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Cells adhere to each other and to the extracellular matrix (ECM) through protein molecules on the
surface of the cells. The breaking and forming of adhesive bonds, a process critical in cancer invasion
and metastasis, can be influenced by the mutation of cancer cells. In this paper, we develop a nonlocal
mathematical model describing cancer cell invasion and movement as a result of integrin-controlled
cell–cell adhesion and cell–matrix adhesion, for two cancer cell populations with different levels of
mutation. The partial differential equations for cell dynamics are coupled with ordinary differential
equations describing the ECM degradation and the production and decay of integrins. We use this model
to investigate the role of cancer mutation on the possibility of cancer clonal competition with alternating
dominance, or even competitive exclusion (phenomena observed experimentally). We discuss different
possible cell aggregation patterns, as well as travelling wave patterns. In regard to the travelling waves,
we investigate the effect of cancer mutation rate on the speed of cancer invasion.

Keywords: cancer mutation; two-population mathematical model; cell–cell and cell–matrix adhesion;
integrins; aggregation patterns; travelling wave patterns.

1. Introduction

Normal cells proliferate, divide and die in a highly controlled manner. This proliferation requires
mitogenic signals, which are transmitted into the cell by the transmembrane receptors and bind
signalling molecules, i.e. diffusible growth factors, extracellular matrix (ECM) components and cell–
cell adhesion molecules (Hanahan & Weinberg, 2000). When a cell divides, its DNA is copied by the
two new cells. However, if the DNA is damaged or not copied correctly, the new damaged cells will
either die or start to proliferate in an uncontrolled manner, creating a signalling of oncogenes that act
by mimicking growth signalling (Hanahan & Weinberg, 2000), eventually leading to an abnormal mass
of tissues from cells that differ in clinically important phenotypic features (Marusyk et al., 2012). More
precisely, tumour formation is a result of clonal expansion driven by somatic mutation, developed by
a single precursor (monoclonal) that undergoes genetic and biological changes (Khalique et al., 2007;
Nowell, 1976). This transformation of normal cells to cancer cells is a multistep process described via
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the steps of hyperplasia, premalignant change and dysplasia (Beckmann et al., 1997). Cancer cells lose
their ability to regulate genome stability which leads to further genetic changes and tumour development
(Khalique et al., 2007). Over the last three decades it has been shown experimentally that tumours
consist of heterogeneous populations of cells, which are the result of genetic instability (Stackpole,
1983; Khalique et al., 2007; Loeb & Loeb, 2000; Martelotto et al., 2014). Intra-tumour heterogeneity
appears in almost all phenotypic cell features: from cell morphology, to gene expression, motility,
proliferation, immunogenicity and metastatic potential (Nicholson, 1984, 1987; Marusyk & Polyak,
2010). It should be mentioned that also normal cells are heterogeneous for various characteristics (e.g.
surface antigens). Nevertheless, cellular heterogeneity is more pronounced in malignant neoplasms
(Nicholson, 1987). Since the characteristics of the most abundant cell types inside these heterogeneous
tumours might not necessarily predict the properties of mixed populations (Marusyk et al., 2012), we
need to gain a better understanding of the dynamics of tumours formed of different mutated cell types.
In fact, experimental studies have shown complex interactions between clonal sub-populations: from
stable coexistence to dominant behaviours (Schuh et al., 2012). For example, some studies have shown
the possibility of having competitive exclusion of clonal cancer cell sub-populations in heterogeneous
tumours (Leith et al., 1989; Schuh et al., 2012). Other studies have shown that some tumour clones can
compete with alternating dominance (Keats et al., 2012). We emphasize that the clonal composition of
heterogeneous tumours usually changes over time (Greaves & Maley, 2012), and hence we can expect
to see different competition outcomes as time increases (e.g. from transient coexistence of multiple
clones to long-term competitive exclusion). Moreover, in some cancer clones there is evidence of contact
domination, i.e. the inhibition of growth in some clones is the result of cell–cell contact between various
cell sub-populations (Aabo et al., 1994).

The metastatic and invasive potential of heterogeneous tumours is influenced by the interactions
amongst cells, and the interactions between cells and the ECM, via cell surface receptors and various
cytokines and chemokines. A major group of cell surface receptors is represented by the integrins, which
are involved in both cell–cell adhesion and cell–matrix adhesion (Weitzman et al., 1995). In particular,
the successful colonization of new sites by cancer cells requires changes in integrin expression (Hanahan
& Weinberg, 2000). Another group of molecules involved in cell–cell adhesion is represented by the
cadherin families (Hanahan & Weinberg, 2000). The processes through which cells bind to each other
and to ECM via these surface receptors, are responsible for tissue formation, stability and breakdown
(Armstrong et al., 2006). In particular, to detach from the main aggregation/tissue, cells loose cell–cell
adhesion and strengthen cell–matrix adhesion, which leads to ECM remodelling and degradation (with
the help of enzymes called matrix metalloproteinases), thus helping cell migration through the ECM
(Friedl & Wolf, 2003).

Over the last 20 years, mathematical models have been used intensively to try to gain a better
understanding regarding the mechanisms behind cancer invasion and metastasis or the mechanisms
behind the aggregation of other types of cells (see, e.g. Ambrosi & Preziosi (2002); Andasari &
Chaplain (2012); Andasari et al. (2011); Anderson et al. (2000); Armstrong et al. (2006); Byrne &
Preziosi (2003); Chaplain et al. (2011); Cristini et al. (2009); Deakin & Chaplain (2013); Domschke
et al. (2014); Dyson et al. (2016); Enderling et al. (2006, 2010); Gerisch & Chaplain (2008); Green
et al. (2010); Knútsdóttir et al. (2014); Mogilner & Edelstein-Keshet (1995); Mogilner et al. (1996);
Painter et al. (2010); Sherratt et al. (2009); Painter et al. (2015) and many references therein). The early
mathematical models were described by local systems of partial differential equations incorporating
some generic chemotaxis or haptotaxis mechanisms (Gerisch & Chaplain, 2008; Painter, 2009), or
incorporating implicit cell–cell interactions via tumour surface forces (Byrne & Chaplain, 1996). For
example, Anderson et al. (2000) developed a local Partial Differential Equations (PDE) model of
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parabolic type for the invasion of cancer cells via cell–matrix interactions that lead to ECM degradation.
Byrne & Chaplain (1996) modelled phenomenologically the influence of cell adhesion on tumour
growth, by considering surface forces on tumour spheroids. As it became more clear that the movement
in response to chemical/haptotactic gradients was facilitated by the binding and unbinding of cell surface
molecules to other cells and to ECM, new mathematical models of parabolic type have been derived to
describe these cell–cell and cell–matrix adhesion processes (Armstrong et al., 2006; Dyson et al., 2016;
Gerisch & Chaplain, 2008; Gerisch & Painter, 2010; Green et al., 2010; Painter et al., 2015). Since these
models incorporate the assumption that cells at position x bind/unbind to/from other cells at position x
± s (for some s > 0 within cells sensing radius), they are generally nonlocal. For example, Armstrong
et al. (2006) focused on cell movements due to cell–cell adhesion, and introduced a nonlocal term
that described the nature, the direction, as well as the strength of the adhesive forces between cancer
cells. The authors also extended the nonlocal model to two populations that interact via adhesive forces
(thus incorporating self-population and cross-population adhesion), and studied the effect of different
adhesion strengths on the sorting or the mixing of cell populations. A similar two-population nonlocal
model of parabolic type, which incorporated also cell proliferation and cell movement in response to
cell ‘packing’, was described and investigated by Painter et al. (2015). The model in Armstrong et al.
(2006) was further generalized by Gerisch & Chaplain (2008), Painter et al. (2010), Domschke et al.
(2014) to include also cell-matrix interactions. While the majority of these models investigated cell–
cell and cell–matrix adhesion in one cell population, a few models considered also multiple interacting
cell populations (Domschke et al., 2014). In particular, Domschke et al. (2014) also assumed mutation
between different cell populations. A different class of nonlocal models for cancer invasion has been
developed in the context of the velocity-jump framework introduced in Othmer et al. (1988) and the
kinetic models for active particles framework described, e.g. in Bellomo et al. (2010); see the transport
models in Kelkel & Surulescu (2012), Lorenz & Surulescu (2014), Engwer et al. (2015, 2017), Hunt &
Surulescu (2017).

We should emphasize here that all these nonlocal models for cell invasion are variations or
generalizations of nonlocal models developed over the last two decades to describe the dynamics of
cell populations (Edelstein-Keshet & Ermentrout, 1990), bacterial populations (Othmer et al., 1988;
Xue et al., 2011; Perthame et al., 2016) or the dynamics of self-organized animal populations (Mogilner
& Edelstein-Keshet, 1999; Topaz et al., 2006; Eftimie et al., 2007; Fetecau & Eftimie, 2010; Carrillo de
la Plata et al., 2015; Fetecau, 2011). While the models describing collective cell movement are usually
of parabolic type, the latest models for collective bacterial movement and collective animal movement
are usually of hyperbolic/transport type.

