set

• H = R#Z and C = ∑
z∈Z ezδz, where {ez}z∈Z is the canonical basis of H;

• U = L2(Ω);

• X1 = Y1 = H1
0 (Ω);

• X2 = H1
0 (� , Ω) and Y2 = H1

0 (�
−1, Ω) and

a(v, w) =
∫

Ω

∇v(x)T · ∇w(x) dx,

which is bounded, symmetric and coercive in H1
0 (Ω) and satisfies the conditions of the BNB theorem

in H1
0 (� , Ω) × H1

0 (�
−1, Ω) (Nochetto et al., 2016, Lemma 7.7);

• b(·, ·) = (·, ·)L2(Ω). The results of Nochetto et al. (2016, Lemma 7.6) guarantee that, for n < 4, the
embedding H1

0 (� , Ω) ↪→ L2(Ω) holds; therefore,

b(v1, v2) � ‖v1‖L2(Ω)‖v2‖H1
0 (� ,Ω).

For a, b ∈ R, with a < b we define the set of admissible controls by

UZ = {
u ∈ L2(Ω) : a ≤ u ≤ b, a.e. x ∈ Ω

}
. (4.2)

With this notation, the pair (ȳ, ū) ∈ H1
0 (Ω) × L2(Ω) is optimal for problem (1.5)–(1.7) if and only

if ȳ solves

ȳ ∈ H1
0 (Ω) : a(ȳ, w) = (ū, w)L2(Ω) ∀ w ∈ H1

0 (Ω), (4.3)

and the optimal control ū satisfies

(p̄, u − ū)L2(Ω) + λ(ū, u − ū)L2(Ω) ≥ 0 ∀ u ∈ UZ , (4.4)

where the adjoint variable p̄ ∈ H1
0 (� , Ω) satisfies, for every w ∈ H1

0 (�
−1, Ω),

a(w, p̄) =
∑
z∈Z

(ȳ(z) − yz)〈δz, w〉H1
0 (�−1,Ω)′×H1

0 (�−1,Ω). (4.5)

Indeed, it suffices to set, in Theorem 2.2, D = C∞
0 (Ω) and to recall that since Ω is a convex polytope

and n < 4, we have ȳ ∈ H2(Ω) ↪→ C(Ω̄), so point evaluations are meaningful, i.e., y = Su ∈ Dom(C).
Finally, the embedding of Nochetto et al. (2016, Lemma 7.6) shows that ȳ ∈ H2(Ω) ∩ H1

0 (Ω) ↪→
H1

0 (�
−1, Ω) = Y2, that is, item (i) is satisfied. In addition, since δz ∈ H1

0 (�
−1, Ω)′ for z ∈ Ω , we thus

have H1
0 (�

−1, Ω) = Y2 ⊂ Dom(C) and, in view of Nochetto et al. (2016, Lemma 7.7), the adjoint
problem is well posed.
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4.2 Discretization

For a family T = {T } of quasi-uniform meshes of Ω we set

• Uh = U(T ), where U(T ) is defined in (2.4) and Uh
ad = U(T ) ∩ UZ , where UZ is defined in (4.2).

The operator ΠU = ΠL2 is the standard L2(Ω)-projection:

(ΠL2 v)|T = −
∫

T
v(x) dx ∀ T ∈ T .

• Xh
1 = Xh

2 = Yh
1 = Yh

2 = V(T ). As before, this makes the assumptions of Theorem 2.2 and (2.19)
trivial.

To shorten the exposition, we define

σT = h2−n/2
T | log hT |. (4.6)

With this notation, the error estimate for the approximation (2.12)–(2.14) to problem (1.5)–(1.7) reads
as follows.

Corollary 4.1 (A priori error estimates.) Let ū and ūh be the continuous and discrete optimal controls,
respectively. Assume that hT is sufficiently small. Then, for n ∈ {2, 3}, we have the error estimate

‖ū − ūh‖L2(Ω) � ‖ū − ΠL2 ū‖L2(Ω) + σT

(‖∇p̄‖L2(� ,Ω) + ‖∇ȳ‖L∞(Ω)

)
, (4.7)

where σT is defined in (4.6) and the hidden constant is independent of T .

Proof. We follow Lemma 2.3 with slight modifications. The term I in (2.22) is estimated in two steps.
In fact, since (ūh − ū, p̂h − p̄h)L2(Ω) ≤ 0, we have

I ≤ (ūh − ū, p̄ − p̂h)L2(Ω) ≤ λ

4
‖ūh − ū‖2

L2(Ω)
+ 1

λ
‖p̄ − p̂h‖2

L2(Ω)
.

