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We describe two novel Markov chain Monte Carlo approaches to computing estimates of parameters
concerned with healthcare-associated infections. The first approach frames the discrete time, patient level,
hospital transmission model as a Bayesian network, and exploits this framework to improve greatly on
the computational efficiency of estimation compared with existing programs. The second approach is in
continuous time and shares the same computational advantages. Both methods have been implemented in
programs that are available from the authors. We use these programs to show that time discretization can
lead to statistical bias in the underestimation of the rate of transmission of pathogens. We show that the
continuous implementation has similar running time to the discrete implementation, has better Markov
chain mixing properties, and eliminates the potential statistical bias. We, therefore, recommend its use
when continuous-time data are available.
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1. Introduction

Within the past 5 years, significant progress has been made using stochastic patient-level models to
address important questions related to the sources of pathogens to better understand factors that affect
their hospital associated transmission, and to measure the impact of intervention strategies to reduce
their spread. Ideally, statistical analyses would be done straightforwardly using direct observations of
transmission events. In reality, however, transmissions are inherently unobservable and must be inferred
from clinical and surveillance testing done during a patient’s hospital stay. Fortunately, many statistical
methods have been developed to deal with such missing data problems, and making multiple imputa-
tions of the missing data using Markov chain Monte Carlo (MCMC) methods have been fruitful in this
context with the works of Gibson et al. (2004), Forrester et al. (2007), Cooper et al. (2008) and Kypraios
et al. (2010) being of particular note. The common element in these hidden Markov methods is the
explicit representation of the history of admission, testing and discharge of each patient in a hospital
unit, the hidden variable being the unobserved time of colonization. This contrasts with compartmental
models in which only aggregate counts of patients and test results are considered (Cooper & Lipsitch,
2004; McBryde et al., 2007; Drovandi & Pettitt, 2008; Christopher et al., 2011). Which approach is
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80 A. THOMAS ET AL.

appropriate will depend on any application and the need to balance the tractability of compartmental
models against the detail and flexibility of patient-level hidden Markov models. For a more complete
review, see O’Neill (2010).

The MCMC methods of Forrester et al. (2007), Cooper et al. (2008) and Kypraios et al. (2010)
all use reversible jump MCMC (RJMCMC) (Green, 1995) and all update a single patient, or small
proportion of the patients, at each iteration. Hence, a large number of iterations as required before
convergence is achieved. Each study also analysed relatively small hospital units over short periods
of time. If one is interested in analysing data from large hospitals over longer periods of time, the
computational times required by any of these three approaches is substantial and possibly prohibitive.
Each also assumes that a user has significant programming expertise.

In this work, we reframe the hospital transmission model as a Bayesian network and estimate its
parameters using both discrete-time and continuous-time implementations. Because the focus of this
work is on the method of estimation, rather than specific model extensions, we use a basic trans-
mission model having a single transmission rate, importation probability and surveillance test sensi-
tivity. This model was originally designed for pathogens that follow the susceptible-infected, or SI,
pattern (Gibson et al., 2004). In a hospital context, this implies that once patients become colonized
by pathogens, such as methicillin-resistant Staphylococcus aureus (MRSA), they remain so for the
duration of their hospitalization. Our approach and programs can be extended in the same ways that
have been done by previous authors (Forrester et al., 2007; Cooper et al., 2008; Kypraios et al.,
2010).

In our restructured problem, the dimension of the state space is constant. Thus, we do not use
reversible jump methods, but instead use more straightforward Gibbs (Geman & Geman, 1984)
or Metropolis (Metropolis et al., 1953) updates. In addition, we note that making these updates
does not require complete calculation of all the terms in a likelihood, but only the, typically, small
number of terms affected by a proposed perturbation. Thus, our implementations are considerably
more efficient and faster than the previous ones. We have taken advantage of these computational
enhancements to consider the statistical properties of parameter estimates from data for far larger
hospital units and study duration than previously possible. In particular, using simulated data, we
show that imposing time discretization on data that is reported continuously can lead to biases in
the estimates of transmission rates and importation probabilities. These biases are avoided in our
continuous-time implementation. We also show that the continuous-time program has similar com-
putational requirements to the discrete-time program, and that the mixing properties of the Markov
chain it induces are superior. We, therefore, recommend the continuous-time implementation for any
further use.

2. Methods

In this section, we will describe two MCMC algorithms to estimate model parameters for healthcare-
associated transmissions using patient histories of admission, discharge and test results from surveil-
lance samples. The first algorithm is applicable to data that are either reported in discrete time or for
which times have been rounded. If continuous-time data are available, our second algorithm can be
used. We will use a similar notation to Cooper et al. (2008) but focus on one particular straightforward
model. This simple model is chosen for purposes of clarity of exposition and illustration and should not
be taken as a limitation of our approach. In particular, computational requirements are not impacted by
any of the extensions considered by Cooper et al. (2008).
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EFFICIENT PARAMETER ESTIMATION 81

2.1 Notation and model

All times are recorded in days between 0 and T , the length of the observation period. We use the term
patient episode to mean a contiguous episode of care within the unit under study for a particular patient
defined by known admission and discharge times and during which test samples may be taken from the
patient. The same patient may have multiple patient episodes, although this is not always accounted for
in models. Patient episodes are indexed from 1 to N .