In this study, we will investigate the role of cancer mutation on the possibility of clonal competition
with alternating dominance or even competitive exclusion between two cancer cell sub-populations (as
discussed before, these types of competition have been observed experimentally (Leith et al., 1989;
Keats et al., 2012; Schuh et al., 2012)). To this end, we will introduce a nonlocal model for cell–cell
and cell–matrix adhesion for two populations of cells (this model is a generalization of the models in
Armstrong et al. (2006); Gerisch & Chaplain (2008); Painter et al. (2015)). However, in contrast to
these previous models which are of parabolic type, here we consider a parabolic–hyperbolic model.
More precisely, we assume that one ‘normal’ cancer cell population moves both randomly and in a
directed manner in response to cell–cell and cell–matrix adhesive forces, while a second ‘mutant’
cancer cell population (i.e. a mutated clone) moves predominantly in a directed manner following
cell–cell interactions (with cells from both populations) and cell–matrix interactions (as suggested by
experimental observations in Goswami et al. (2005); Hagemann et al. (2005)). By incorporating this
assumption, we aim to bring a more realistic approach to the models since the various intra-tumour cell
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sub-populations have been shown to be distinct not only in their adhesion capabilities but also in their
motility and metastatic potential (Marusyk & Polyak, 2010). Moreover, we are interested in investigating
the effect of mutation on the spreading speed of the mutated cancer cells, since the invasion levels of
the mutant cancer cells are higher compared to those of ‘normal’ cancer cells (Chapman et al., 2014;
Wojciechowska & Patton, 2015). Also, while previous nonlocal models have assumed constant adhesive
interactions, here we will assume that these adhesive interactions depend on the level of integrins. Note
that instead of assuming a kinetic (mesoscale) approach for cell-dependence on integrins as in Lorenz &
Surulescu (2014), Engwer et al. (2015), Perthame et al. (2016), Engwer et al. (2017), Hunt & Surulescu
(2017), here we follow a microscale–macroscale approach similar to Stinner et al. (2014, 2015, 2016)
and Meral et al. (2015a,b) and couple the parabolic–hyperbolic model for spatial cell dynamics with
an Ordinary Differential Equation (ODE) for integrins dynamics. We then investigate this complex
multiscale model in terms of pattern formation, with particular attention being payed to the role of
mutation rate on the coexistence (or not) of cell sub-populations that form stationary aggregations or
travelling wave patterns.

The layout of this paper is as follows. In Section 2 we formulate a model of partial integro-
differential equations for the dynamics of two cancer cell populations, coupled with ordinary differential
equations describing ECM and integrins dynamics. In Section 3 we use linear stability analysis to
investigate the ability of the model to form cell aggregations. In Section 4 we investigate numerically
some types of spatio-temporal patterns exhibited by this nonlocal model. In Section 5 we investigate
numerically and analytically travelling wave behaviours. We conclude in Section 6 with a summary and
discussion of the results.

2. A mathematical model of two cancer cell sub-populations

2.1 Derivation of the model

Cancer invasion is a complex process involving cell–cell interactions, and interactions between cells and
non-cellular components (Calvo & Sahai, 2011). To develop our model we consider two populations of
cancer cells, a ‘normal’ (original clone) cancer population and a ‘mutant’ (descendant clone) population,
which interact with each other as well as with the ECM via long-range adhesive and repulsive forces
(Deman et al., 1976; Geiger, 1991); see Fig. 1.

Fig. 1. A caricature illustration of movement decisions made by cells at x, following interactions with neighbouring cells at x −
r and x + r, and with the ECM. For very strong attraction (represented here by thicker arrows), cells move towards larger cell
aggregations.
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Let Ω ⊂ R
d denote a bounded spatial domain (here we consider only d = 1; for a 2D version of

the model see Appendix A), with periodic boundary conditions. Let IT = [0, ∞) be the time interval.
Denote by u1 (x, t) the density of ‘normal’ cancer cells at position x and time t, and by u2 (x, t) the
density of ‘mutant’ cancer cells at position x and time t. We also denote by f (x, t) the ECM density, and
by c (x, t) the density of integrin receptors on the surface of cancer cells (receptors involved in cell–cell
and cell–matrix interactions). For compact notation, we define the vectors u (x, t) = (

u1 (x, t) , u2 (x, t)
)�

and υ (x, t) = (
u (x, t) , f (x, t)

)�.

Dynamics of cancer cells. Experimental studies (Chapman et al., 2014) have shown that cancer
cells can switch from a homogeneous type of invasion to a heterogeneous type of invasion described
by invading chains (Chapman et al., 2014; Friedl & Wolf, 2003; Wojciechowska & Patton, 2015).
Here, we assume that u1 cells can mutate into u2 cells at a constant rate M. We can derive a model
for heterogeneous cancer cell populations by considering the equations

∂ui

∂t
= −∂Ji

∂x
+ (−1)iMu1 + Gi

(
u
)

, i = 1, 2, (2.1)

where Ji, i = 1, 2, are the cell fluxes and Gi

(
u
)

, i = 1, 2, are the growth functions of populations
ui, i = 1, 2. The fluxes describe the factors that define cell movement. In this study we assume
that the movement of the ‘normal’ cancer cell population u1 is governed by random motility (which
underlines a homogeneous type of invasion), as well as directed motility in response to cell–cell
and cell–matrix adhesive forces (which underlines the heterogeneous type of invasion) (Calvo &
Sahai, 2011). In contrast, the ‘mutant’ u2 cell population moves only in a directed manner (hence
exhibiting an heterogeneous type of invasion) in response to cell–cell and cell–matrix adhesion forces.
Biologically, this directed movement of ‘mutant’ (more invasive) cancer cells can be explained by the
increase of macrophage density near highly mutated cancer cells (Lin et al., 2006), which promotes
the directed movement and invasion of these cancer cells, and decreases their random movement
(Goswami et al., 2005; Hagemann et al., 2005). Therefore, in this study we assume that the movement
of u2 population due to random walk can be considered negligible. In this case, the total fluxes
will be

J1 = JD + Ja1
and J2 = Ja2

, (2.2)

where JD is the flux due to Fickian diffusion, given by JD = −D∂u1/∂x, with D to be the diffusion
coefficient, and Jai

, i = 1, 2, are the adhesive fluxes for cell–cell and cell–matrix adhesion. In the case
of u2 the diffusion is considered very small and thus we ignore it.

Cell–cell/cell–matrix adhesion–mediated directed cancer cell migration occurs as a result of the
social forces, i.e. attraction and repulsion, between cells and between cells and ECM components, when
adhesive bonds are formed and broken. Cell–cell adhesion is described as the adhesion between cells
of the same population, as well as cross-adhesion between cells of the two sub-populations. The cell–
cell/cell–matrix adhesion forces are created through the binding of adhesion molecules, e.g. integrins,
at cell surface. To model these forces, let us define R > 0 to be the sensing radius of the cells, i.e.
the maximum range over which cells can detect other surrounding cells, which biologically represent
the extent of the cell protrusions (e.g. filopodia) (Armstrong et al., 2006). Let gi

(
υ (x + r, t) , c (x, t)

)

i = 1, 2, describe the nature of the cell–cell and cell–matrix adhesive forces created at x due to signalling
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546 V. BITSOUNI ET AL.

with cell/ECM components at x + r. These functions increase when the cell density and ECM density
increase, and accordingly they decrease when the cell density and ECM density decrease. The functions
gi, i = 1, 2, are chosen as in Bitsouni et al. (2017) to be given by

g1

(
υ (x + r, t) , c (x, t)

)
:= S1 (c (x, t)) u1 (x + r, t) + S (c (x, t)) u2 (x + r, t) + C1 (c (x, t)) f (x + r, t) ,

(2.3)

and

g2

(
υ (x + r, t) , c (x, t)

)
:= S2 (c (x, t)) u2 (x + r, t) + S (c (x, t)) u1 (x + r, t) + C2 (c (x, t)) f (x + r, t) ,

(2.4)

where Si (c (x, t)) is the cell–cell self-adhesion strength function for populations ui, S (c (x, t)) is the
cell–cell cross-adhesion strength function between the two populations, and Ci (c (x, t)) is the adhesion
strength function between population ui and ECM. We should mention here that a similar term was
considered before by Chaplain et al. (2011). Other studies (Armstrong et al., 2006; Gerisch & Chaplain,
2008) consider volume filling effect to avoid unbounded aggregations. While unbounded aggregations
are possible in this type of nonlocal models, these have not been observed in our system (at least not for
the parameter ranges used in this study).

We define these adhesion strength functions in terms of the integrin density c: the more integrins a
cell has, the stronger its adhesion force (Gallant et al., 2005). However, the adhesion strength reaches a
plateau for a large integrin density (Maheshwari et al., 2000). Thus, we require an increasing, bounded
function, so that we avoid extreme phenomena for large values of integrin density. A biologically
realistic choice is a sigmoid function. This choice is supported by various other experimental studies
in the literature which have shown that different biological processes can be described by sigmoid
functions: from cell adhesion via integrins (Cutler & García, 2003; Michael et al., 2009), to oxygen
saturation (Shiao & Ou, 2007). Note also that since cell mutation could lead to more integrins (Kidera
et al., 2010), we consider strength functions with different integrin levels for each of the two populations.
To this end, we choose the adhesion strength functions to be given by:

S1 (c) = s1
∗ (

1 + tanh
(
a1c

))
, S2 (c) = s2

∗ (
1 + tanh

(
a2c

))
, S (c) = s∗ (1 + tanh (dc)) ,

C1 (c) = c1
∗ (

1 + tanh
(
b1c

))
, C2 (c) = c2

∗ (
1 + tanh

(
b2c

))
, (2.5)

where d, ai, bi, i = 1, 2, and s∗, si∗, ci∗, i = 1, 2, are positive real numbers.
Within this sensing radius, let us now define Kcc and Kcm, the kernels for cell–cell and cell–matrix

adhesion ranges, respectively:

Kcc (r) =
[

K11 (r) K12 (r)
K21 (r) K22 (r)

]
, Kcm (r) =

[
K1 (r)
K2 (r)

]
.

These interaction kernels describe the dependency of the force magnitude on the distance r from x.
Here Kij, i, j = 1, 2, are the interaction kernels between population i and population j (i.e. cell–cell
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interactions), and Ki, i = 1, 2, are the kernels for cell–matrix interactions (for the two populations). For
simplicity, throughout this study we will consider (see also Domschke et al., 2014):

K11 = K12 = K1 and K22 = K21 = K2. (2.6)

Moreover, we assume that these kernels are attractive at medium/long ranges (i.e. at the edges of the
cell) and repulsive at very short ranges (i.e. over cell surface), and thus can be defined as

K1,2(r) := qaK1,2
a (r) − qrK1,2

r (r), (2.7)

with qa and qr describing the magnitudes of attractive and repulsive interactions, and K1,2
a (r) and K1,2

r (r)
describing the spatial ranges over which these interactions take place. We will discuss various examples
of attractive (Ka) and repulsive (Kr) kernels in Section 3, in the context of linear stability analysis.