We now analyse the second term of the previous expression. Let qh ∈ V(T ) solve

a(wh, qh) =
∑
z∈Z

(ȳ(z) − yz)wh(z) ∀ wh ∈ V(T ). (4.8)

The conclusion of Nochetto et al. (2016, Corollary 7.9) immediately yields

‖p̄ − qh‖L2(Ω) � σT ‖∇p̄‖L2(� ,Ω),

so that it remains to estimate qh −p̂h. We now invoke Nochetto et al. (2016, Theorem 6.1) with p = q = 2,
ρ = 1 and ω = � . Under this setting, the compatibility condition Nochetto et al. (2016, inequality (6.2))
is satisfied, and then Nochetto et al. (2016, Theorem 6.1) yields

‖qh − p̂h‖L2(Ω) � ‖∇(qh − p̂h)‖L2(� ,Ω),
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where the hidden constant depends on Ω , the quotient between the radii of the balls inscribed and
circumscribed in Ω and the weight � only through the constant �(Ω); the latter is defined as in (2.1).
Since qh solves (4.8), the discrete inf–sup conditions of Nochetto et al. (2016, Lemma 7.8) and the fact
that δz ∈ H1

0 (�
−1, Ω)′ yield

‖∇(qh − p̂h)‖L2(� ,Ω) � ‖ȳ − ŷh‖L∞(Ω).

We now recall that ŷh is the Galerkin projection of ȳ. In addition, since n ∈ {2, 3}, Ω is a convex polytope
and ū ∈ L∞(Ω), we have ȳ ∈ W 1,∞(Ω) (cf. Maz′ya & Rossmann, 1991; Fromm, 1993; Guzmán et al.,
2009). Therefore, standard pointwise estimates for finite elements (Schatz & Wahlbin, 1982, Theorem
5.1) yield

‖ȳ − ŷh‖L∞(Ω) � hT | log hT |‖∇ȳ‖L∞(Ω). (4.9)

In conclusion,

I ≤ λ

4
‖ūh − ū‖2

L2(Ω)
+ cσ 2

T

(
‖∇p̄‖2

L2(� ,Ω)
+ ‖∇ȳ‖2

L∞(Ω)

)
,

for some nonessential constant c.
We estimate the term j′(ū)(ΠL2 ū − ū) as follows:

j′(ū)(ΠL2 ū − ū) = (p̄ + λū, ΠL2 ū − ū)L2(Ω) = (p̄ + λū − ΠL2(p̄ + λū), ΠL2 ū − ū)L2(Ω)

≤ 1

2
‖ΠL2 ū − ū‖2

L2(Ω)
+ 1

2
‖p̄ − ΠL2 p̄‖2

L2(Ω)

≤ 1

2
‖ΠL2 ū − ū‖2

L2(Ω)
+ cσ 2

T ‖∇p̄‖2
L2(� ,Ω)

,

for some nonessential constant c. We have used the properties of ΠL2 , together with the Sobolev–Poincaré
inequality of Nochetto et al. (2016, Theorem 6.2); see also Nochetto et al. (2016, Corollary 7.9).

We now proceed to estimate the term III in the proof of Lemma 2.3 as follows:

III := b(ΠL2 ū − ū, p̄h − p̂h) = (ΠL2 ū − ū, p̄h − p̂h)L2(Ω)

≤ 1

2
‖ΠL2 ū − ū‖2

L2(Ω)
+ 1

2
‖p̄h − p̂h − ΠL2(p̄h − p̂h)‖2

L2(Ω)

≤ 1

2
‖ΠL2 ū − ū‖2

L2(Ω)
+ cσ 2

T ‖∇(p̄h − p̂h)‖2
L2(� ,Ω)

,

where we have used the properties of ΠL2 together with the Sobolev–Poincaré inequality of Nochetto et al.
(2016, Theorem 6.2); again, c denotes a nonessential constant. Using now the fact that δz ∈ H1

0 (�
−1, Ω)′,

and the discrete inf–sup stability of Nochetto et al. (2016, Lemma 7.8), we have

‖p̄h − p̂h‖H1
0 (� ,Ω) � ‖ȳh − ŷh‖L∞(Ω). (4.10)

To estimate the right-hand side of the previous expression, we introduce the state

y(ūh) ∈ H1
0 (Ω) : a(y(ūh), w) = (ūh, w)L2(Ω) ∀ w ∈ H1

0 (Ω),
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and define χ := ȳ−y(ūh) ∈ H1
0 (Ω) and χh := ŷh − ȳh ∈ V(T ), where ȳh and ŷh solve (2.13) and (2.17),

respectively. We observe that

a(χ , w) = (ū − ūh, w)L2(Ω) ∀ w ∈ H1
0 (Ω),

a(χh, wh) = (ū − ūh, wh)L2(Ω) ∀ wh ∈ V(T ),

i.e., χh is the Galerkin approximation of χ . If we denote by Ih : C(Ω̄) → V(T ) the Lagrange interpolation
operator (Ern & Guermond, 2004), basic applications of the triangle inequality and a standard inverse
estimate (Ern & Guermond, 2004, Lemma 1.138) yield

‖χh‖L∞(Ω) � ‖χ‖L∞(Ω) + ‖χ − Ihχ‖L∞(Ω) + h−n/2‖Ihχ − χh‖L2(Ω)

� ‖χ‖L∞(Ω) + ‖χ − Ihχ‖L∞(Ω) + h−n/2
(‖χ − χh‖L2(Ω) + ‖χ − Ihχ‖L2(Ω)

)
. (4.11)

To control the first term on the right-hand side of (4.11), we invoke the results of Jerison & Kenig (1995,
Theorem 0.5) to conclude that there is r > n such that

‖χ‖W1,r (Ω) � ‖ū − ūh‖L2(Ω).