The observed data D consist of {ta
i }, {td

i }, {si,j} and {ts
i,j}, where ta

i and td
i are the admission and dis-

charge times for the ith patient episode, si,j is the result of the jth test done during patient episode i, with
0 and 1, respectively, indicating negative and positive results, and ts

i,j is the time at which the sample
used for the test was taken.

The key element in the MCMC approach is the introduction of an augmented data set A. The aug-
mented data A consist of {ai}, {ci} and {tc

i }, where ai is a binary indicator set to 1 if the ith patient was
colonized on admission and 0 otherwise, ci is a binary indicator set to 1 if the ith patient was colonized
during their stay and tc

i is the time of this colonization event. When ci = 0, tc
i is undefined. It is assumed

that once colonized, a patient remains so for the duration of their stay.
Let hi(t) = 1 if the ith patient is on the ward at time t, and 0 otherwise, and let mi(t) = 1 if the ith

patient is colonized at time t, and 0 otherwise. Thus, at time t, z(t) =∑i hi(t) is the total number of
patients on the ward and y(t) =∑i hi(t)mi(t) is the number of colonized patients.

Let ν be the probability that a patient is colonized at admission. Let λ > 0 be the instantaneous
rate at which patient to patient transmissions occur so that if a patient is uncolonized at time t and
exposed to y(t) colonized patients, the probability that they become colonized in the interval (t, t + Δ)

is 1 − e−λy(t)Δ, provided that the interval is short enough that y(t) does not change. Let ξ be the test
sensitivity, i.e. the probability that a test taken on a colonized patient gives a positive result. We will
assume perfect specificity, i.e. that there are no false-positive results.

The posterior distribution is then given by

p(A, ν, λ, ξ | D) ∝ p(D | A, ξ)p(A | ν, λ)p(ν, λ, ξ), (1)

where
p(D | A, ξ) =

∏
i,j:mi(ts

i,j)=1

ξ si,j(1 − ξ)1−si,j , (2)

p(A | ν, λ) =
∏

i

exp

(
−
∫ T

0
λy(t)hi(t)[1 − mi(t)] dt

) ∏
i:ci=1

λy(tc
i − δ)

∏
i

νai(1 − ν)1−ai , (3)

and p(ν, λ, ξ) is the parameter prior of choice. The value δ is infinitesimally small so that y(tc
i − δ) is

the count of colonized patients immediately before the ith patient is colonized.

2.2 Discrete-time estimation

2.2.1 Formulation as a Bayesian network. We assume that times are reported discretely in equal
intervals of arbitrary length Δ days, e.g. full days, half days, hours, etc. The number of time intervals
is T/Δ. In discrete time, it is not necessary to track {ai}, {ci} and {tc

i } directly because ai = 1 if and
only if mi(ta

i ) = 1, ci = 1 only if ai = 0 and mi(td
i ) = 1, and tc

i = min(td
i + 1, {t : mi(t) = 1}). Hence, the

augmented data are fully specified by {mi(t) : hi(t) = 1, i = 1 . . . N , t = 1 . . . T/Δ}.
The posterior over the parameters and augmented variables is now the Bayesian network
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82 A. THOMAS ET AL.

p(ν, λ, ξ , {mi(j)} | D) ∝ p(ν, λ, ξ)
∏

i

p(mi(t
a
i ) | ν)

∏
i

td
i∏

t=ta
i +1

p(mi(t) | mi(t − 1), y(t − 1), λ)

×
∏

i

∏
j

p(si,j | mi(t
s
i,j), ξ), (4)

where

p(mi(t
a
i ) | ν) =

{
ν if mi(ta

i ) = 1,

1 − ν otherwise,
(5)

gives the probability of importations,

p(mi(t) | mi(t − 1), y(t − 1), λ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

e−λy(t−1)Δ if mi(t) = 0, mi(t − 1) = 0,

1 − e−λy(t−1)Δ if mi(t) = 1, mi(t − 1) = 0,

0 if mi(t) = 0, mi(t − 1) = 1,

1 if mi(t) = 1, mi(t − 1) = 1,

(6)

gives the period to period transmission probabilities and

p(si,j | mi(t
s
i,j), ξ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if si,j = 0, mi(ts
i,j) = 0,

0 if si,j = 1, mi(ts
i,j) = 0,

1 − ξ if si,j = 0, mi(ts
i,j) = 1,

ξ if si,j = 1, mi(ts
i,j) = 1,

(7)

specifies the test characteristics.
Figure 1 gives a graphical representation of part of a typical Bayesian network of the above form.

Each vertex represents a variable and the arrows indicate which variables have immediate influence
on others. The example shows the variables needed to represent two patient episodes. Episode 1 from
period 18–21, with two tests, and episode 2 from period 20–22 with three tests including two taken
during the same period. Note that the {y(t)}, the variables giving the by-period count of colonized
individuals, form a central core for this structure of variables so that the patient episode variables interact
directly only with this core and not with the variables for other patient episodes. This leads to many
conditional independences between the variables that can be exploited when programming the MCMC
algorithm.