Therefore, the local cell–cell and cell–matrix adhesion forces will be described by the product of
functions gi and Ki (r) , i = 1, 2. To describe the nonlocal cell–cell and cell–matrix adhesion and
repulsion forces (Deman et al., 1976; Geiger, 1991), we sum all such forces by integrating over space
to obtain the total forces:

F1[u, f , c](x, t) := 1

R

∫ R

0

1∑

k=0

η(k)K1(r)g1(υ(x + rη(k), t), c(x, t)) dr, (2.8)

and

F2[u, f , c](x, t) := 1

R

∫ R

0

1∑

k=0

η(k)K2(r)g2(υ(x + rη(k), t), c(x, t)) dr, (2.9)

where η (k) = (−1)k , k = 0, 1, is the direction of the forces. Thus, the full nonlocal interaction terms
are described by

F1[u, f , c](x, t) = 1

R

∫ R

0

1∑

k=0

η(k)K1(r)
[
S1(c)u1(x + rη(k), t) + S(c)u2(x + rη(k), t)

]
dr

+ 1

R

∫ R

0

1∑

k=0

η(k)K1(r)C1(c)f (x + rη(k), t) dr, (2.10)

and

F2[u, f , c](x, t) = 1

R

∫ R

0

1∑

k=0

η(k)K2(r)
[
S2(c)u2(x + rη(k), t) + S(c)u1(x + rη(k), t)

]
dr

+ 1

R

∫ R

0

1∑

k=0

η(k)K2(r)C2(c)f (x + rη(k), t) dr. (2.11)
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We assume that the adhesive fluxes are proportional to the density of the cells and the nonlocal
adhesion forces, Fi, i = 1, 2. Thus, we obtain the following expressions for the two adhesive fluxes:

Jai
= uiFi[u, f , c], i = 1, 2. (2.12)

Substituting (2.12) into the general mass conservation equations, we have the following equations
describing the dynamics of the two cancer cell populations:

∂u1

∂t
= D

∂2u1

∂x2 − ∂

∂x

(
u1F1[u, f , c]

) − Mu1 + G1(u), (2.13a)

∂u2

∂t
= − ∂

∂x

(
u2F2[u, f , c]

) + Mu1 + G2(u). (2.13b)

We assume that both u1 and u2 cells can proliferate in a logistic manner (to describe the observed slow-
down in tumour growth following the loss of nutrients (Laird, 1964)). Thus, the growth functions are
given by

Gi(u) = riui

(
1 − u1 + u2

ku

)
, i = 1, 2, (2.14)

where r1 and r2 are the growth rates of the u1 and u2 populations, respectively, and ku is the carrying
capacity. Note that these growth functions incorporate also the principle of competition between clonal
sub-populations in heterogeneous tumours (Leith et al., 1989).

ECM dynamics. Cancer cell populations degrade the ECM upon contact. Moreover, ECM density is
remodelled back to normal levels by cancer and healthy cells. Thus, the dynamics of ECM, f (x, t), can
be described by:

∂f

∂t
= −αu1 f − βu2 f + γ

(
1 − u1 + u2

ku
− f

fm

)
, (2.15)

where α and β are the positive rate constants of ECM degradation by u1 and u2 cell populations,
respectively, ku is the carrying capacity of the cancer cell populations and f m is the maximum ECM
density at which the ECM fills up all available physical space. Following the approach of Anderson et
al. (2000); Gerisch & Chaplain (2008), we choose to ignore the ECM remodelling terms for this model,
i.e. we always use γ = 0.

Integrin dynamics. We assume that the level of integrins depends on cancer cell density. Moreover,
we assume that cell mutation changes the density of receptors (since in highly metastatic cancers, the
expression of integrins is up-regulated (Kidera et al., 2010)). We follow an approach similar to (Stinner
et al., 2014, 2015, 2016; Meral et al., 2015a,b) and assume that the dynamics of integrins c(x, t) can be
described by an ODE:

∂c

∂t
= p1u1 + p2u2 − qc, (2.16)
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where q is the decay rate of c, and p1 and p2 are the production rates of integrins by population
u1 and u2, respectively. To model the increase in receptors on mutant cancer cells, we assume that
p2 > p1 (see Table 2). Note that integrins are produced at the positions where these cells exist, and as
cells move to different spatial positions the integrins will be produced at these new positions, too (this
can be seen more clearly in Figs 4–10). Moreover, the production of integrins at various positions in
space is counterbalanced by the decay term (−qc), which ensures that integrins will be removed from
regions where cells do not exist.

For the initial conditions, we start with only population u1 (x, 0) = u0
1 (x). The second population u2,

arises from mutations in the population u1 after a period of time, and thus u2 (x, 0) = 0. For the ECM,
we assume that the tumour has already degraded some of its surrounding tissues:

f (x, 0) = 1 − 0.5u1(x, 0) − 0.5u2(x, 0). (2.17)

Finally, the integrin density, c, is proportional to the initial tumour cell density

c(x, 0) = 0.5u1(x, 0) + 0.5u2(x, 0). (2.18)

To complete our model we need to impose boundary conditions. Throughout this study we assume that
the two cancer cell populations move on a circular finite domain of length L, i.e. x ∈ [0, L]. The periodic
boundary conditions that model this movement are

u1(0, t) = u1(L, t) and u2(0, t) = u2(L, t). (2.19)

Note that with this choice of boundary condition, the nonlocal terms are wrapped around the domain.
We will return to this aspect in Section 4.

Remark 2.1 Note that equations (2.13)–(2.16) describe a ‘microscale–macroscale’ model, where the
spatially-averaged microscale integrin dynamics (described by an ODE) is coupled with the spatial
dynamics of cancer cells (described by nonlocal PDEs). As mentioned above, this modelling approach
follows various other recent studies on cancer cell–matrix adhesion via integrins (Stinner et al., 2014,
2015, 2016; Meral et al., 2015a,b). Moreover, the coupling of PDEs for cell movement with ODEs for
the dynamics of cell receptors has been considered not only for cancer cells but also for other types
of cells, such as ‘Dictyostelium’ cells (Höfer et al., 1995a,b). However, the past 10–15 years have
seen the development of structured cell population models (described by ‘mesoscale’ models) where
the macroscopic cell dynamics is dependent on a microscopic variable that characterizes the cells at
molecular level (Erban & Othmer, 2004, 2005; Xue et al., 2011; Lorenz & Surulescu, 2014; Engwer
et al., 2015; Perthame et al., 2016; Engwer et al., 2017; Hunt & Surulescu, 2017). In Appendix B we
present a modified mesoscale version of model (2.13)–(2.16) where we assume that the two cancer cell
populations are structured by an internal variable that describes the integrin level. (Here we use the
terminology of ‘mesoscale’ and ‘microscale–macroscale’ models in the same spirit as Stinner et al.
(2014), Lorenz & Surulescu (2014) and Hunt & Surulescu (2017).)
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2.2 Non-dimensionalization of the model

To non-dimensionalize system (2.13) and equations (2.15)–(2.16), we define the following quantities:

t̃ = t

τ
, x̃ = x

L0
, ũ1 = u1

ku
, ũ2 = u2

ku
, f̃ = f

fm
, c̃ = c

cm
, R̃ = R

L0
, r̃ = r

L0
,

S̃ (c̃) = τku

L2
0

S
(
cmc̃

)
, S̃i (c̃) = τku

L2
0

Si

(
cmc̃

)
, C̃i (c̃) = τ fm

L2
0

Ci

(
cmc̃

)
, i = 1, 2. (2.20)

Here, L0 is a length scale, defined as the maximum invasion distance of the cancer cells at the
‘normal’ of invasion (Anderson et al., 2000). Usually L0 is in the range of 0.1–1 cm. We rescale time
with τ := L2

0/Dτ , where Dτ is the characteristic diffusion coefficient (∼ 10−6cm2s−1). In addition,
we rescale the cancer cells, the ECM and the integrins with ku, f m and cm, respectively. Here ku is the
carrying capacity of the cancer cell populations and it is taken to be ∼ 6.7 · 107cell/volume, and f m is
the maximum ECM density at which the ECM fills up all available physical space and it is taken to be
equal to 4 mg/volume, as in Domschke et al. (2014). Finally, cm is the maximum integrin density and it
is taken to be 5 · 104 integrins per cell (as in Benedetto et al. (2006)). For the kernels Ki (r) , i = 1, 2,
we choose (as in Domschke et al. (2014)) the dimensionless functions K̃i (r̃) , i = 1, 2, given by

K̃i (r̃) := L0Ki

(
L0r̃

) = L0Ki (r) , i = 1, 2.

We define the dimensionless functions g̃i(ũ, f̃ , c̃), i = 1, 2, by

g̃i

(
ũ, f̃ , c̃

)
:= τ

L2
0

gi

(
u, f , c

)
, i = 1, 2.

Therefore, we have for the nonlocal terms Fi[ u, f , c], i = 1, 2, that

F̃i

[
ũ, f̃ , c̃

]
:= τ

L0
Fi

[
u, f , c

]
, i = 1, 2.

Finally, we obtain the dimensionless parameters:

D̃ = D

Dτ

, M̃ = τM, α̃ = ταku, β̃ = τβku, q̃ = τq, r̃i = τ ri, p̃i = τpiku

cm
, i = 1, 2. (2.21)

After dropping the tildes for notational convenience, we obtain the following non-dimensionalized
system

∂u1

∂t
= D

∂2u1

∂x2 − ∂

∂x

(
u1F1

[
u, f , c

]) − Mu1 + r1u1

(
1 − u1 − u2

)
, (2.22a)

∂u2

∂t
= − ∂

∂x

(
u2F2

[
u, f , c

]) + Mu1 + r2u2

(
1 − u1 − u2

)
, (2.22b)
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∂f

∂t
= −αu1 f − βu2 f , (2.22c)

∂c

∂t
= p1u1 + p2u2 − qc. (2.22d)

From now on, we will always refer to the non-dimensional quantities. In the next two sections, we
discuss the dynamics of model (2.22).

