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The goal in external beam radiotherapy (EBRT) for cancer is to maximize damage to the tumour while
limiting toxic effects on the organs-at-risk. EBRT can be delivered via different modalities such as
photons, protons and neutrons. The choice of an optimal modality depends on the anatomy of the
irradiated area and the relative physical and biological properties of the modalities under consideration.
There is no single universally dominant modality. We present the first-ever mathematical formulation of
the optimal modality selection problem. We show that this problem can be tackled by solving the Karush–
Kuhn–Tucker conditions of optimality, which reduce to an analytically tractable quartic equation. We
perform numerical experiments to gain insights into the effect of biological and physical properties on
the choice of an optimal modality or combination of modalities.
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1. Introduction

External beam radiotherapy (EBRT) uses high-energy, ionizing radiation generated outside the patients,
e.g. by linear accelerators or cyclotrons, to kill cancerous tumour cells. Unfortunately, radiation also
damages nearby organs-at-risk (OAR). Thus, the goal is to maximize the damage to the tumour while
limiting below a tolerable level the toxic effects on the OAR. In an ongoing quest for attaining this goal,
several modalities for delivering EBRT have been devised (Halperin, 2006; Schaue & Mcbride, 2015;
Baumann et al., 2016). EBRT is most prevalent in the form of photon beam x-rays (Lawrence et al.,
2008; Halperin et al., 2013). It is also administered using beams of charged particles such as protons
(Schulz-Ertner et al., 2006; Grutters et al., 2010; Ramaekers et al., 2011; Loeffler & Durante, 2013;
Tommsino et al., 2015). Heavier, carbon ions are emerging as yet another option for charged particle
therapy (Ebner & Kamada, 2016; Schulz & Kagan, 2016). Among all patients receiving particle therapy
by the end of 2013, 87.5% were treated with protons and 10.8% with carbon ions (Tommsino et al.,
2015). Other rarer delivery mechanisms such as neutrons, pions, boron-neutron capture therapy and
charged-nuclei therapy have also been investigated (Halperin, 2006; Rong & Welsh, 2010).

Different modalities can be compared, at least in theory, based on three criteria: biological behaviour,
physical (dosimetric) characteristics and cost (Halperin, 2006; Peeters et al., 2010; Rong & Welsh, 2010;
Mitin & Zietman, 2014). This paper focuses on the trade-offs introduced by biological and physical
characteristics as described in the next two paragraphs. A cost-benefit analysis of different modalities
would require entirely different techniques, and hence it is deferred to future research.
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362 S. NOUROLLAHI ET AL.

Differences in biological behaviour across modalities

Biological behaviour is comprised of two main items: relative biological effectiveness (RBE) and
oxygen enhancement ratio (Halperin, 2006). RBE captures the fact that different modalities produce
different levels of cell-damage for the same amount of physical radiation dose (measured in J/kg or Gy).
Oxygen enhancement ratio is the ratio of radiation doses needed to produce the same level of tumour cell
kill in poorly oxygenated conditions as in well-oxygenated conditions. This accounts for the observation
that oxygen increases radiosensitivity of tumour cells. For example, neutrons have a higher RBE and a
lower oxygen enhancement ratio than photons (Halperin, 2006; Rong & Welsh, 2010).

Differences in physical (dosimetric) characteristics across modalities

The main physical characteristic of a modality is its dose depth deposition profile (Halperin, 2006;
Rong & Welsh, 2010; Mitin & Zietman, 2014). This profile describes the radiation dose deposited as
a function of the distance travelled inside a medium. Photon x-rays deposit a high dose near the entry
point and the dose then decreases with distance (Halperin et al., 2013). Protons exhibit a different profile.
The deposited dose is roughly constant with distance from the entrance point; abruptly reaches a peak
(called the Bragg peak) deeper inside the medium; and then falls sharply after the peak (Halperin, 2006;
Rong & Welsh, 2010; Ebner & Kamada, 2016). Thus, by positioning the Bragg peak precisely in the
cancerous region, a large dose differential between the tumour and the OAR can be attained. This in turn
means that a large dose can be delivered to the tumour while still keeping the OAR dose within tolerable
limits (Grutters et al., 2010). Carbon ions also exhibit a similar profile but with a slower post-peak drop
in dose and have a higher RBE (Schulz-Ertner & Tsujii, 2007; Ebner & Kamada, 2016).