This, in view of the continuous embedding W 1,r(Ω) ↪→ C(Ω̄) for r > n, yields

‖χ‖L∞(Ω) � ‖ū − ūh‖L2(Ω). (4.12)

The second and third terms on the right-hand side of (4.11) are bounded in view of standard interpolation
and error estimates. We thus have

‖χh‖L∞(Ω) � ‖ū − ūh‖L2(Ω). (4.13)

From (4.10), (4.13) and the fact that χh = ŷh − ȳh, it follows that

‖p̄h − p̂h‖H1
0 (� ,Ω) � ‖ū − ūh‖L2(Ω).

Therefore, we have derived the following estimate for the term III:

III ≤ 1

2
‖ΠL2 ū − ū‖2

L2(Ω)
+ cσ 2

T ‖ū − ūh‖2
L2(Ω)

.

Collecting the derived estimates for the terms I, II and III, we arrive at the desired estimate (4.7) by
considering hT sufficiently small. �

Proposition 4.2 (Regularity of ū.) If ū solves (1.5)–(1.7) then ū ∈ H1(� , Ω).

Proof. From Tröltzsch (2010, Section 3.6.3), ū solves (4.4) if and only if

ū = max

{
a, min

{
b, −1

λ
p̄
}}

.
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This immediately yields ū ∈ H1(� , Ω) by invoking Kinderlehrer & Stampacchia (1980, Theo-
rem A.1). �

Using this smoothness and an interpolation theorem between weighted spaces, we can bound the
projection error in Corollary 4.1 and finish the error estimate (4.7) as follows.

Theorem 4.3 (Rates of convergence) In the setting of Corollary 4.1, we have

‖ū − ūh‖L2(Ω) � σT

(‖∇p̄‖L2(� ,Ω) + ‖∇ȳ‖L∞(Ω)

)
, (4.14)

where σT is defined in (4.6) and the hidden constant is independent of T and the continuous and discrete
optimal pairs.

Proof. We need to bound the projection error ‖ū−ΠL2 ū‖L2(Ω) only. Proposition 4.2 yields ū ∈ H1(� , Ω);
then, invoking Nochetto et al. (2016, Theorem 6.2), we derive

‖ū − ΠL2 ū‖L2(Ω) � σT ‖∇ū‖L2(� ,Ω).

Substituting the previous estimate in the conclusion of Corollary 4.1, we derive the claimed convergence
rates. �

Remark 4.4 (Rates of convergence for optimal control.) Estimate (4.14), for n = 2, is nearly optimal in
terms of approximation. In contrast, in the three-dimensional case, the derived estimate (4.14) is subop-
timal. However, the numerical experiment of Section 6.5 suggests that this is not sharp. The projection
formula of Proposition 4.2 hints at the fact that the singularities of p̄ might not be present in ū, which
allows for a better rate of convergence.

On the basis of the previous results, we now derive an error estimate for the approximation of the
state variable.

Theorem 4.5 (Rates of convergence.) In the setting of Corollary 4.1 we have

‖ȳ − ȳh‖L∞(Ω) � σT

(‖∇p̄‖L2(� ,Ω) + ‖∇ȳ‖L∞(Ω)

)
, (4.15)

where σT is defined in (4.6) and the hidden constant is independent of T and the continuous and discrete
optimal pairs.

Proof. We start with a simple application of the triangle inequality:

‖ȳ − ȳh‖L∞(Ω) ≤ ‖ȳ − ŷ‖L∞(Ω) + ‖ŷ − ȳh‖L∞(Ω), (4.16)

where ŷ solves a(ŷ, v) = (ūh, v) for all v ∈ H1
0 (Ω). The second term on the right-hand side of the

previous inequality is controlled in view of standard pointwise estimates for finite elements. In fact,
Schatz & Wahlbin (1982, Theorem 5.1) yields

‖ŷ − ȳh‖L∞(Ω) � hT | log hT |‖∇ŷ‖L∞(Ω). (4.17)
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To control the first term on the right-hand side of (4.16), we invoke the same arguments that allowed us
to conclude (4.12). We thus arrive at

‖ȳ − ŷ‖L∞(Ω) � ‖ū − ūh‖L2(Ω).

In view of (4.17), the previous estimate and the results of Theorem 4.3 allow us to derive the desired
error estimates. �

Remark 4.6 (Rates of convergence for the optimal state.) The error estimate (4.15), for n = 2, is near
optimal in terms of regularity but suboptimal in terms of approximation. It relies on the W 1,∞(Ω)-
regularity of the optimal state ȳ that solves problem (4.3); such a regularity property is guaranteed
by references Maz′ya & Rossmann (1991), Fromm (1993) and Guzmán et al. (2009). The numerical
experiments of Sections 6.2–6.4 suggest that, in the case that a better regularity for the optimal state is
available, let us say ȳ ∈ W 2,∞(Ω), the order of convergence is quadratic.