3. Linear stability analysis of the model

Next, we investigate the conditions under which the two populations of cancer cells form aggregations.
We first calculate the spatially homogeneous steady states of the model, and then apply standard linear
stability analysis to investigate the conditions (for parameter values) under which the two cancer cell
populations can form aggregations.

To start, we look for the homogeneous steady states of the ODE model associated to system (2.22),
that describes the growth and mutation of the two cancer cell populations and the temporal dynamics of
ECM and integrins (i.e. no spatial movement):

∂u1

∂t
= −Mu1 + r1u1

(
1 − u1 − u2

) = 0, (3.1a)

∂u2

∂t
= Mu1 + r2u2

(
1 − u1 − u2

) = 0, (3.1b)

∂f

∂t
= −αu1 f − βu2 f = 0, (3.1c)

∂c

∂t
= p1u1 + p2u2 − qc = 0, (3.1d)

which has the following steady state solutions
(
u∗

1, u∗
2, f ∗, c∗) :

(
0, 0, f ∗, 0

)
and

(
0, 1, 0,

p2

q

)
, (3.2)

with f ∗ � 0. Here we consider only the non-negative solutions, since we require biological realism.
Note that all these homogeneous steady states have u1 = 0 (so the more invasive population u2 persists
longer). However, as we will see in Section 4, the model can exhibit non-homogeneous steady states
with u1(x, t) �= 0.

We now investigate the stability of the steady states for the spatially homogeneous and spatially
heterogeneous systems, to see if the introduction of spatial dynamics (i.e. cell movement and cell–
cell/cell–matrix adhesion) can lead to instabilities. First, we substitute the steady states (3.2) into
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the Jacobian matrix of the spatially homogeneous system (3.1) and calculate the four eigenvalues
corresponding to each steady state. Thus, for the steady state (0, 0, f ∗, 0) we have the eigenvalues

λ1 = 0, λ2 = −M + r1, λ3 = r2 > 0 and λ4 = −q < 0. (3.3)

Since λ3 > 0, this state is unstable. For the steady state
(
0, 1, 0, p2/q

)
we obtain the eigenvalues

λ1 = −β < 0, λ2 = −M < 0, λ3 = −r2 < 0 and λ4 = −q < 0. (3.4)

Since all eigenvalues are negative, the state (0, 1, 0, p2/q) is always linearly stable to homogeneous
perturbations.

Next, we investigate the linear stability analysis of the spatial system (2.22). To this end, we apply
small spatial perturbations to the previous homogeneous steady states: ui(x, t) = u∗

i + ūi(x, t), i = 1, 2,
f (x, t) = f ∗ + f̄ (x, t), c(x, t) = c∗ + c̄(x, t), where ū1, ū2, f̄ and c̄ denote the small perturbations. (Note
that, to avoid negative solutions when we perturb the zero steady states, we consider ū1 (x, t) , ū2 (x, t) ,
f̄ (x, t) , c̄ (x, t) � 0.) Substituting these into the system (2.22) (after the adhesion strength functions
Si(c), S(c), Ci(c), i = 1, 2, have been expanded in Taylor series), and ignoring non-linear terms, leads to
the following linearized system:

∂ ū1

∂t
= D

∂2ū1

∂x2 − u∗
1

R

∂

∂x

{∫ R

0
K1(r)S1

(
c∗) (

ū1(x + r, t) − ū1(x − r, t)
)

dr

}

− u∗
1

R

∂

∂x

{∫ R

0
K1(r)

[
S

(
c∗) (

ū2(x + r, t) − ū2(x − r, t)
) + C1

(
c∗) (

f̄ (x + r, t) − f̄ (x − r, t)
)]

dr

}

− Mū1 + r1ū1

(
1 − 2u∗

1 − u∗
2

) − r1u∗
1ū2, (3.5a)

∂ ū2

∂t
= − u∗

2

R

∂

∂x

{∫ R

0
K2(r)

[
S2

(
c∗) (

ū2(x + r, t) − ū2(x − r, t)
) + S

(
c∗)(ū1(x + r, t) − ū1(x − r, t)

)]
dr

}

− u∗
2

R

∂

∂x

{∫ R

0
K2(r)C2

(
c∗) (

f̄ (x + r, t) − f̄ (x − r, t)
)

dr

}
+ Mū1 + r2ū2

(
1 − u∗

1 − 2u∗
2

)−r2u∗
2ū1,

(3.5b)

∂ f̄

∂t
= −α

(
ū1 f ∗ + u∗

1 f̄
) − β

(
ū2 f ∗ + u∗

2 f̄
)

,

(3.5c)

∂ c̄

∂t
= p1ū1 + p2ū2 − qc̄. (3.5d)
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We look for solutions of the form Au1
eikx+λt, Au2

eikx+λt, Af eikx+λt and Aceikx+λt with |Au1
|, |Au2

|, |Af |,|Ac| 	 1, where k and λ are the wave number and frequency, respectively. Then system (3.5) reduces to

λAu1
= −k2DAu1

+ 2ku∗
1

R

[
S1

(
c∗) Au1

+ S
(
c∗) Au2

+ C1

(
c∗) Af

]
K̂s

1 (k) − MAu1
+ r1Au1

(
1 − 2u∗

1 − u∗
2

)

− r1u∗
1Au2

, (3.6a)

λAu2
= 2ku∗

2

R

[
S2

(
c∗) Au2

+S
(
c∗) Au1

+ C2

(
c∗) Af

]
K̂s

2 (k) + MAu1
+ r2Au2

(
1 − u∗

1 − 2u∗
2

) − r2u∗
2Au1

,

(3.6b)

λAf = −α
(

Au1
f ∗ + u∗

1Af

)
− β

(
Au2

f ∗ + u∗
2Af

)
,

(3.6c)

λAc = p1Au1
+ p2Au2

− qAc, (3.6d)

where K̂s
1,2 (k) = ∫ R

0 K1,2 (r) sin (kr) dr are the Fourier sine transforms of the kernels K1,2 (r). For

simplicity, throughout the rest of this study, we will assume that K1(r) = K2(r) =: K(r) and thus K̂s
1(k) =

K̂s
2(k) =: K̂s(k).

Cellular aggregations form when the steady states (u∗
1, u∗

2, f ∗, c∗) are unstable to spatial perturba-
tions, and for this to happen we require the maximum real part of eigenvalues of the Jacobian matrix of
system (3.6) to be positive, for at least one discrete value of k > 0.

• For the state
(
u∗

1, u∗
2, f ∗, c∗) = (0, 0, f ∗, 0) we obtain the eigenvalues

λ1 = 0, λ2 = −k2D − M + r1, λ3 = r2 > 0, λ4 = −q < 0. (3.7)

Thus, the steady state
(
u∗

1, u∗
2, f ∗, c∗) = (0, 0, f ∗, 0) is unstable.

• For the state
(
u∗

1, u∗
2, f ∗, c∗) = (

0, 1, 0, p2/q
)

we obtain the eigenvalues

λ1 = −β < 0, λ2 = −k2D − M < 0, λ3 = S2

(
c∗) Y (k) − r2, λ4 = −q < 0, (3.8)

where Y (k) = 2k
R K̂s (k). Recall that in the absence of diffusion and advection, the steady state(

u∗
1, u∗

2, f ∗, c∗) = (
0, 1, 0, p2/q

)
is linearly stable. Thus, for aggregation to form, we require this state

to be unstable to spatially inhomogeneous perturbations (Benson et al., 1993), i.e. the maximum real
part of the eigenvalues to be greater than zero. Since λ1, λ2, λ4 < 0, the steady state

(
0, 1, 0, p2/q

)

is unstable if the following dispersion relation holds:

Re
(
λ3 (k)

) = Re

(
−r2 + 2ks∗

2

R

(
1 + tanh

(
a2

p2

q

))
K̂s (k)

)
> 0. (3.9)

We notice that this dispersion relation, and therefore the possibility of cell aggregations to form,
depends on the choice of the interaction kernel. Mogilner & Edelstein-Keshet (1999) showed that the
type of kernel affects the possibility of movement and/or aggregation. Throughout the rest of this study,
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we will consider translated Gaussian attraction and repulsion kernels (as in Eftimie et al. (2007); Carrillo
de la Plata et al. (2015)):

K (x) = qa√
2πm2

a

e
− (x−sa)2

2m2
a − qr√

2πm2
r

e
− (x−sr)2

2m2
r , (3.10)

where sa and sr represent half of the length of attraction and repulsion ranges, respectively, with sr < sa.
Also, mj = sj/8, j = a, r, represent the width of the attractive and the repulsive interaction ranges. (The
constants mj, j = a, r, are chosen such that the support of more than 98% of the mass of the kernels is
inside the interval [0, ∞) (Eftimie et al., 2007).) In Section 3.1 we will investigate how different types
of kernels lead to different dispersion relations.

The Fourier sine transform of kernel (3.10) is given by

K̂s (k) =
∫ ∞

−∞
K (r) sin (kr) dr = qae− (kma)2

2 sin(ksa) − qre− (kmr)2
2 sin(ksr). (3.11)

Therefore, relation (3.9) becomes

−r2 + 2ks∗
2

R

(
1 + tanh

(
a2

p2

q

))(
qae− (kma)2

2 sin(ksa) − qre− (kmr)2
2 sin(ksr)

)
> 0, (3.12)

where the imaginary part of the eigenvalue λ3 (k) will be zero.
An example of such dispersion relation is shown in Fig. 2. Note the steady-state/steady-state mode

interaction that occurs when we increase the parameters qa and qr (i.e. the strength of attractive and
repulsive cell–cell interactions). There is a range of k −values for which Re

(
λ3 (k)

)
is positive, and thus

aggregations can arise from spatial perturbations of the steady state
(
u∗

1, u∗
2, f ∗, c∗) = (

0, 1, 0, p2/q
)
.

This means that the steady state
(
0, 1, 0, p2/q

)
, which is linearly stable for the homogeneous system, is

destabilized due to the spatial dynamics (diffusion and advection). Setting diffusion coefficient zero we
observe that there is still a range of k −values for which Re

(
λ3 (k)

)
> 0, implying the adhesion-driven

instability.