No universally superior modality

Each modality offers certain advantages and disadvantages with respect to the above two criteria
(Rong & Welsh, 2010). For instance, neutrons are not superior to photons or to protons in terms of
their dose deposition profiles, but have a much higher RBE. This high RBE does, however, imply that
neutrons are highly toxic to both the tumours and the OAR (Halperin, 2006). The RBE of protons is only
about 10% higher than photons (Paganetti et al., 2002; Paganetti & van Luijk, 2013; Paganetti, 2014), but
protons have a much favourable dose deposition profile as explained above. One important disadvantage
with protons is that it is difficult to precisely position the Bragg peak in the cancerous region owing to
various uncertainties; thus the risk of a high OAR toxicity has to be carefully managed (Paganetti, 2012;
Baumann et al., 2016). Treatment with protons and other charged particles is also currently much more
expensive than photon therapy (Loeffler & Durante, 2013; Ramaekers et al., 2013). In addition, due
to the longest history of using photons in cancer treatments, the most sophisticated ancillary systems
are currently available for photon EBRT to aid precise localization of the tumours, e.g. image-guided
radiotherapy.

No clear winner that dominates all other modalities in all three criteria has emerged thus far. This
was summarized by Halperin (2006) a decade ago: ‘Neutrons, photons, pions, alpha particles, stripped
nuclei, protons, and electrons vary in their biological, physical, and cost characteristics. None has yet
met the test of being the generic ideal particle. Instead, each of these particles will probably offer
advantages for particular histological types of cancer, at specific stages, in certain clinical conditions. An
understanding of the biology of tumours should help to clarify the ideal particle for a clinical situation.
Much of the history of the search for the ideal particle has yet to be created.’ A similar sentiment was
reiterated by McDermott and by Schulz & Kagan in 2016, and by Baumann et al. in 2016. Missing
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OPTIMAL MODALITY SELECTION IN EXTERNAL BEAM RADIOTHERAPY 363

a universally superior EBRT modality, some studies have considered combinations of two modalities
(typically photons and protons) to leverage their physical and biological advantages (Yonemoto et al.,
1997; Bertuzzi et al., 2001; Feuvret et al., 2007; Torres et al., 2009; DeLaney, 2009, 2011; DeLaney
et al., 2014; Maio et al., 2015; Chen et al., 2016).

Lack of randomized clinical trials

One hurdle in deciding an ideal modality or a combination of two modalities is that no randomized
clinical trial results comparing outcomes of different modalities are currently available. For instance,
the prevalent EBRT modality for prostate cancer is still photons, but it is also where proton therapy
has been used most widely (Mitin & Zietman, 2014 reported that 70% of patients who received proton
therapy by 2014 had prostate cancer). Nevertheless, in January 2016, Schiller et al. (2016) stated, ‘There
are still no completed randomized trials comparing proton-beam therapy with photon-beam therapy in
men with clinically localized prostate cancer.’ A year later, this has not changed. Indeed, in February
2017, Tyson et al. (2017) commented, ‘Although there is some evidence that novel radiation therapies
may improve the dose distribution with higher doses delivered locally to the tumor thereby preserving
surrounding healthy tissues, these assertions remain unproven in studies to date ... . ... there are no
randomized clinical trials comparing proton therapy to conventional radiation therapy.’ This lack of
randomized clinical trials extends to other cancers where the use of proton beams is rarer than prostate.
For example, after a retrospective comparison between photons and protons for 243,822 non-small cell
lung cancer patients in the National Cancer Database (photons: 243,474; protons: 348), Higgins et al.
(2017) stated in January 2017 that ‘further validation in the randomized setting is needed.’ Similarly,
Ramaekers et al. (2011) performed a meta-analysis of 86 observational studies (74 photon, 5 carbon ion
and 7 proton) on head-and-neck cancers and concluded in 2010: ‘several reviews indicated that based
on clinical evidence it remains unclear, mainly because of the absence of randomized trials, whether
particle therapy is superior over radiotherapy with photons ... .’ A similar observation was repeated
four years later by Ahn et al. (2014). This situation might not significantly change in the near future,
given the ethical, financial and logistical difficulties involved in the design of randomized clinical trials
(Goitein & Cox, 2008; Morgan, 2008; van Loon et al., 2012; Dekker et al., 2014; Lambin et al., 2017).

Further challenges posed by fractionation

The selection of an appropriate modality is further complicated because radiotherapy is typically
administered in multiple treatment sessions over several weeks. This is called fractionation. Healthy
tissues possess better damage-repair capabilities than tumours (Withers, 1985; Hall & Giaccia, 2005).
Fractionation thus gives healthy tissue time to recover between treatment sessions. For any single
radiation modality, the optimal number of fractions and the corresponding dose in each fraction depend
on (i) the relative difference between the tumour’s and the healthy tissue’s biological response to that
modality, (ii) the dose deposition profile of that modality with respect to the anatomy of the irradiated
area and (iii) the tumour proliferation rate. The trade-offs in determining an optimal number of fractions
and doses have been studied over the past several decades mainly for photon therapy (Rockwell, 1988;
Fowler, 1990, 2001, 2007, 2008; Fowler & Ritter, 1995; Jones et al., 1995; Horiot et al., 1997, 1992;
Fu et al., 2000; Garden, 2001; Armpilia et al., 2004; Ahamad et al., 2005; Trotti et al., 2005; Yang
& Xing, 2005; Ho et al., 2009; Marzi et al., 2009; Arcangeli et al., 2010; Kader et al., 2011; Keller
et al., 2012; Mizuta et al., 2012; Bertuzzi et al., 2013; Unkelbach et al., 2013a, b; Bortfeld et al., 2015;
Saberian et al., 2015, 2016, 2017; Badri et al., 2016).
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364 S. NOUROLLAHI ET AL.