5. Optimization with singular sources

Let us remark that, since the formulation of the adjoint problem (4.5) led to an elliptic problem with Dirac
deltas on the right-hand side, the problem with point sources on the state (1.8)–(1.10) is, in a sense, dual
to one with point observations (1.5)–(1.7). In the latter, the functional space for the adjoint variable is the
one needed for the state variable in (1.8)–(1.10). The analysis will follow the one presented in Section
4.2. It is important to comment that problem (1.8)–(1.10) has been analysed before. We refer the reader
to Gong et al. (2014b) for the elliptic case and to Seidman et al. (2012), Gong (2013), Leykekhman &
Vexler (2013) and Gong et al. (2014a) for the parabolic one. It is our desire in this section to show how
the theory of Muckenhoupt weights can be used to analyse and approximate problem (1.8)–(1.10). In
doing this, it will be essential to assume that dist(D, ∂Ω) ≥ dD > 0. Set

• H = L2(Ω) and C = id;

• U = Rl;

• Y1 = H1
0 (� , Ω) and X1 = H1

0 (�
−1, Ω), with � defined, as in Section 4.1, by (4.1);

• Y2 = X2 = H1
0 (Ω) and

a(v, w) =
∫

Ω

∇v(x)T∇w(x) dx.

• the bilinear form b : U × (X1 + X2) to be

b(v, w) =
∑
z∈D

vz〈δz, w〉H1
0 (�−1,Ω)′×H1

0 (�−1,Ω).

Since, for z ∈ Ω , δz ∈ H1
0 (�

−1, Ω)′, we have that b is continuous on Rl × H1
0 (�

−1, Ω).

Let us now verify the assumptions of Theorem 2.2. The embedding of Nochetto et al. (2016, Lemma
7.6) yields that y = Su ∈ Y1 = H1

0 (� , Ω) ↪→ L2(Ω) = Dom(C). The fact that Y2 ⊂ Dom(C)

is trivial. Since Ω is convex, we invoke Nochetto et al. (2016, Lemma 7.6), again, and conclude that
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WEIGHTS, PDE-CONSTRAINED OPTIMIZATION AND ERROR ESTIMATES 873

p̄ ∈ H2(Ω) ∩ H1
0 (Ω) ↪→ H1

0 (�
−1, Ω), which puts us in the setting of item (ii) with, once again,

D = C∞
0 (Ω). Consequently, the optimality conditions hold.

For a, b ∈ Rl with az < bz, we define the set of admissible controls as

Uδ = {
u ∈ Rl : az ≤ uz ≤ bz ∀ z ∈ D}

.

The space of controls is already discrete, so we set Uh = U and Uh
ad = Uδ . Finally, we set, for i = 1, 2,

Xh
i = Yh

i = V(T ), which, once again, trivializes (2.19) and the assumptions of Theorem 2.2. Since the
bilinear form b is not continuous on U × X2, we need to slightly modify the arguments of Lemma 2.3. In
what follows, for v ∈ C(Ω̄) and w ∈ Rl we define

〈v, w〉D :=
∑
z∈D

v(z)wz. (5.1)

In this setting, the main error estimate for problem (1.8)–(1.10) is provided below. We comment that
our proof is inspired by the arguments developed in Rannacher & Scott (1982), Leykekhman & Vexler
(2013) and Gong et al. (2014b, Theorem 3.7).

Theorem 5.1 (Rates of convergence) Let ū and ūh be the continuous and discrete optimal controls,
respectively, and assume that for every q ∈ (2, ∞), yd ∈ Lq(Ω). Let ε > 0 and Ω1 be such that
D � Ω1 � Ω . If n = 2, then

‖ū − ūh‖Rl � h2−ε
T

(‖ū‖
Rl + ‖p̄‖H2(Ω) + ‖p̄‖W2,r (Ω1)

)
. (5.2)

On the other hand, if n = 3, then

‖ū − ūh‖Rl � h1−ε
T

(‖ū‖
Rl + ‖p̄‖H2(Ω) + ‖p̄‖W2,r (Ω1)

)
, (5.3)

where r < n/(n − 2). The hidden constants in both estimates are independent of T , and the continuous
and discrete optimal pairs.

Proof. We start the proof by noticing that, since ȳ − yd ∈ L2(Ω) and Ω is convex, standard regularity
arguments (Grisvard, 1985) yield p̄ ∈ H2(Ω) ↪→ C(Ω̄) . This guarantees that pointwise evaluations of
p̄ are well defined. Moreover, since, in this setting, Uh

ad = Uad estimate (2.21) reduces to

λ‖ū − ūh‖2
Rl ≤ 〈p̄ − p̄h, ūh − ū〉D,

where 〈·, ·〉D is defined in (5.1). Adding and subtracting the solution to (2.18) p̂h, we obtain

λ‖ū − ūh‖2
Rl ≤ 〈p̄ − p̂h, ūh − ū〉D + 〈p̂h − p̄h, ūh − ū〉D. (5.4)

This, in view of 〈p̂h − p̄h, ūh − ū〉D = −‖ŷh − ȳh‖2
L2(Ω)

, implies that

λ‖ū − ūh‖2
Rl + ‖ŷh − ȳh‖2

L2(Ω)
≤ 〈p̄ − p̂h, ūh − ū〉D

= 〈p̄ − qh, ūh − ū〉D + 〈qh − p̂h, ūh − ū〉D, (5.5)
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where qh is defined as the unique solution to

qh ∈ V(T ) : a(wh, qh) = (ȳ − yd , wh)L2(Ω) ∀ wh ∈ V(T ).