Remark 3.1 Note that model (2.22) does not exhibit Hopf bifurcations (i.e. Re (λ (k)) = 0, Im (λ (k)) �=
0). Therefore, although aggregations will develop, there will be no travelling patterns that arise via Hopf
bifurcations.

3.1 Aggregation with different types of kernel

In Mogilner & Edelstein-Keshet (1999) it was shown that even kernels give rise to group drift, while odd
kernels have a greater effect in regions where the distribution of the density is uneven (e.g. the edges
of the population), leading to stationary groups. Considering the importance of the symmetry of the
interaction kernels, we next discuss the cases of even and odd kernels, and compare these results with
our previous results where we used a translated Gaussian kernel (see equation (3.10)), to investigate the
possibility of cell aggregations to form from spatial perturbation of the steady state

(
u∗

1, u∗
2, f ∗, c∗) =(

0, 1, 0, p2/q
)
.
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AGGREGATION AND TRAVELLING WAVE DYNAMICS 555

Fig. 2. Plot of the dispersion relation (3.12) for the steady state (0, 1, 0, p2/q). The curves represent Re(λ3(k)) for: (a) qr = 0.01,
qa = 0.09 (solid green curve); (b) qr = 0.0065, qa = 0.0585 (dashed black curve); (c) qr = 0.003, qa = 0.027 (dotted red
curve); the rest of the model parameters are given in Table 2. The diamonds on the x-axis represent the discrete wave numbers
kj = 2π j/L, j = 1, 2, . . . . The two critical wave numbers that become unstable at the same time (giving rise to steady-state/steady-
state mode interactions) are k12 and k13.

• Aggregation with even kernel
We consider the situation that the interaction kernel is an even function with respect to the y-axis.
We choose the following Gaussian kernel (Mogilner & Edelstein-Keshet, 1999):

K (x) := qa√
2πm2

a

exp
(
−x2/2m2

a

)
− qr√

2πm2
r

exp
(
−x2/2m2

r

)
, (3.13)

where qa, qr, ma and mr have the same meaning as in equation (3.10). The Fourier sine transform of
the above even kernel is zero: K̂s (k) = 0. We know (see equation (3.8)) that the Jacobian matrix of
system (3.6) has three negative eigenvalues λ1,2,4 < 0. For the even kernel considered here we also
have

λ3 (k) = −r2 < 0. (3.14)

Therefore, the steady state
(
u∗

1, u∗
2, f ∗, c∗) = (

0, 1, 0, p2/q
)

is stable, and no aggregations will form.

• Aggregation with an odd kernel
We investigate now the stability of

(
u∗

1, u∗
2, f ∗, c∗) = (

0, 1, 0, p2/q
)

when we consider an odd kernel
with respect to the origin. To this end, we choose

K (x) := qax
√

2πm2
a

exp
(
−x2/2m2

a

)
− qrx

√
2πm2

r

exp
(
−x2/2m2

r

)
, (3.15)

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
m

b/article/35/4/541/4808586 by guest on 23 April 2024



556 V. BITSOUNI ET AL.

Fig. 3. Plot of the dispersion relation (3.17) for the steady state
(
u∗

1, u∗
2, f ∗, c∗) = (0, 1, 0, p2/q). Here, qa = 0.5. The rest of the

model parameters are given in Table 2. The solid curve represents the real part of λ3, while the diamonds represent the discrete

wave numbers kj = 2π
j
L , j = 0, 1, 2, . . . .

where qa, qr, ma and mr have the same meaning as in equation (3.10). Then the Fourier sine
transform of the kernel (3.15) is

K̂s (k) = qakm2
aexp(−(kma)

2/2) − qrkm2
r exp(−(kmr)

2/2). (3.16)

As before, the Jacobian matrix of system (3.6) has three negative eigenvalues: λ1,2,4 < 0. The
stability of the state

(
0, 1, 0, p2/q

)
is given by the sign of

Re
(
λ3 (k)

) = −r2 + 2k2s∗
2

R

(
1 + tanh

(
a2

p2

q

)) (
qam2

ae− (kma)2

2 − qrm2
r e− (kmr)2

2

)
. (3.17)

In Fig. 3 we plot Re(λ3 (k)) against the wave number k for this steady state. We observe that for
values of qa greater than those in the translated Gaussian case (see Fig. 2), there is a range of
k–values for which Re

(
λ3 (k)

)
is positive, thus the steady state

(
0, 1, 0, p2/q

)
can become unstable,

and spatial aggregations could arise.

4. Numerical results

In this Section we investigate numerically the stability of model (2.22). To discretize our model we
use a time-splitting approach. First, we use a Crank–Nicolson scheme to propagate the solution of the
diffusion term. Then, we use the Nessyahu–Tadmor scheme (Nessyahu & Tadmor, 1990) for the time-
propagation of the advection terms. Finally, for the time-propagation of the reaction terms we use a
forth order Runge–Kutta algorithm, where the integrals are further discretized using the Simpson’s rule.
All simulations are performed on a domain of length L = 10 with periodic boundary conditions, and
for time up to t = 500. Because of the periodic boundary conditions, we wrap the integrals around the
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domain. The initial conditions for the cancer cell populations are either small random perturbations of
spatially homogeneous steady states

ui(x, 0) = u∗
i + rand(0, 10−4), i = 1, 2,

f (x, 0) = f ∗ + rand(0, 10−4),

c(x, 0) = c∗ + rand(0, 10−4),

or small random perturbations of rectangular-shaped aggregations located in the middle of the domain

ui(x, 0) =
{

uc
i + rand(0, 10−4), x ∈ (L/2 − 1, L/2 + 1)

0, everywhere else
(4.1)

with uc
1 = 0 and uc

2 as specified in the caption of the figures. The initial conditions for the ECM and
integrin density depend on cancer cell density, and are given by relations (2.17) and (2.18), for all
numerical simulations.

Stationary aggregation patterns. To check the validity of our results obtained via linear stability
analysis (see Fig. 2), we first run simulations for small random perturbations of the spatially
homogeneous steady state

(
u∗

1, u∗
2, f ∗, c∗) = (0, 1, 0, p2/q), and for qa = 0.09 and qr = 0.01. The results,

presented in Fig. 4, show 12–13 stationary pulses (corresponding to critical wave numbers k12 − k13).
The spread of cancer cells over the whole domain (panels (a), (b)) leads to the degradation of ECM
(panel (c)). The integrin density (panel (d)) follows the patterns in the density of cancer cells. We observe
here a coexistence between a low u1 population and a high u2 population.

To check the effect of initial data on model dynamics, in Fig. 5 we investigate the behaviour of model
(2.22) when we change the initial conditions to a rectangular pulse describing an initial aggregation of
tumour cells. The magnitudes of attractive-repulsive interactions (and all other parameter values) are the
same as in Fig. 4. The short-term results in Fig. 5(a)–(d) show a travelling pulse behaviour exhibited
by the u2 population that moves away from population u1 (which is mostly stationary—although even
this population spreads a bit). This faster spreading of the u2 cells compared to the u1 cells is consistent
with experimental observations (Chapman et al., 2014; Wojciechowska & Patton, 2015). The movement
of u2 population eventually stops near the boundary (due to the periodic boundary conditions, the left-
moving and right-moving subgroups can sense each other across the boundary). The fast-moving u2
cells degrade the ECM (panel (c)). We also note the high density of integrins associated with the u1
population (panel (d)). The long-term results in Fig. 5(a′)–(d′) show the formation of new aggregations
of cells at distant positions in space. For t ∈ (100, 250), the two tumour populations coexist. For t >

250, population u1 is slowly eliminated and population u2 dominates the dynamics of model (2.22). We
also note that despite some chaotic-like dynamics exhibited by the u1 and u2 populations for t < 300, in
the long term the system approaches stationary pulses defined by 13 peaks (corresponding to unstable
wave number k13).

In Figs 6 and 7 we investigate the effect of various mutation rates on the dynamics of the u1 and u2
populations. In Fig. 6 we choose M = 0.001 (see Table 2), and observe that population u2 vanishes
for t > 400, while population u1 persists and forms small high-density aggregations of cells. This
unexpected behaviour might be explained by the combined effect of three factors: (i) the mutation rate
(M = 0.001) that is much smaller than the growth rates (r1,2 = 0.1) of the two cancer cell populations,
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Fig. 4. Patterns exhibited by model (2.22) for small random perturbations of the steady state (0, 1, 0, p2/q), corresponding to
the dispersion relation shown in Fig. 2. Here, we use the cell–cell interaction kernel given by relation (3.10), and the model
parameters given in Table 2. (a) Density of u1 cell population; (b) density of u2 (highly mutated) cell population; (c) ECM density
f ; (d) integrin density c. Note the formation of 12 or 13 peaks (if counting separately the peaks on the periodic boundaries) of high
cell density corresponding to critical wave numbers k12/k13.

(ii) the lack of diffusion for u2 and (iii) the competition for nutrients between the two cell populations
(which is modelled implicitly by the logistic terms G1,2; see equations (2.14)). This eventually leads to
an overall increase in the first population, u1, and a decrease in the second (highly mutated) population,
u2. In Fig. 7 we increase the mutation rate to M = 0.05, while chosing the growth rates fixed at r1 =
r2 = 0.1. We observe that faster mutation rates lead to a decrease and eventual elimination of the u1
population. The u2 population increases and dominates the long-term dynamics of model (2.22).