As our examples involve units of large capacity observed over hundreds of days, the effect of the
prior distributions is minimal and for convenience we chose Uniform (0, 1) priors for ν and ξ , and an
improper Uniform prior for log(λ).

2.2.2 Monte Carlo Markov chain. Our MCMC scheme is then a mixture of Gibbs updates (Geman
& Geman, 1984) for ν and ξ and Metropolis updates (Metropolis et al., 1953) for λ and the augmented
data {mi(t)}. More specifically, a single iteration of updates does the following:

• Update {mi(t)}: For each patient episode i in some order update the episode history in the following
way:
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Fig. 1. A graphical representation of the Bayesian network used to implement the discrete-time model.

– Find tc
i , i.e. the current time of colonization for the ith patient with the convention that tc

i = td
i + 1

if the patient was not colonized during the episode.

– Propose a new value t′ci uniformly at random from the range ta
i � t′ci � td

i + 1 to be the new first
colonization period.

– By flipping the states of the variables for patient episode i between tc
i and t′ci , and by increasing

or decreasing the appropriate y(t) correspondingly, we generate a new patient event history. Let
{m′

i(t)} be the new history thus proposed.

– Accept this new history with probability

min

{
1,

p(ν, λ, ξ , {m′
i(t)} | D)

p(ν, λ, ξ , {mi(t)} | D)

}
. (8)

• Update ν: Calculate

u =
∑

i

mi(t
a
i ) and v =

∑
i

[1 − mi(t
a
i )], (9)

and generate a new value of ν from a Beta distribution with parameters u and v.

• Update ξ : Calculate

w =
∑

i,j:mi(ts
i,j)=1

si,j and x =
∑

i,j:mi(ts
i,j)=1

[1 − si,j], (10)

and generate a new value of ξ from a Beta distribution with parameters w and x.
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84 A. THOMAS ET AL.

• Update λ: Propose a new value

λ′ = exp[log(λ) + Z] where Z ∼ N(0, σ 2), (11)

and accept the proposed value with probability

min

{
1,

p(ν, λ′, ξ , {mi(j)}|D)

p(ν, λ, ξ , {mi(j)}|D)

}
, (12)

where σ 2 is a variance parameter whose value may need to be tuned depending on the application.
We found that σ 2 = 1 worked well over all the applications shown here.

2.2.3 Computational complexity. Recall that the total number of patient episodes is N , and that the
study times goes from 0 to T days so that the total number of time periods in the discretization is T/Δ.
Let M be the mean length of stay of a patient and let the capacity of the unit be C. Thus, NM is roughly
proportional to, and no larger than TC, so O(NM ) = O(TC).

The Gibbs updates are straightforward and quick to execute. Updating ν requires only checking
one variable for each patient and hence is an O(N) operation. Updating ξ requires only checking one
variable for each test. If we assume that the number of tests is roughly proportional to the number of
patient episodes, this is also an O(N) process.

The Metropolis updates for λ and {mi(t)} are more computationally demanding. While the proposal
schemes are very simple, the acceptance probabilities appear to require complete posterior probability
computations, each of which requires a time of O(TC/Δ) since each mi(t) needs to be queried. Note,
however, that many of the terms cancel from the ratios of posterior probabilities. In order to exploit
this in our programs, we make a list of each term of the posterior (4) that each variable and parameter
appear in. Then, when the values of a set of variables or parameters are changed, it is straightforward to
calculate the acceptance ratios efficiently using only non-cancelling terms. Nonetheless, updating λ is
still an O(TC/Δ) operation. However, when updating each of the N patient episodes, only the terms of
(4) that involve concurrent episodes need to be considered, which can be done in a time of O(MC/Δ)

for each episode, instead of O(TC/Δ). Thus, the time required for a complete update of the parameters
and each patient history is

O(N) + O(N) + O

(
TC

Δ

)
+ O

(
NMC

Δ

)
= O

(
TC

M

)
+ O

(
TC

Δ

)
+ O

(
TC2

Δ

)
, (13)

which is clearly dominated by the final term O(TC2/Δ). The storage requirement for the discrete imple-
mentation is dominated by the need to store the {mi(t)} binary indicators and is, hence, O(TC/Δ). Thus,
as we illustrate below, finer time discretizations and longer study periods will increase the time and
storage required, as will larger study units.

2.3 Continuous-time estimation

2.3.1 Formulation as a list of events. In order to implement a continuous-time version, we restate
the problem in terms of events. An event is an admission, discharge, colonization or test result, and each
is associated with its time of occurrence. Admission, discharge and test events are part of the observed
data D, while the colonization events are the augmented data A. Again, we do not have to directly track
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EFFICIENT PARAMETER ESTIMATION 85

ai and ci, but use the convention that a patient was colonized on admission if and only if tc
i = ta

i , and
that the patient was not colonized during the episode if and only if tc

i = td
i .