Since, by assumption, we have dD > 0, we can conclude that there are smooth subdomains Ω0 and
Ω1 such that D ⊂ Ω0 � Ω1 � Ω . In view of (5.5), this key property will allow us to derive interior L∞

estimates for p̄ − qh and qh − p̂h.
Let us first bound the difference p̄−qh. To do this, we notice that, since ȳ ∈ W 1,s

0 (Ω) for s < n/(n−1),
a standard Sobolev embedding result implies that ȳ ∈ Lr(Ω) with r ≤ ns/(n − s) < n/(n − 2). Then, on
the basis of the fact that yd ∈ Lq(Ω) for q < ∞, interior regularity results guarantee that p̄ ∈ W 2,r(Ω1)

for r < n/(n − 2). Consequently, since qh corresponds to the Galerkin approximation of p̄, Schatz &
Wahlbin (1977, Theorem 5.1) yields, when n = 2, that for any ε > 0, we have

‖p̄ − qh‖L∞(Ω0) �
(
h2−ε

T ‖p̄‖W2,r (Ω1) + h2
T ‖p̄‖H2(Ω)

)
. (5.6)

When n = 3, we have p̄ ∈ H1
0 (Ω) ∩ W 2,r(Ω1) for r < 3 and, as a consequence,

‖p̄ − qh‖L∞(Ω0) �
(
h1−ε

T ‖p̄‖W2,r (Ω1) + h2
T ‖p̄‖H2(Ω)

)
. (5.7)

It remains then to estimate the difference Ph = qh − p̂h. To do so, we employ a duality argument
that combines the ideas of Rannacher & Scott (1982), Leykekhman & Vexler (2013) and Nochetto et al.
(2016, Corollary 7.9). We start by defining ϕ ∈ H1

0 (Ω) as the solution to

a(v, ϕ) =
∫

Ω

sgn(ȳ − ŷh)v ∀ v ∈ H1
0 (Ω), (5.8)

where ŷh solves (2.17). Notice that ‖ sgn(ȳ − ŷh)‖L∞(Ω) ≤ 1 for all T ∈ T. Therefore, Schatz & Wahlbin
(1977, Theorem 5.1) followed by Schatz & Wahlbin (1982, Theorem 5.1) leads to (see also Gong et al.,
2014b, Lemma 3.2)

‖ϕ − ϕh‖L∞(Ω0) � h2
T | log hT |2, (5.9)

where ϕh is the Galerkin projection of ϕ and the hidden constant does not depend on T or ϕ. In addition,
we have ϕ ∈ H2(Ω) ∩ H1

0 (Ω) ↪→ H1
0 (�

−1, Ω) (Nochetto et al., 2016, Lemma 7.6). Therefore ϕ is a
valid test function in the variational problem that ȳ solves. Then, using the continuity of the bilinear form
a and Galerkin orthogonality, we arrive at

‖ȳ − ŷh‖L1(Ω) =
∫

Ω

sgn(ȳ − ŷh)(ȳ − ŷh) = a(ȳ − ŷh, ϕ)

= a(ȳ, ϕ − ϕh) = 〈ϕ − ϕh, ū〉D � ‖ū‖
Rl‖ϕ − ϕh‖L∞(Ω0)

� h2
T | log hT |2‖ū‖

Rl ,

where in the last step we used estimate (5.9).
We now recall that Ph solves

a(wh, Ph) = (ȳ − ŷh, wh)L2(Ω) ∀ wh ∈ V(T );

874 H. ANTIL ET AL.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/38/2/852/3858067 by guest on 23 April 2024
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an inverse inequality and a stability estimate for the problem above yield

‖Ph‖2
L∞(Ω) � i2T ‖∇Ph‖2

L2(Ω)
≤ i2T ‖ȳ − ŷh‖L1(Ω)‖Ph‖L∞(Ω),

where iT is the mesh-dependent factor in the inverse inequality between L∞(Ω) and H1(Ω) (see Brenner
& Scott, 2008, Lemma 4.9.2 for n = 2 and Ern & Guermond, 2004, Lemma 1.142 for n = 3):

iT = (1 + | log hT |)1/2 if n = 2, and iT = h−1/2
T if n = 3. (5.10)

In conclusion,

‖Ph‖L∞(Ω) � i2T ‖ȳ − ŷh‖L1(Ω) � i2T h2
T | log hT |2‖ū‖

Rl . (5.11)

Combining the obtained pointwise bounds for p̄−qh and qh −p̂h, we obtain the desired estimates. �

Remark 5.2 (Comparison with the literature) Reference Gong et al. (2014b) claims to obtain better rates
than those in Theorem 5.1, namely, they can trade the term h−ε

T by a logarithmic factor | log hT |s with
s ≥ 1 but small. However, when following the arguments that lead to this estimate (see Gong et al.,
2014b, formula (3.40)) one realizes that a slight inaccuracy takes place. Namely, the authors claim that,
for s < n/(n − 1),

h3−n/s
T | log hT | � h2

T | log hT |.
However, 3 − n/s < 4 − n which, for n = 2 or n = 3, reduces to the estimates that we obtained in
Theorem 5.1.