Travelling wave patterns. Choosing again rectangular pulse initial conditions, we reduce the
magnitudes of cell–cell attractive and repulsive interactions to qa = 0.00025 and qr = 0.0005. The
numerical simulations in Fig. 8 show travelling waves that propagate in opposite directions at a constant
speed. Similar behaviour is obtained for qa > qr. The evolution of the travelling waves is shown in Fig. 9
for t = 25j, j = 1, . . . , 9. We observe that the waves connect the unstable steady states

(
0, 1, 0, p2/q

)
,

with p2/q = 0.5, and (0, 0, f ∗, 0), with f ∗ = 1.
Finally, we check the effect that an increase in the mutation rate M has on the travelling wave

behaviour exhibited by model (2.22). Figure 10 shows that for high mutation rates (M = 0.05) the first
population still exhibits a travelling wave before vanishing.
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AGGREGATION AND TRAVELLING WAVE DYNAMICS 559

Fig. 5. Short-term and long-term patterns exhibited by model (2.22). The initial conditions for the two cancer cell populations
are described by a rectangular pulse (see (4.1)) with uc

2 = 1.0. We use the interaction kernel given by (3.10), and the model
parameters given in Table 2. (a),(a′) Density of u1 population; (b),(b’) density of u2 (highly mutated) population; (c),(c′) ECM
density f ; (d),(d′) integrin density c.
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Fig. 6. Patterns exhibited by model (2.22). The initial conditions for the cancer cell populations consist of a rectangular pulse (see
(4.1)) with uc

2 = 0.001. The mutation rate is M = 0.001. The rest of model parameters are given in Table 2. (a) Density of u1
population; (b) density of u2 population; (c) ECM density f ; (d) integrin density c.

Fig. 7. Patterns exhibited by model (2.22). The initial conditions for the cancer cell populations consist of a rectangular pulse (see
(4.1)) with uc

2 = 0.001. The mutation rate in M = 0.05. The rest of model parameters are given in Table 2. (a) Density of u1
population; (b) density of u2 population; (c) ECM density f ; (d) integrin density c.
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Fig. 8. Patterns exhibited by model (2.22) for initial conditions for the two cancer cell populations consisting of a rectangular pulse
with uc

2 = 0.001. Here, qr = 0.0005, qa = 0.00025 and the rest of the model parameters are given in Table 2. (a) Cell density for
u1 population; (b) cell density for u2 population; (c) ECM density f ; (d) integrin density c. Travelling waves are obtained for the
translated Gaussian kernel given by relation (3.10).

Remark 4.1 To understand the long-term behaviour of model (2.22) with odd kernels, we also ran
numerical simulations using the interaction kernel given by (3.15). The spatial patterns obtained in this
case were similar to the patterns obtained for the translated Gaussian kernel (see relation (3.10)).

4.1 Summary of model variables and parameters

Here we present two tables with the model variables and parameters. In Table 1 we list the model
variables with their units. In Table 2 we list the parameters of our model and their corresponding units
and non-dimensional values used in the simulations.

Parameter estimation.

• For the diffusion coefficient, Chaplain & Lolas (2006) has shown a range between D̃ = 10−5 and
D̃ = 10−3. In this study, we choose D̃ = 10−4.

• The sensing radius was based on the range of values given in (Armstrong et al., 2006; Gerisch &
Chaplain, 2008). In this study, we choose R̃ = 0.99.

• Attraction and repulsion ranges were chosen to be smaller or equal to sensing radius, with the
repulsion range to be smaller than the attraction range (Green et al., 2010).
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Fig. 9. The evolution of the travelling waves under small perturbations for qr = 0.0005, qa = 0.00025 and the rest of the model
parameters given in Table 2, of (a) cancer cell density u1 of the first (‘normal’) population; (b) cancer cell density u2 of the second
(‘mutant’) population; (c) ECM density f ; (d) integrin density c.

• Various experimental studies (Cunningham & You, 2015; Morani et al., 2014) have shown that
doubling times for tumour cells range from 1–10 days. This corresponds to growth rates between
(ln(2)/10, ln(2)/1) = (0.07, 0.7). In this study, we assume that r̃1 = r̃2 = 0.1.

• Experimental studies (Cillo et al., 1987; Hill et al., 1984; Mareel et al., 1991) have shown that the
mutation rate ranges between M = 10−3/day and M = 0.1/day. Thus the non-dimensional value of
the mutation rate is in the range between M̃ = 0.001 and M̃ = 0.1 (for highly aggressive tumours).
In this study, we choose M̃ = 0.001.

• The parameters ai, d, bi, s∗
i , s∗, c∗

i , i = 1, 2, were based on the range of the adhesion strength
parameters used in Armstrong et al. (2006).

• Experimental studies (Kidera et al., 2010) have shown greater production of integrins for highly
mutated cancer cells. Thus, we choose p̃1 < p̃2.

• Experimental studies (Delcommenne & Streuli, 1995; Davis et al., 2001; Liu et al., 2011; Lobert
et al., 2010) have shown that the half-lifes of the integrins range from 0.04–4 days. This corresponds
to decay rate between (ln (2) /4, ln (2) /0.04) = (0.17, 17.3). In this study, we assume that
q̃ = 0.2.
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Fig. 10. Patterns exhibited by model (2.22) for higher mutation rates (M = 0.05) and initial conditions for the two cancer cell
populations consisting of a rectangular pulse with uc

2 = 0.001. Here, qr = 0.0005, qa = 0.00025 and the rest of the model
parameters are given in Table 2. (a) Cell density for u1 population; (b) cell density for u2 population; (c) ECM density f ;
(d) integrin density c. Travelling waves are obtained for the translated Gaussian kernel given by relation (3.10)

5. Speed of travelling waves

The numerical simulations showed that the model exhibits travelling wave solutions (see Figs 8 and 9).
In this section we estimate the minimum speed at which these waves could propagate (assuming that
the travelling waves do exist). We assume that close to the invading front, the nonlinear differential
equations describing the spread of a population have similar speeds as their linear approximation (see
the approaches in Medlock & Kot (2003); Mollison (1991)). Therefore, we first calculate the linearized
system (3.5) at the steady state

(
u∗

1, u∗
2, f ∗, c∗) = (

0, 1, 0, p2/q
)
. In travelling wave coordinates z = x − wt

(where ui (x, t) = Ui (z) , i = 1, 2, f (x, t) = F (z) , c (x, t) = C (z)), this system becomes:

−wU′
1 (z) = DU′′

1 (z) − MU1 (z) , (5.1a)

−wU′
2 (z) = − 1

R

∂

∂z

{∫ R

0
K(r)

[
S2(p2/q)(U2(z + r) − U2(z − r))+

+ S(p2/q)(U1(z + r) − U1(z − r)) + C2(p2/q)(F(z + r) − F(z − r))

]
dr

}

+ MU1 (z) − r2

(
U1 (z) + U2 (z)

)
, (5.1b)
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564 V. BITSOUNI ET AL.

−wF′ (z) = −βF (z) , (5.1c)

−wC′ (z) = p1U1 (z) + p2U2 (z) − qC (z) . (5.1d)

Let s1, s2, s3, s4 > 0 be the steepness (i.e. exponent of an exponential decay/increase profile) of

u1, u2, f , c. The minimum of w
(

sj

)
for sj > 0, j = 1, . . . , 4, gives an upper bound on the rightward

travelling wave speed of the nonlinear system. Thus, we make the general exponential ansatz

U1 (z) = A1e−s1z, U2 (z) = A2e−s2z, F (z) = A3es3z and C (z) = A4e−s4z, (5.2)

where Aj ∈ R, j = 1, . . . , 4, such that asymptotically we have Ui (z) → 0, i = 1, 2, F (z) →
f ∗, C (z) → 0 as z → +∞. First we investigate the sj, j = 1, . . . , 4, numerically. In Fig. 11 we
fit these exponential ansatz profiles (given by (5.2)) to the numerical solutions u1(x, t), u2(x, t), f (x, t)
and c(x, t) at time t = 175 (dotted curve). We obtain the following ansatz profiles (continuous curve
in Fig. 11):

E1 (x) = A1 · exp (−3.17x) , with A1 = 0.063 · exp (24.5675) , (5.3)

E2 (x) = A2 · exp (−3.17x) , with A2 = 0.8 · exp (24.2505) , (5.4)

E3 (x) = A3 · exp (6x) , with A3 = 0.82 · exp (−52.5) , (5.5)

E4 (x) = A4 · exp (−3.17x) , with A4 = 0.4 · exp (24.092) . (5.6)

Hence,we deduce that the travelling wave profiles of U1 (z) , U2 (z) and C (z) have the same steepness
s := s1 = s2 = s4 = 3.17, while the profile of F (z) has steepness s3 = 6. Therefore, we replace
the exponential ansatz given by (5.2) with U1 (z) = A1e−sz, U2 (z) = A2e−sz, F (z) = A3es3z

and C (z) = A4e−sz. Let us assume that K (r) has a moment generating function, M̃ (s), defined as

Table 1 A list of model variables with their units. Since we are in
1D, length and volume coincide and we express the variables in terms
of domain length.

Variable Description Dimensional Units

u1 ‘Normal’ cancer cell density cell/length
u2 ‘Mutant’ cancer cell density cell/length
f ECM density mg/length
c Integrin density integrins/cell
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Table 2 A list of model parameters with their units and their non-dimensional values, obtained from
(2.20) and (2.21), which we used during numerical simulations.

Param. Description Dimensional Units
Non-dim.
value (p̃) Reference

D Diffusion coefficient length2/time 10−4

Chaplain & Lolas
(2006)

R Sensing radius length 0.99
Armstrong et al.
(2006)

qa Magnitude of attraction length2/cell 0.09 Estimated
qr Magnitude of repulsion length2/cell 0.01 Estimated
sa Attraction range length 0.99 Estimated
sr Repulsion range length 0.25 Estimated
ma Width of attraction kernel length 0.99/8 Estimated
mr Width of repulsion kernel length 0.25/8 Estimated
r1 Growth rate of u1 1/time 0.1

Cunningham & You
(2015); Morani et al.
(2014)

r2 Growth rate of u2 1/time 0.1
Cunningham & You
(2015); Morani et al.
(2014)

M Mutation rate 1/time 0.001
Cillo et al. (1987);
Hill et al. (1984);
Mareel et al. (1991)

a1 Coeff. related to the number of
integrins necessary for max
self-adhesion between u1

cell/integrins 0.3 Estimated

a2 Coeff. related to the number of
integrins necessary for max
self-adhesion between u2

cell/integrins 0.01 Estimated

d Coeff. related to the number of
integrins necessary for max
cross-adhesion

cell/integrins 0.5 Estimated

b1 Coeff. related to the number of
integrins necessary for max
cell-ECM adhesion for u1

cell/integrins 1.8 Estimated

b2 Coeff. related to the number of
integrins necessary for max
cell-ECM adhesion for u2

cell/integrins 5 Estimated

s∗
1 Magnitude of self-adhesion

forces of u1

length/ (time · cell) 0.9 Estimated

s∗
2 Magnitude of self-adhesion

forces of u2

length/ (time · cell) 0.2 Estimated

s∗ Magnitude of cross-adhesion
forces

length/ (time · cell) 1 Estimated

(continued).
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Table 2 Continued.