For any particular value of the augmented data, we can order the events in time from first to
last: (e1, e2, . . . , eE) with associated times t1 � t2 � · · · � tE. The posterior distribution (1) can then be
rewritten as

p(ν, λ, ξ)

E∏
k=1

g(ek) exp

(
−
∫ tk

tk−1

∑
i

λy(t)hi(t)[1 − mi(t)] dt

)
(14)

= p(ν, λ, ξ)

E∏
k=1

g(ek) exp{−λy(tk−1)[z(tk−1) − y(tk−1)][tk − tk−1]}, (15)

where g(ek) is a factor depending on the type and time of the event as follows:

• If ek is an admission or a discharge, g(ek) = 1.

• If ek is the test result si,j at time tk = ts
i,j,

g(ek) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

1 if si,j = 0, tk < tc
i ,

0 if si,j = 1, tk < tc
i ,

1 − ξ if si,j = 0, tk > tc
i ,

ξ if si,j = 1, tk > tc
i .

(16)

• If ek is the colonization event for patient i at time tk = tc
i ,

g(ek) =

⎧⎪⎨
⎪⎩

ν if tk = ta
i ,

(1 − ν)λy(tk−1) if ta
i < tk < td

i ,

1 − ν if tk = td
i .

(17)

Roughly speaking, we can think of g(ek) as the probability of what happened at event ek and the
associated exponentiated integral as the probability that nothing happened in the time since the previ-
ous event. With this representation, if an event time changes, the only terms in (14) that need to be
recalculated to account for this are those for events that occur between the old and new times.

2.3.2 Monte Carlo Markov chain. In the MCMC scheme, we update ν and ξ as before. To update λ,
we note that the terms of the likelihood (15) that involve λ are proportional to λα e−λβ , where α is the
count of transmission events that occur in the augmented data, and

β =
E∑

k=1

y(tk−1)[z(tk−1) − y(tk−1)][tk − tk−1]. (18)

If we assume an improper Uniform prior for λ, it follows that its conditional distribution given the
current state of the augmented data and the other parameters is a Gamma distribution from which it is
straightforward to sample using a Gibbs update instead of the less efficient Metropolis update used in
the discrete case.
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86 A. THOMAS ET AL.

For the colonization times tc
i , we again use a Metropolis scheme, as follows:

• Propose a new colonization time t′ci from the mixture distribution that puts discrete probabilities of
1/(2 + td

i − ta
i ) at ta

i and td
i and distributes the remaining probability uniformly between these two

points. That is, generate t′ci from

f (x) = 1

2 + td
i − ta

i

for ta
i � x � td

i . (19)

Note that, although this proposal distribution is a mixture, the proposals are symmetrical.

• Accept tc
i with probability

min

{
1,

p(ν, λ, ξ , t′ci , {tc
k : k |= i} | D)

p(ν, λ, ξ , tc
i , {tc

k : k |= i} | D)

}
. (20)

Most of the terms in the ratio of (20) cancel. If ef is the event immediately preceding the earlier of
tc
i and t′ci , and el is the event immediately following the later of the times, the ratio can be calculated as

l∏
j=f +1

g(e′
j) exp{−λy′(t′j−1)[z(t

′
j−1) − y′(t′j−1)][t

′
j − t′j−1]}

g(ej) exp{−λy(tj−1)[z(tj−1) − y(tj−1)][tj − tj−1]} , (21)

where {e′
j} and {t′j} are the new, proposed, events and times. These will differ from the incumbent events

only in that:

• the time ti = tc
i for the colonization event ei is changed to t′ci and the event is moved to the appropriate

position in the list of events;

• the indexes of the events between the tc
i and t′ci are increased by 1 if t′ci < tc

i and decreased by 1 if
t′ci > tc

i ;

• the values of y(tj) are changed to y′(t′j) to reflect an increase in the count of colonized patients in the
unit in the time interval (t′ci , tc

i ) if t′ci < tc
i or decrease in the count in (tc

i , t′ci ) if t′ci > tc
i .

2.3.3 Computational complexity. As before, updating ν and ξ are O(N) computations. Updating λ

requires a single scan through all of the events to calculate α and β which takes a time of O(E). Each
patient episode involves three events, the admission, colonization and discharge events, plus any test
result events. Thus, if we again assume that the number of tests is proportional to the number of patient
events, O(E) = O(N).

As in the discrete case, at each iteration we update the tc
i for every patient i, hence the dominating

calculation is again the updating of the augmented data. The time required to evaluate the acceptance
probability for the update of a single patient episode is proportional to the number of events that occur
during the episode which, on average, is O((M/T)N) = O(C). Hence, a complete scan of updates can
be done in a time of O(NC) = O(TC2/M ). The storage requirement for the continuous implementation
is simply to maintain the list of events and so is O(N) = O(TC/M ). The computational requirements
for the discrete and continuous implementations, therefore, scale in similar fashion with respect to
the length of the study period and unit capacity. As we show below, the actual time required for the
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EFFICIENT PARAMETER ESTIMATION 87

continuous version is similar to that required for a discretization by day, and compares favourably with
the requirements for finer discretizations.