Remark 5.3 (Rates of convergence for optimal control.) The error estimates (5.2) and (5.3) are suboptimal
in terms of approximation; optimal error estimates should be be quadratic. In our method of proof,
suboptimality is a consequence of estimates (5.6) and (5.7), which exploit the local regularity of the
optimal adjoint state p̄ and estimate (5.11). Notice that the situation is worse for n = 3.

To conclude, we present an error estimate for the state variable.

Corollary 5.4 (Rates of convergence.) In the setting of Theorem 5.1 we have, for n ∈ {2, 3},
‖ȳ − ȳh‖L2(Ω) � σT

(‖ū‖
Rl + ‖p̄‖H2(Ω) + ‖p̄‖W2,r (Ω1) + ‖∇ȳ‖L2(� ,Ω)

)
,

where the hidden constant is independent of T and the continuous and discrete optimal pairs.

Proof. A simple application of the triangle inequality yields

‖ȳ − ȳh‖L2(Ω) ≤ ‖ȳ − ŷh‖L2(Ω) + ‖ŷh − ȳh‖L2(Ω), (5.12)

where ŷh solves (2.17). To estimate the first term on the right-hand side of the previous expression, we
invoke Nochetto et al. (2016, Corollary 7.9) and arrive at

‖ȳ − ŷh‖L2(Ω) � σT ‖∇ȳ‖L2(� ,Ω).
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Using (5.5) and the results of Theorem 5.1, we bound the second term on the right-hand side of (5.12).
This concludes the proof. �

6. Numerical experiments

In this section, we conduct a series of numerical experiments that illustrate the performance of the
scheme (2.12)–(2.14) when it is used to approximate the solution to the optimization problem with point
observations studied in Section 4 and the one with singular sources analysed in Section 5. Since, in
general, it is rather difficult to find fundamental solutions, in some examples we modify the adjoint or
state equations to versions where the solution is the restriction of the fundamental solution to the Poisson
problem in the whole space to Ω and study the discretization of the ensuing system of equations. We
are aware that this is not the optimality system of the problem, but it retains its essential difficulties and
singularities and allows us to evaluate the rates of convergences.

6.1 Implementation

All the numerical experiments that will be presented have been carried out with the help of a code that
is implemented using C++. The matrices involved in the computations have been assembled exactly,
while the right-hand sides and the approximation errors are computed by a quadrature formula that is
exact for polynomials of degree 19 for two-dimensional domains and degree 14 for three-dimensional
domains. The corresponding linear systems are solved using the multifrontal massively parallel sparse
direct solver (MUMPS) (Amestoy et al., 2000, 2001). To solve the minimization problem (2.12)–(2.14)
we use a Newton-type primal–dual active set strategy (Tröltzsch, 2010, Section 2.12.4).

For all our numerical examples, we consider λ = 1. We construct exact solutions based on the
fundamental solutions for the Laplace operator:

φ(x) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

− 1

2π

∑
z∈S

log |x − z| if Ω = (0, 1)2 ⊂ R2,

1

4π

∑
z∈S

1

|x − z| if Ω = (0, 1)3 ⊂ R3,
(6.1)

where, depending on the problem, S = Z or S = D. We will also consider the fundamental solution of
the Laplace operator in Ω = B1 = {(x, y) ∈ R2 : x2 + y2 < 1} ⊂ R2, which reads

φ(x) = 1

2π
log |x|. (6.2)

We must remark that the introduction of weights is only to simplify the analysis and that these are
never used in the implementation. This greatly simplifies it and allows for the use of existing codes.

To present the performance of the fully discrete scheme (2.12)–(2.14), we consider a family of quasi–
uniform meshes {Tk}8

k=1. We set N(k) = #Tk , that is, the total number of degrees of freedom of the mesh
Tk . In addition, we denote by EOCq(k) the corresponding experimental order of convergence associated
with the variable q, which is computed using the formula

EOCq(k) = ln
(
eq(k − 1)/eq(k)

)
ln (N(k − 1)/N(k))

,

where eq(k) denotes the resulting error in the approximation of the variable q and k ∈ {2, . . . , 8}.
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Table 1 Experimental order of convergence of scheme (2.12)–(2.14) when it
is used to approximate the solution to the optimization problem of Section 4
with one observation point and Ω = B1. The EOCū is in agreement with
estimate (4.14) of Theorem 4.3: the family {Tk}8

k=1 is quasi-uniform and,
thus, hTk ≈ N(k)−1/2, which is what we observe. The EOCȳ reveals quadratic
order; see Remark 4.6 for a discussion