Param. Description Dimensional Units
Non-dim.
value (p̃) Reference

c∗
1 Magnitude of cell-ECM forces

of u1

length/ (time · cell) 1.5 Estimated

c∗
2 Magnitude of cell-ECM forces

of u2

length/ (time · cell) 5.5 Estimated

α Rate of ECM degradation by u1 length/ (time · cell) 1
Sherratt et al. (2009)

β Rate of ECM degradation by u2 length/ (time · cell) 2
Sherratt et al. (2009)

p1 Production rate of c by u1 integrins/ (time · cell) 0.05 Estimated
p2 Production rate of c by u2 integrins/ (time · cell) 0.1 Estimated
q Decay rate of c 1/time 0.2

Liu et al. (2011)

M̃ (s) := ∫ +∞
−∞ K (r)

(
e−sr − esr

)
dr (and such a function exists for the translated Gaussian kernels

(3.10)). Then we obtain from system (5.1):

A1

(
sw − s2D + M

)
= 0, (5.7a)

A1

(

−S
(
p2/q

) sM̃ (s)

R
− M + r2

)

+ A2

(

sw − S2

(
p2/q

) sM̃ (s)

R
+ r2

)

+ A3e(s+s3)z

(

−C2

(
p2/q

) s3M̃
(
s3

)

R

)

= 0, (5.7b)

A3

(
s3w − β

) = 0, (5.7c)

−A1p1 − A2p2 + A4 (sw + q) = 0. (5.7d)

Taking now the determinant of the system equal to zero we have the characteristic relation

(
sw − s2D + M

) (

sw − S2

(
p2/q

) sM̃ (s)

R
+ r2

)
(
s3w − β

)
(sw + q) = 0. (5.8)

Since we are looking for the minimum positive speed with respect to s > 0 and s3 > 0, in Fig. 12(a)
we plot implicitly equation (5.8) in the

(
s, s3, w

)
-space. Note that the steepness coefficient s3 (for the

ECM degradation profile) does not have any significant effect on the minimum positive wave speed w
(of the invading u1 and u2 populations). For this reason, in Fig. 12(b) we plot the relation (5.8) in the
(s, w)-plane for fixed s3 > 0. We see that indeed we cannot have a travelling wave with positive speed
unless the wave has a steepness s > 3.17. Moreover, faster waves have higher steepness.

Finally, we are interested in investigating how the speed of the invading waves correlates with their
steepness, as we vary different model parameters. In Fig. 13(a) we see that a decrease in the diffusion
coefficient D by one order of magnitude leads to a reduction in the velocity w > 0. In Fig. 13(b) we see
that an increase in the mutation rate M (from 0.001 to 0.05) leads to a slightly lower velocity w > 0 and
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AGGREGATION AND TRAVELLING WAVE DYNAMICS 567

Fig. 11. Plot of the numerical simulations of the travelling wave profile, shown in Figs 8 and 9, for (a) population u1 and the
exponential ansatz function E1 (x) given by relation (5.3) with A1 = 0.063 · exp (24.5675); (b) population u2 and the exponential
ansatz function E2 (x) given by relation (5.4) with A2 = 0.8 · exp (24.2505); (c) ECM density, f , and the exponential ansatz
function E3 (x) given by relation (5.5) with A3 = 0.82 · exp (−52.5); (d) integrin density, c, and the exponential ansatz function
E4 (x) given by relation (5.6) with A4 = 0.4 · exp (24.092). Here, qr = 0.0005, qa = 0.00025 and the rest of the model parameters
are given in Table 2.

a higher steepness. (Note that for s > 100, the invading speed obtained for M = 0.001 and M = 0.05 is
the same—not shown here.)

6. Conclusions and discussion

In this paper we introduced a model of integro-differential equations describing the dynamics of two
cancer cell populations: a ‘normal’ cell population that exhibits both random and directed movement,
and a ‘mutant’ cell population that exhibits only directed movement. The model incorporated both
nonlocal cell–cell interactions and cell–matrix interactions. Moreover, unlike other models in the
literature, in our model these interactions were not constant but depended on the cellular level of
integrins.

Linear stability analysis of the non-dimensional model showed that aggregations could arise only via
real bifurcations (the system could not exhibit Hopf bifurcations). Numerical results showed that these
aggregations were described by a large number of stationary pulses (e.g. 13 pulses corresponding to the
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Fig. 12. Plot of the relation (5.8) for qr = 0.0005, qa = 0.00025 and the rest of the model parameters as given in Table 2. The plot
shows the relation between the speed and the steepness of the travelling waves in the (a) (s, s3, w)-space; (b) (s, w)-plane.

critical unstable wave number k13). Moreover, numerics also showed the existence of travelling waves.
We investigated the speed of these waves, which seemed to be affected by the diffusion coefficient and
the mutation rate of cells.

The rate at which cancer cells mutate seemed to play a critical role in our model. In Figs 6 and 7
(as well as Figs 8 and 10) we showed that depending on the magnitude of the mutation rate, either the
u1 or the u2 cell populations can be eliminated (or, in some cases they can co-exist—see Figs 4 and 8).
The existence of these dominant behaviours exhibited by the u1 or u2 populations are consistent with
the principle of competitive exclusion of clonal sub-populations in heterogeneous tumours (Egan et
al., 2012; Keats et al., 2012; Leith et al., 1989). In Fisher et al. (2013) the authors interpreted the
experimental data, which showed suppression and reappearance of cancer clones in myeloma patients
(Keats et al., 2012) and chronic lymphocytic leukaemia patients (Schuh et al., 2012), by suggesting
that two subclones can exist in a dynamic equilibrium. While all these experimental studies record the
survival/suppression of tumour clones in various cancers, they do not offer a mechanistic explanation
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Fig. 13. Plot of the relation (5.8) for qr = 0.0005, qa = 0.00025, and the rest of the model parameters as given in Table 2, as we
vary: (a) diffusion coefficient D: D = 10−4 (black solid curve) and D = 10−5 (red dashed curve); (b) mutation rate M: M = 0.001
(blue solid curve) and M = 0.05 (red dashed curve).

for the factors that could lead to these behaviours. In contrast, our numerical results (see Figs 6 and 7,
8 and 10) offer such a mechanistic explanation by identifying the magnitude of the mutation rate as a
factor that could explain the experimentally observed suppression and reappearance of cancer clones.

This issue of cancer heterogeneity has significant implications on cancer drug therapies, since it can
lead to drug resistance. For example, clinical studies have shown the emergence of imatinib-resistant
mutation clones in patients with chronic myeloid leukaemia, which can co-exist with subclones that
carry different imatinib-resistant mutations in treatment-naïve patients (Shah et al., 2002). Overall,
these clinical observations suggest that a single drug might not be successful in treating a genetically
heterogeneous tumour, since sub-populations of cancer cells with drug-resistant mutations could become
dominant, thus leading to therapeutic failure.

We note that the spatial distribution of the two cancer sub-populations, with the original u1
population in the centre of the aggregation and the mutated u2 clones towards the edges of the
aggregation (see Fig. 5 for t ∈ [0, 10] or Fig. 6 for t ∈ [100, 300]), is consistent with experimental
studies on the spatial relationship between clonal sub-populations of hepatocellular carcinoma (HCC)
tumour (Ling et al., 2015). In this experimental study, the authors investigated the clonal diversity of
a HCC-15 tumour (and the spatial distribution of these clones), and showed the ancestral clones being
positioned in the middle of the tumour, with the descendant clones radiating outward.

The numerical results of the model presented in this paper show that cell–cell/cell–matrix adhesion
combined with cell proliferation (in the presence of cell competition) and cell mutation, can impact
which tumour clones survive (see Figs 4–8 and 10). Therefore, our model puts forward the idea that
in order to predict the emergence of a particular cancer clone, we should first quantify cell–cell and
cell–matrix adhesive interactions for the various tumour clones, and their proliferative capacities.

In this paper we focused on a 1D model. However, real life cell dynamics occurs in 2D or 3D.
In Appendix A we extended model (2.22) to two spatial dimensions. Moreover, to verify if the linear
stability results for the 1D model (2.22) were valid also in 2D, we applied linear stability analysis. We
showed that for similar kernels, we obtained similar dispersion relations with no imaginary parts (and
hence no Hopf bifurcations). Therefore, we expect that the 2D model (A1) would exhibit stationary
pulses similar to the ones exhibited by the 1D model (2.22). Future work will consider extending the
numerical results in 2D.
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Appendix A. Extension of the model to two dimensions

The derivation of the model in two dimensions is a straightforward extension of the methods used in
Section 2.2. Let Ω ⊂ R

2 denote again the bounded spatial domain and IT = [0, +∞) be the time
interval. We only consider a rectangle with periodic boundary conditions. We denote again by u

(
x, t

) =
(
u1

(
x, t

)
, u2

(
x, t

))� the vector-valued cancer cell density of the two populations, by f
(
x, t

)
the ECM

density and by c
(
x, t

)
the integrin density. Our 2D system, obtained after non-dimensionalization, is

given by
∂u1

∂t
= Du1 − ∇ ·

(
u1F1

[
u, f , c

]) − Mu1 + r1u1

(
1 − u1 − u2

)
, (A.1a)

∂u2

∂t
= −∇ ·

(
u2F2

[
u, f , c

]) + Mu1 + r2u2

(
1 − u1 − u2

)
, (A.1b)

∂f

∂t
= −αu1 f − βu2 f , (A.1c)

∂c

∂t
= p1u1 + p2u2 − qc. (A.1d)
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We now assume that cells interact with each other within a circle of sensing radius R > 0. Therefore,
the nonlocal terms, Fi

[
u, f , c

]
, i = 1, 2, are given as in Gerisch & Chaplain (2008) by the following

relations

Fi

[
u, f , c

]
:= 1

R

∫ R

0

∫ 2π

0
η (θ) Ki (r) gi

(
u

(
x + rη (θ) , t

)
, f

(
x + rη (θ) , t

)
, c

(
x, t

))
r dθ dr, (A.2)

where η (θ) := (cos θ , sin θ)� is the unit outer normal vector corresponding to angle θ . The functions
gi, i = 1, 2, are given by

gi

(
u

(
x, t

)
, f

(
x, t

)
, c

(
x, t

)) = Si (c) ui

(
x, t

) + S (c) uj

(
x, t

) + Ci (c) f
(
x, t

)
, i, j = 1, 2, i �= j. (A.3)

Linear stability analysis for the two dimensional model. Following the same approach as in the
one-dimensional case (see Section 3), we analyse the stability of the steady states given by the relation
(3.2). To this end, we let

u1

(
x, t

) = u∗
1 + Au1

eik x+λt, u2

(
x, t

) = u∗
2 + Au2

eik x+λt, f
(
x, t

) = f ∗ + Af eik x+λt,

c
(
x, t

) = c∗ + Aceik x+λt, with |Au1
|, |Au2

|, |Af |, |Ac| 	 1.