Whether or not the model that we use requires an RJMCMC depends on how the sampling is formu-
lated. Cooper et al. (2008) chose to handle the possibility of importation and never infected individuals
by using binary variables, with a separate variable indicating the time of colonization. Then, e.g. if a
binary variable indicates an importation, the associated colonization time is undefined. Hence, different
states have different numbers of parameters which is a situation that can be addressed by an RJMCMC.
In contrast, we model this with a single variable indicating the time of colonization using the convention
that a colonization time exactly equal to the admission time is an importation, and a colonization time
exactly equal to the discharge time indicates a never-colonized patient. While this is clearly equivalent
to the previous formulation, the number of variables is now fixed. Although these colonization time
variables have mixed distributions, with finite probabilities at the end points but distributed continu-
ously in between, the standard Metropolis proposal–acceptance machinery still applies, and so we do
not need to resort to an RJMCMC.

2.4 Simulation

We evaluated the computational and statistical performance of both discrete- and continuous-time meth-
ods on data simulated in continuous time. We used a method similar to that given by Ripley (1987) for
generating random birth–death processes. The various possible events—admissions, discharges, colo-
nizations and tests—are assumed to occur at random with rates that can depend on the current state of
the system. The time to the next event is generated from an Exponential distribution with rate equal to
the sum of the individual event rates. The type of the event is then chosen with probability proportional
to the event rates. The simulation program allows specification of the capacity of the unit, the length in
days of the study period, the mean length of stay for a patient, the mean occupancy rate of the unit and
the rate at which a patient is subjected to a random test in addition to the model parameters ν, λ and ξ .

The output is a list of events specified by the time, the patient involved and the type of event.
Although the colonization events are simulated, they are not usually output to the analysis program.
There is, however, an option to force the output of the colonization events which we used to compare
the estimates made with our methods with the estimates that would be possible if colonizations were
observable and, hence, evaluate the information lost due to their unobservability.

We made several sets of simulations to evaluate four aspects of our methods: how the computational
time requirements scale with the size of the problem; how well the Markov chains mix; how correlated
the simulations from the ergodic distribution are and how discretization can lead to biased estimation.
These results cover a range of parameter options, but, given the large number of combinations possible,
we have chosen to give an illustrative rather than comprehensive presentation; however, the character-
istics shown here are typical of what we have seen in more extensive testing.

For the first three issues, we ran three analysis programs: the discrete-time program discretized
by day; the discrete-time program discretized by quarter day and the continuous-time program. In the
analysis of statistical bias, we also included a program that used the simulated transmission events
directly in order to compare our methods with the ideal, unobtainable, situation. In each of the data sets
simulated, we set the mean length of stay for patients to 5 days, the mean occupancy rate to be 80% and
the mean number of tests per patient to be 1 every 3 days.

In all of what follows, we define a single iteration to be one round of Metropolis updates to all the
augmented data and Gibbs or Metropolis updates, as appropriate, to the parameters. The values of the
parameters were output after each iteration.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article/32/1/81/661586 by guest on 09 April 2024



88 A. THOMAS ET AL.

0 100 200 300 400 500

0
50

10
0

15
0

Number of days

P
ro

gr
am

 ti
m

e 
in

 s
ec

on
ds

Discrete by quarter day

Discrete by day
Continuous

0 50 100 150 200 250

0
10

0
20

0
30

0
40

0
50

0
60

0

Unit capacity

P
ro

gr
am

 ti
m

e 
in

 s
ec

on
ds

Discrete by quarter day

Discrete by day

Continuous

(b)

(a)
Program time by study period

Program time by unit capacity

Fig. 2. How the time taken for 1000 iterations of each of 3 analysis programs increases as (a) the study period increases and (b)
the unit capacity increases. The best linear and quadratic fits, respectively, to the observed times are also shown with the fits for
the continuous-time implementation as dashed lines. The points for the discrete by day and continuous cases are slightly offset
horizontally for clarity.

All the simulations and analyses were run on a laptop computer with a 2.4-GHz CPU.

3. Results

3.1 Simulation study

3.1.1 Computational time. To evaluate the computational time requirements, we first simulated 10
random data sets from a baseline model where (λ, ν, ξ) = (0.001, 0.1, 0.2) for a unit with a 50-bed
capacity and a 100-day study period. The times taken by our programs to make 1000 iterations were
recorded. We then simulated larger data sets first by increasing the study period in 100-day increments
to 500 days, and then by increasing the unit size in 50-bed increments to 250 beds. Each scenario was
simulated and analysed 10 times. The analysis times are presented in Fig. 2, and show the expected
linear growth with respect to time and quadratic growth with respect to capacity.
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Fig. 3. Markov chain mixing properties. The first column shows the first 1000 sampled transmission rates from three MCMC
simulation schemes started from low (solid line) and high (dashed line) parameter values. The horizontal line shows the value
used to generate the data set. The second column shows autocorrelation functions to lag 200 for the transmission rates sampled
by the MCMC processes estimated from 100,000 samples each.