DOFs ‖ū − ūTk ‖L2(Ω) EOCū ‖ȳ − ȳTk ‖L∞(Ω) EOCȳ

26 0.0595209 – 0.4816528 –
82 0.0359273 −0.4395090 0.1656580 −0.92919815

290 0.0175814 −0.5657675 0.0442101 −1.04576649
1090 0.0084497 −0.5533850 0.0117083 −1.00347662
4226 0.0043345 −0.4926096 0.0030234 −0.99914230

16642 0.0021736 −0.5035636 0.0007708 −0.99710702
66050 0.0010911 −0.4999690 0.0002100 −0.94329927

263170 0.0005472 −0.4992283 0.0000567 −1.02762135

6.2 Optimization with point observations on a disk: one point

We set n = 2 and Ω = B1. We set the control bounds that define the set UZ in (4.2) to a = −0.2 and
b = −0.1. To construct an exact solution to the optimization problem with point observations, we slightly
modify the corresponding state equation by adding a forcing term f ∈ L2(Ω), i.e., we replace (4.3) by
the following problem:

ȳ ∈ H1
0 (Ω) : a(ȳ, w) = (ū + f, w) ∀ w ∈ H1

0 (Ω). (6.3)

We then define the exact optimal state, the observation set and the desired point value as follows:

ȳ(x1, x2) = 2(1 − x2 − y2), Z = {(0, 0)}, y(0,0) = 1.

The exact optimal adjoint state is given by (6.2) and and the right-hand side f is computed accordingly.
We notice that both ȳ and p̄ satisfy homogeneous Dirichlet boundary conditions.

Table 1 shows that, when approximating the optimal control variable, the EOCū is in agreement
with estimate (4.14). This illustrates the sharpness of the derived estimate up to a logarithmic term. We
comment that, since the family {Tk}8

k=1 is quasi-uniform, we then have hTk ≈ N(k)−1/2. Consequently,
(4.14) reads as follows:

‖ū − ūTk ‖L2(Ω) � N(k)−1/2| log N(k)|. (6.4)

Table 1 also presents the EOCȳ obtained for the approximation of the optimal state variable ȳ: h2
Tk

≈
N(k)−1; see Remark 4.6 for a discussion.
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Table 2 Experimental order of convergence of scheme (2.12)–(2.14) when
it is used to approximate the solution to the optimization problem of Section 4
with one observation point and Ω = (0, 1)2. The EOCū is in agreement with
estimate (4.14) of Theorem 4.3: the family {Tk} is quasi-uniform and, thus,
hTk ≈ N(k)−1/2, which is what we observe. The EOCȳ reveals quadratic
order; see Remark 4.6 for a discussion

DOFs ‖ū − ūTk ‖L2(Ω) EOCū ‖ȳ − ȳTk ‖L∞(Ω) EOCȳ

42 0.0456202 – 0.3940558 –
146 0.0259039 −0.4542396 0.1220998 −0.9403796
546 0.0106388 −0.6746618 0.0356279 −0.9338121

2114 0.0053128 −0.5129453 0.0104755 −0.9042427
8322 0.0026798 −0.4994327 0.0030256 −0.9063059

33026 0.0013372 −0.5043272 0.0008921 −0.8860222
131586 0.0006675 −0.5025385 0.0002586 −0.8957802
525314 0.0003340 −0.5000704 7.359881e-05 −0.9077666

6.3 Optimization with point observations on a square: one point

We set n = 2, Ω = (0, 1)2, a = −0.4 and b = −0.2. The state equation (4.3) is replaced by (6.3), which
allows the incorporation of a forcing term f. We then define the exact optimal state, the observation set
and the desired point value as follows:

ȳ(x1, x2) = 32x1x2(1 − x1)(1 − x2), Z = {(0.5, 0.5)}, y(0.5,0.5) = 1.

The exact optimal adjoint state is given by (6.1) and the right-hand side f is computed accordingly. We
notice that the optimal adjoint state p̄ does not satisfy homogeneous Dirichlet boundary conditions. We
thus go beyond the theory developed in Section 4 and observe that, even if this is the case, Table 2 shows
the optimal performance of the scheme (2.12)–(2.14) when approximating the solution to the optimization
problem with point observations: EOCū is in agreement with estimate (4.14) of Theorem 4.3.

6.4 Optimization with point observations: four points

The objective of this numerical experiment is to test the performance of the fully discrete scheme (2.12)–
(2.14) when more observation points are considered in the optimization with point observations problem.

Let us consider n = 2 and Ω = (0, 1)2. The control bounds defining the set UZ are given by a = −1.2
and b = −0.7. The state equation (4.3) is replaced by (6.3). This allows the incorporation of a forcing
term f. We set

Z = {(0.75, 0.75), (0.75, 0.25), (0.25, 0.75), (0.25, 0.25)},

with corresponding desired values

y(0.75,0.75) = 1, y(0.25,0.25) = 1, y(0.75,0.25) = 0.5, y(0.25,0.75) = 0.5.
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Table 3 Experimental order of convergence of scheme (2.12)–(2.14) when
it is used to approximate the solution of the problem of Section 4 with
four observation points. The EOCū is in agreement with estimate (4.14) of
Theorem 4.3: the family {Tk} is quasi-uniform, so that hTk ≈ N(k)−1/2,
which is what we observe. The EOCȳ reveals quadratic order; see Remark
4.6 for a discussion