Here, k = (
k1, k2

)
is a perturbation wave vector and λ is the linear growth rate. Substituting these

expressions into model (A1) we obtain the following linearized system:

λAu1
eik x+λt = − |k|2DAu1

eik x+λt − u∗
1

R
ikeik x+λtS1

(
c∗) Au1

∫ R

0

∫ 2π

0
η (θ) K (r) eik rη(θ)r dθ dr

− u∗
1

R
ikeik x+λt

(
S

(
c∗) Au2

+ C1

(
c∗) Af

) ∫ R

0

∫ 2π

0
η (θ) K (r) eik rη(θ)r dθ dr

− MAu1
eik x+λt + r1Au1

eik x+λt (1 − 2u∗
1 − u∗

2

) − r1u∗
1Au2

eik x+λt,

λAu2
eik x+λt = − u∗

2

R
ikeik x+λt

(
S2

(
c∗) Au2

+ S
(
c∗) Au1

+ C2

(
c∗) Af

) ∫ R

0

∫ 2π

0
η (θ) K (r) eik rη(θ)r dθ dr

+ r2Au2
eik x+λt (1 − u∗

1 − 2u∗
2

) − r2u∗
2Au1

eik x+λt,

λAf eik x+λt = − α
(

Au1
eik x+λt f ∗ + u∗

1Af eik x+λt
)

− β
(

Au2
eik x+λt f ∗ + u∗

2Af eik x+λt
)

,

λAceik x+λt = p1Au1
eik x+λt + p2Au2

eik x+λt − qAceik x+λt.

Therefore, we finally have

λAu1
= − |k|2DAu1

− iku∗
1

R

[
S1

(
c∗) Au1

+ S
(
c∗) Au2

+C1

(
c∗) Af

]
K̂

(
k
) − MAu1

+ r1Au1

(
1− 2u∗

1 − u∗
2

)

− r1u∗
1Au2

,

λAu2
= − iku∗

2

R

[
S2

(
c∗) Au2

+ S
(
c∗) Au1

+ C2

(
c∗) Af

]
K̂

(
k
) + MAu1

+ r2Au2

(
1− u∗

1− 2u∗
2

) − r2u∗
2Au1

,

λAf = − α
(

Au1
f ∗ + u∗

1Af

)
− β

(
Au2

f ∗ + u∗
2Af

)
,

λAc = p1Au1
+ p2Au2

− qAc,
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where K̂
(
k
) = ∫ R

0

∫ 2π

0 η (θ) K (r) eik rη(θ)r dθ dr is the Fourier transform of the kernel K
(
x
)
.

Note that K̂
(
k
)

corresponds to the 1D Fourier sine transform (see Section 3), since K̂s (k) =
∫ R

0 K (r) sin (kr) dr = 1
2i

∫ R
0 K (r)

(
eikr − e−ikr

)
dr.

As in 1D case, for the steady state (0, 0, f ∗, 0) , f ∗ ≥ 0, we obtain the eigenvalues

λ1 = 0, λ2 = −|k|2D − M + r1, λ3 = r2 > 0 and λ4 = −q < 0. (A.4)

For the steady state
(
0, 1, 0, p2/q

)
we obtain the eigenvalues

λ1 = −β < 0, λ2 = −|k|2D − M < 0, λ3 = −S2

(
c∗) Y

(
k
) − r2 and λ4 = −q < 0, (A.5)

where Y
(
k
) = ik

R K̂
(
k
)
, with K

(
x
)

:= qaKa

(
x
) − qrKr

(
x
)
. Here Ka and Kr are the attraction and

repulsion kernels, and qa and qr are the constants representing the magnitudes of the attraction and
repulsion interactions, respectively. For simplicity we choose the following 2D interaction kernel

K
(
x
) = qa|x|

2πm2
a

exp
(
−|x|2

/(
2m2

a

))
− qr|x|

2πm2
r

exp
(
−|x|2

/(
2m2

r

))
, (A.6)

which corresponds to the 1D kernel (3.15). The Fourier transform of the above kernel is given by the
following relation

K̂
(
k
) =

(
qaim2

ak1e− m2
a|k|2
2 − qrim2

r k1e− m2
r |k|2
2 , qaim2

ak2e− m2
a|k|2
2 − qrim2

r k2e− m2
r |k|2
2

)
. (A.7)

Therefore, the steady state
(
0, 1, 0, p2/q

)
is unstable provided that the real part of the eigenvalue λ3

satisfies

Re
(
λ3

(
k
)) = − r2 + |k|2s∗

2

R

(
1 + tanh

(
a2

p2

q

))(
qam2

ae− m2
a|k|2
2 − qrm2

r e− m2
r |k|2
2

)
> 0. (A.8)

This expression is similar to the one obtained in the 1D case (see equation (3.17)). Therefore we
deduce that there is a range of k-values for which Re

(
λ3

(
k
))

is positive, and thus spatial aggregations
could develop also for the 2D model (A1) when applying small spatial perturbations of the steady state(
0, 1, 0, p2/q

)
.

Appendix B. A structured-population model for cancer–ECM interactions via integrins

As mentioned at the end of Section 2.1, we can modify model (2.13)–(2.16) to describe in a more
natural way the connection between the macroscale movement of cells and the microscale dynamics of
integrins bound to cell surfaces. To this end, we assume that the two cancer cell populations depend not
only on time (t) and space (x), but also on an internal variable c � 0 that characterizes the level of bound
integrins: ui(x, t, c). The new mesoscale model for the dynamics of cancer cell populations structured
by cell-bound integrins is given by the following equations:

∂u1

∂t
= D

∂2u1

∂x2 − ∂

∂x

(
u1F1[u, f , c]

) − ∂

∂c

(
u1(p1u1 + p2u2 − qc)

) − Mu1 + r1u1

(
1 − u1 − u2

)
,

(B.1a)

∂u2

∂t
= − ∂

∂x

(
u2F2[u, f , c]

) − ∂

∂c

(
u2(p1u1 + p2u2 − qc)

) + Mu1 + r2u2

(
1 − u1 − u2

)
, (B.1b)
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∂f

∂t
= −αu1 f − βu2 f . (B.1c)

The nonlocal terms F1[ u, f , c] and F2[ u, f , c] are described by equations (2.10) and (2.11),
respectively. The microscale evolution of the internal state variable c is described by differential
equation (2.16):

∂c

∂t
= p1u1 + p2u2 − qc. (B.2)

The incorporation of this internal cell structure c into the mesoscopic model (B1) follows the same
approach as in Erban & Othmer (2004, 2005); Xue et al. (2011); Lorenz & Surulescu (2014); Engwer
et al. (2015); Perthame et al. (2016); Engwer et al. (2017); Hunt & Surulescu (2017).

One can eliminate the derivative ∂/∂c from equations (B1a)–(B1b) by integrating these equations
over c, and obtaining new macroscopic equations defined in terms of the averaged tumour cell variables
U1,2(x, t) = ∫

u1,2(x, t, c) dc (Erban & Othmer, 2005; Engwer et al., 2015; Domschke et al., 2107).
Other studies obtained different macroscopic limits of the mesoscopic structured-population models by
considering the assumption that the internal (structure) variable evolves on a much faster time scale that
is described by a small parameter ε (Perthame et al., 2016). If we would take the same approach and
assume that the integrin dynamics is much faster compared to the dynamics of cancer cells and ECM
(note that in Table 2 the production rates of integrins by u1 and u2 cells are estimated, due to a lack of
available data), then the time-evolution of integrins would be given by

ε
∂c

∂t
= p1u1 + p2u2 − qc, (B.3)

which, to leading order, gives rise to the following steady-state equation: c = (1/q)(p1u1(x) + p2u2(x)). If
we substitute this state into (B1) we recover model (2.22), with the exception of equation (2.22d) which
is now a steady-state equation.

We note here that while different ‘microscale–macroscale’ models (Stinner et al., 2014, 2015,
2016; Meral et al., 2015a,b) and ‘mesoscale’ models (Lorenz & Surulescu, 2014; Engwer et al., 2015;
Perthame et al., 2016; Engwer et al., 2017; Hunt & Surulescu, 2017) for tumour-ECM interactions via
integrins have been developed over the last two decades, to our knowledge there are not many studies that
compare and contrast the outcomes of different ways the integrins are incorporated into these different
models.

A comparison between the effects of integrins on the dynamics of the structured-population model
(B1) and the original model (2.22) (both assuming heterogeneous cell populations), including an
investigation into the possibility of having travelling wave solutions for the structured model (B1),
will be the subject of a future study. (Such an investigation is beyond the scope of this study due to
its complexity, which would increase considerably the length of this paper.)
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