3.1.2 MCMC mixing. In order to illustrate the MCMC mixing properties, we generated a single data
set with (λ, ν, ξ) = (0.005, 0.05, 0.15) for a 50-bed unit for 100 days. We then ran 1000 iterations of
each analysis method with two different starting points in parameter space: one with high parameter
values, (λ, ν, ξ) = (0.01, 0.5, 0.5), and one with low values (0.0001, 0.005, 0.005). Figure 3 shows plots
of the 1000 values of the transmission rate sampled from the posterior distribution for each method
and each starting point. Each case shows good mixing with rapid convergence regardless of the starting
point. The mixing properties for the other parameters were similar.
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Table 1 The ESSs for runs of 100,000 correlated samples for parameter values
sampled by three MCMC processes

Transmission Importation False negative

Discrete by day 2067.7 3717.1 13704.2
Discrete by quarter day 1059.2 1202.0 5582.2
Continuous 6296.6 5548.3 16622.0

3.1.3 Autocorrelation. The same simulated data set used to examine mixing was also used to com-
pute the autocorrelations between simulations from the ergodic distribution. In this case, we made a
single long run of 100,000 iterations from each analysis program from which we estimated autocorrela-
tions out to a lag of 200. The autocorrelations for transmission rate are also given in Fig. 3 and show that
the continuous implementation gives lower autocorrelations than the discrete methods. In order to com-
pare relative efficiency from correlated samples, we note that, for a correlated sample of n observations,
each with variance σ 2, the variance of the sample mean is given by

σ 2

n2

{
n + 2

n−1∑
i=1

(n − i)fi

}
,

where fi is the ith autocorrelation. Hence, we take the effective sample size (ESS) as the estimated
equivalent number of independent samples given by

ESS = n2

n + 2
∑l

i=1(n − i)f̂i
, (22)

where f̂i is the estimated ith autocorrelation and l is the longest lag considered. Table 1 gives the ESS for
each of these runs of 100,000 iterations. Note that the ESS differs for each parameter being estimated.

3.1.4 Statistical bias. In the course of development and testing, we noted that the discrete by day
method tended to underestimate transmission rates and overestimate the importation probabilities.
In order to evaluate this more systematically, we simulated 500 separate data sets with (λ, ν, ξ) =
(0.005, 0.05, 0.15). We ran each of our estimation programs on each data set for 2100 iterations. The
first 100 iterations were in each case discarded and the remaining 2000 were used to estimate the pos-
terior mean for the three parameters. Box and whisker plots for the sampling distributions of these
posterior mean parameter estimates are given in Fig. 4. The scenario of sampling distribution for the
ideal transmissions observed is also included here for comparison.

3.2 Comparison with RJMCMC

We compared our novel continuous MCMC methods with RJMCMC using an RJMCMC program pro-
vided by Dr Ben Cooper (B Cooper, personal communication). The RJMCMC program implements a
discrete-time approximation to the continuous-time model described above. This particular implemen-
tation estimates the transmission rate and importation probability under the assumption that there are
no false test results. We used a data set on a 150-bed unit observed for 548 days. The total number
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Fig. 4. Box and whisker plots showing the sampling distributions of the mean posterior parameter estimates based on 500 ran-
domly generated data sets, under four analysis models. The ‘Ideal’ case is when the simulated transmission data are used to obtain
the posterior distributions, and is not generally feasible in reality. The dashed horizontal lines show the values used to generate
the data in each case.

of patients was 2940. This data set was generated by extending an example data set also provided by
Dr Cooper. The data were recorded discretely by day. Both the RJMCMC and our continuous MCMC
programs were run for 10,000 s and each printed the time taken, the current value of the transmission
rate and the current value of the importation probability after each set of updates.

Figure 5 shows the parameter values outputted in the first 1000 s of each run. As can be seen from the
plot for the transmission rate, the RJMCMC takes longer to get to the ergodic distribution and exhibits
more long-term correlation. Table 2 gives the posterior mean and standard deviation for each parameter
and for each method as estimated from the simulation runs after discarding the values generated in
the first 200 s. While the posterior standard deviations are very similar, there are differences in the
mean estimates between methods. We attribute this effect again to discretization issues. Inspection of
the RJMCMC program code shows that in implementing their continuous model in discrete time, the
Cooper group allowed the possibility that an individual could become colonized on their admission day.
This contrasts with the approximation that we made in our discrete-time implementation, and hence we
observe the opposite effect to that shown in Section 3.1, i.e. compared with continuous analysis, this
RJMCMC program slightly favours the transmission rate at the expense of the importation probability.

Again discarding the values generated in the first 200 s, we estimated the autocorrelation functions
for each method and each parameter. These are given in Fig. 6. For our method, the autocorrelations for
lag greater than about 200 become small. For the RJMCMC the autocorrelations remain high throughout
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Fig. 5. The sampled transmission rate parameters and importation probabilities for both our continuous MCMC scheme and
RJMCMC plotted against the computational time required.