DOFs ‖ū − ūTk ‖L2(Ω) EOC ‖ȳ − ȳTk ‖L∞(Ω) EOC

42 0.0285416 – 0.0595256 –
146 0.0285084 −0.0009357 0.0152388 −1.0936039
546 0.0208153 −0.2384441 0.0039226 −1.0288683

2114 0.0116163 −0.4308717 0.0010313 −0.9868631
8322 0.0061821 −0.4602926 0.0002708 −0.9758262

33026 0.0030792 −0.5056447 7.057710e-05 −0.9755383
131586 0.0014908 −0.5247299 1.729492e-05 −1.0173090
525314 0.0007618 −0.4849766 4.503108e-06 −0.9720511

The exact optimal state variable is then given by

ȳ(x1, x2) = 2.75 − 2x1 − 2x2 + 4x1x2

and the exact optimal adjoint state is given by (6.1). We must immediately comment that, as in the example
of Section 6.3, both ȳ and p̄ do not satisfy homogeneous Dirichlet boundary conditions. However, as the
results of Table 3 show, the EOCū is optimal and in agreement with estimate (4.14) of Theorem 4.3. This
illustrates the robustness of scheme (2.12)–(2.14) when more observations points are considered. Table 3
also shows quadratic order for the EOCȳ; see Remark 4.6 for a discussion.

6.5 Optimization with point observations: a three-dimensional example

We set n = 3 and Ω = (0, 1)3. We define the control bounds for the set UZ as follows: a = −15 and
b = −5. The optimal state is

ȳ(x1, x2, x3) = 8192

27
x1x2x3(1 − x1)(1 − x2)(1 − x3),

whereas the optimal adjoint state is defined by (6.1). The set of observation points is

Z = {(0.25, 0.25, 0.25), (0.25, 0.25, 0.75), (0.25, 0.75, 0.25), (0.25, 0.75, 0.75),

(0.75, 0.25, 0.25), (0.75, 0.25, 0.75), (0.75, 0.75, 0.25), (0.75, 0.75, 0.25)}

and we set yz = 1 for all z ∈ Z . In this example, the optimal adjoint state p̄ does not satisfy homogeneous
Dirichlet boundary conditions. However, as shown in Table 4, the performance of the scheme (2.12)–(2.16)
is better than expected: EOCū presents a better result than estimate (4.14) of Theorem 4.3; see Remark
4.4 for a discussion. We notice that since the family {Tk}8

k=1 is quasi-uniform, we have hTk ≈ N(k)−1/3.
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Table 4 Experimental order of convergence of scheme (2.12)–
(2.14) when it is used to approximate the solution to the optimization
problem of Section 4 in a three-dimensional example. The EOCū sug-
gests that estimate (4.14) of Theorem 4.3 is not sharp; see Remark
4.4 for a discussion. We notice that the family {Tk} is quasi-uniform
and then hTk ≈ N(k)−1/3

DOFs ‖ū − ūTk ‖L2(Ω) EOCū

1419 0.0274726 –
3694 0.0199406 −0.3349167
9976 0.0120137 −0.5100352

27800 0.0088690 −0.2961201
79645 0.0067903 −0.2537367

234683 0.0049961 −0.2839348
704774 0.0037908 −0.2510530

2155291 0.0028947 −0.2412731

Table 5 Experimental order of convergence of scheme
(2.12)–(2.14) when it is used to approximate the solution
to the optimization problem with point sources of Section 5.
The EOCū reveals quadratic order and illustrates our error
estimate (5.2)

DOFs ‖ū − ūTk ‖L2(Ω) EOC

86 0.0536485 –
294 0.0207101 −0.7743303

1094 0.0068950 −0.8369949
4230 0.0021408 −0.8648701

16646 0.0006380 −0.8836678
66054 0.0001850 −0.8981934

263174 5.259841e-05 −0.9098104
1050630 1.472536e-05 −0.9196613

6.6 Optimization with singular sources

We now explore the performance of scheme (2.12)–(2.14) when it is used to solve the optimization
problem with singular sources. We set n = 2 and Ω = (0, 1)2. We consider D = (0.5, 0.5) and the
control bounds that define the set Uδ are a = 0.3 and b = 0.7. The desired state and the exact adjoint
state are defined as

p̄(x1, x2) = −32x1x2(1 − x1)(1 − x2), ȳd = − sin(2πx) cos(2πx).

The exact optimal state is given by (6.1). We notice that the optimal state ȳ does not satisfy homogeneous
Dirichlet boundary conditions; nevertheless, we explore the performance of (2.12)–(2.14) beyond the
scope of the theory. As Table 5 shows, the experimental order of convergence EOCū is optimal in terms
of approximation.
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Unger, A. & Tröltzsch, F. (2001) Fast solution of optimal control problems in the selective cooling of steel. ZAMM

Z. Angew. Math. Mech., 81, 447–456.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

ajna/article/38/2/852/3858067 by guest on 23 April 2024



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [535.500 697.000]
>> setpagedevice