Table 2 First- and second-order properties of the posterior distributions for parameters esti-
mated by RJMCMC and continuous MCMC methods

Transmission rate Importation probability

Mean Standard deviation Mean Standard deviation

RJMCMC 0.000407 0.000019 0.2004 0.0082
Continuous MCMC 0.000359 0.000018 0.2127 0.0086

the values shown in the figure and do not become small until approximately lag 15,000 for transmission
rate and a lag of 5000 for importation probability. However, the RJMCMC produced approximately 10
times as many samples in the given time: 1,053,675 compared with 111,587. In order to compare the
efficiency, therefore, we again use the ESS formula given in (22). Using a maximum lag of 15,000, the
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Fig. 6. The autocorrelation profiles for output from both our continuous MCMC methods and the RJMCMC. These were estimated
from runs of 10,000 s for each method with the values from the first 200 s being discarded.

ESS for the RJMCMC when estimating the transmission rate was 640.2 while, for our MCMC method,
using a maximum lag of 200, it was 7089.5. For importation probability, the difference was less dramatic
with the RJMCMC providing an ESS of 4071.2, with a maximum lag of 5000, while our approach gave
an ESS of 16475.1, with a maximum lag of 200.

3.3 Analysis of data from a Veterans Health Administration ICU

In order to evaluate our programs in a real application, we analysed the incidence of MRSA colonization
in a Veterans Health Administration (VA) surgical ICU. Over a 4-year period, the number of patients in
the unit ranged from 1 to 18. The VA has a policy of surveillance testing on admission and transfer
for every patient which yielded 3171 tests for 3200 patient episodes. Note that this differs from our
simulation model which assumes that tests are administered randomly; however, as we condition on the
test times, the parameters can be estimated in the same way. Tests administered to the patients when
they were not in the ICU were not considered. A limitation of our current model is that patient episodes
involving the same person were treated as independent episodes.
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Fig. 7. A matrix of univariate and bivariate parameter marginal posterior distributions obtained from continuous-time analysis
of the VA ICU data. Univariate kernel density estimates are shown on the diagonal with pairwise bivariate marginals, shown as
contour plots, given in the off diagonal positions.

The data were recorded in continuous time and we used only the continuous-time program in this
case. We made a single run of 100,000 iterations to evaluate the parameter posterior distributions. We
used an R interface installed on the VA informatic computing infrastructure to access our programs. The
run took under 17 min to complete.

The posterior means and 95% credible intervals for the parameters were: transmission rate: 0.0056,
(0.0016, 0.0104); importation probability: 0.115, (0.097,0.137); false-negative probability: 0.221,
(0.130,0.324). Figure 7 shows the univariate and bivariate posterior marginals for these parameters.

4. Discussion

In this paper, we report the development and evaluation of novel methods to model healthcare-associated
transmission of pathogens and, hence, estimate transmission, importation and test sensitivity parame-
ters. We first described a new, more efficient, implementation of a discrete-time approach that allows
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discretization by arbitrary time interval. We then described a novel method to implement the same
underlying model in continuous time. Previous work in this field has been restricted by computational
constraints to analyse only small patient populations such as individual ICUs. In our study, we analysed
hospital units of up to 250 beds and for up to 500 days using a laptop computer. We showed, both by
analysis of the algorithms and by the empirical confirmation in Fig. 2, that the methods scale reliably as
a linear function of the study time period and as the square of the unit capacity; so, clearly, analysis of
larger data sets is possible.

Section 3.2 suggests that our use of simple Gibbs and Metropolis updates results in far better
MCMC mixing properties than the RJMCMC. Roughly speaking, in the example shown, in the same
amount of time, the RJMCMC provides 10 times more observations, but our approach provides 10
times more information for the transmission parameter. Perhaps fortuitously, this corresponds closely
with the Cooper group’s practice of thinning their simulations and using only every 100th iteration made
(Cooper et al., 2008). However, to what extent this improvement is directly due to avoiding a reversible
jump is not clear. A major factor in making our approach feasible is the extensive exploitation of fac-
torization of terms from the Metropolis acceptance probabilities. For the discrete implementation, the
terms remaining in the acceptance probability shown in (8) can be found by expansion from (4). For
the continuous case, (21) shows the remaining terms. It is this trick that allows us to make a complete
sweep of Metropolis updates to each patient history, conditional on current parameter values and all
other patient histories, at each iteration. In contrast, in one iteration the implementation by the Cooper
group either proposes an update to a single patient history, or a group of patient histories, and makes
complete evaluations of the likelihood to determine the acceptance probability. Even if multiple changes
are proposed, these are accepted or rejected as a single block. Exploiting factorization is probably the
most significant source of improvement in our methods. It is very likely that the RJMCMC approach
could also exploit factorization and individual history updates, but this has not been shown for any spe-
cific scheme. It seems that there might well be some advantage in future work that combines the best
elements of both existing approaches. For instance, it might be beneficial to tune the proposal distri-
bution to favour colonization events early or late in a patient’s hospital stay or to make importation or
non-colonization more probable. Such asymmetric proposals can be assessed using Hastings’s methods
(Hastings, 1970).

If the times of admissions, discharges and test samples are collected and reported in continuous
time, then we have substantial reasons for preferring the use of the continuous analysis over a dis-
cretized one. First, Fig. 2 shows that the computational requirements of the continuous program are
very similar to those needed in an analysis that discretizes by day, and less than those required by finer
time discretizations. Second, the form of the likelihood in the continuous model allows MCMC updates
to the transmission rate using the Gibbs samples from a Gamma distribution instead of Metropolis
updates. Using Metropolis updates generally requires tuning a perturbation parameter in the proposal
scheme, and may require making many proposals before a new state is accepted. The state generated
by the Gibbs sampler, on the other hand, depends only on the states of the other parameters and not
on the previous state of the parameter being updated and so generally allows for more rapid movement
between states. This improved mixing behaviour is clearly shown in Fig. 3. Third, Fig. 3 also shows that
the correlations between successive simulations is smaller for the continuous model. From Table 1, we
conclude that, as a rule of thumb in planning the number of MCMC iterations to make, 10 simulations
from the continuous model chain give information equivalent to one independent observation from the
same posterior.

Finally, in addition to these computational considerations, the continuous model eliminates the sta-
tistical biases in parameter estimates that is seen when using time discretization, as illustrated in Fig. 4.
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We have concluded that this bias is a direct result of time discretization for the following reason: if,
in an imputation of the complete data, an individual is colonized on the first day of their stay, this is
interpreted in our model as an importation and so contributes to the estimate of ν rather than to λ.
In circumstances where the probability of a colonization on the first day is small, the effect of this
interpretation is negligible, however, if the transmission rate is high, or if the unit is large, there is
a significant chance of the occurrence of a transmission which is misinterpreted as an importation.
Empirical evaluations we have made (data not shown) support the observation that the bias is seen
to be greatest when λ and the unit size are large. Figure 4 also supports this conclusion as the bias
is mitigated when a finer time discretization is used, and eliminated in the continuous-time model.
If data are not collected in continuous time but is, e.g. given as daily reports, whether it is better to
analyse such data using discrete methods or, by assigning events and arbitrary time of day, continu-
ous methods is an open question. It may also be possible to address discretization bias with different
modelling assumptions, but since we anticipate that electronic health records will facilitate continu-
ous collection of data, we have not pursued either of these issues. We also note in passing that rules
of thumb to distinguish between importations and hospital-associated transmissions based on a positive
test in, say, the first 2 days of hospitalization will also result in a similar underestimation of transmission
rates.

The above evaluation of the statistical properties of our estimates was made possible by the speed
improvements in our programs compared with previous implementations. These programs are straight-
forward to use and available for general use. Their inclusion in an R package may be a particularly
helpful aid to accessibility, and we intend to develop this package to include further extensions.

The results of the VA ICU data analysis yields very plausible parameter estimates, and illustrates
correlations between them. For instance, since in any reconstruction of the augmented data the obser-
vation of a colonized individual will be attributed to either an importation or a transmission, we see a
negative correlation in the posterior bivariate marginal for the two corresponding parameters in Fig. 7.
Similarly, because of the surveillance testing of new entries to the unit, a high false-negative probabil-
ity allows more colonizations to be attributed to importation, and hence we see a positive correlation
between these parameters.

There are numerous possible model extensions, including those previously implemented (Forrester
et al., 2007; Cooper et al., 2008; Kypraios et al., 2010). Because transmission events are thought to
be facilitated by nurses, who generally stay on one unit, and doctors, who travel across units, it might
be of interest to model separate transmission rates between and within units. Additionally, a model
that explicitly incorporates the test type, surveillance versus clinical culture, could be developed to
better understand the implications of these testing events and a related model could consider modelling
symptomatic and asymptomatic colonization.

One of the limitations in this work is that we are explicitly interested in pathogens that typically
fit an SI framework. That is, we have assumed that once patients become colonized, they remain col-
onized for the duration of their hospitalization. This model is not well suited for situations in which
there is recovery from the infection. Extensions to other pathogens when there is a latent period, when
there is a recovery time or when there is a period of immunity following recovery, are likely to be
more complex and computationally more demanding as the number of possible states, and transitions
between states, increases. However, provided the Markov assumption, that future events depend only
on the current state and not the previous history, is reasonable, these extensions should be tractable by
our methods.

We anticipate that the consequences of these contributions, together with the adoption of elec-
tronic health records, will drive the field of hospital transmission modelling forwards at an increased
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pace and in new directions, including possible use by hospital policy makers. Augmented data trans-
mission models for hospitals attempt to mirror most closely the true transmission process behind
the observed data. Basic and even complex hierarchical statistical models make assumptions that
overly simplify the process behind the data. Estimates of parameters and intervention effects, as well
as their standard errors, from models that make such simplifying assumptions may be inefficient
and biased.

4.1 Software

The programs for analysis and simulation were written in Java and C++ and are available as stand-
alone programs or as R packages available from the Comprehensive R Archive Network (CRAN). The
discrete-time analysis program is called AnInfection and is available as the R package transnet.
The simulation program in Java is called SimInfection and is included in transnet. The
continuous-time model was implemented in C++ and is available as the transmission package
on CRAN; a stand-alone version is also available from the authors. A C++ version of the simulation
program is also included within the transmission package.
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