Literature on mathematical optimization models for single-modality fractionation

Given the aforementioned difficulties in designing randomized clinical trials, many of the above studies
formulate and solve theoretical optimization models of the single modality fractionation problem to
guide decisions. These formulations are rooted in the following linear-quadratic (LQ) model of tumour’s
response to radiation dose (Hall & Giaccia, 2005; O’Rourke et al., 2009):

f = e−N(ατ d+βτ d2)+π(N). (1)

Here, f is the fraction of tumour cells that survive; N is the number of treatment sessions; d is the
dose per session; π(N) models tumour proliferation as a function of N; and ατ , βτ are tumour-specific
parameters. The goal is to minimize the fraction of surviving tumour cells subject to upper limit
constraints on the biological effect (BE) (Hall & Giaccia, 2005) on OAR. In the LQ framework, BE
is defined by the expression

N
(
αφ(sd) + βφ(sd)2

)
. (2)

Here, αφ , βφ are OAR-specific parameters, and s is the so-called sparing factor, which equals the ratio of
doses delivered to the OAR and tumour. This results in a non-convex quadratically constrained quadratic
programming problem. Such problems in general belong to the class NP-hard (Luo et al., 2010). Existing
work on solving this theoretical single modality fractionation model thus includes various heuristic and
exact solution methods that exploit the structure of its formulation. For example, a closed-form solution
is derived in Bortfeld et al. (2015), Fowler (2008), Fowler & Ritter (1995), Jones et al. (1995), Mizuta
et al. (2012), Saberian et al. (2016) and Unkelbach et al. (2013a) for the case of a single OAR;
a simulated annealing heuristic is used in Yang & Xing (2005) and Karush–Kuhn–Tucker (KKT)
conditions are employed in Bertuzzi et al. (2013) for an extension with two OAR; we showed in Saberian
et al. (2016) that an exact solution can be derived for the case of multiple OAR using KKT conditions
when problem parameters are ordered a certain way; it is shown in Badri et al. (2016) and Saberian
et al. (2015) that the problem with multiple OAR can be solved to optimality by reformulating it as a
two-variable linear program.

There is a different stream of literature, where single-modality dosing decisions are made by
combining the LQ model with differential equations that describe tumour growth. Analytical solution of
those formulations is typically not possible, and numerical simulations are often performed to compare
select few dosing strategies (Enderling et al., 2006, 2007, 2010; Corwin et al., 2013; Poleszczuk et al.,
2013; Powathil et al., 2013, 2007; Lewin et al., 2018).

When two modalities are available, additional trade-offs arising from their RBE and dose deposition
profiles need to be considered. To the best of our knowledge, no existing mathematical work has
modelled this fractionation problem with two modalities.

Contributions of this paper

The objective of this paper is to propose a novel, mathematical framework to systematically investigate
the selection of optimal modalities in radiotherapy, balancing the trade-off in the biological and physical
(dosimetrical) characteristics unique to each radiation modality currently available in practice. The rest
of this paper is organized as follows. In Section 2 of this paper, we provide a mathematical formulation
of the fractionation problem with two modalities, where the goal is to find an optimal number of
treatment sessions and the corresponding dose per session for each modality. We show that KKT
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OPTIMAL MODALITY SELECTION IN EXTERNAL BEAM RADIOTHERAPY 365

conditions for this formulation can be tackled by solving an analytically tractable quartic equation.
In Section 3, we perform sensitivity analyses to gain insight into the effect of problem parameters on
the choice of optimal modalities. These parameters characterize biological and physical behaviours of
the two modalities under consideration. In one set of sensitivity analyses (Section 3.1), we consider
two modalities that have comparable physical characteristics but distinct biological characteristics. One
example of this could be photons and neutrons. In the second set of sensitivity analyses (Section 3.2),
we consider two modalities that have comparable biological characteristics but distinct physical
characteristics. One example of this could be photons and protons. This ‘one-at-a-time’ manner of
performing sensitivity analyses facilitates the interpretation of results, although it is not a requirement of
our mathematical model itself. Finally, although our initial formulation focuses on the single OAR case
for ease of exposition, we briefly describe how our KKT approach can be extended to multiple OAR in
Section 4. We conclude in that section by outlining opportunities for future work.

2. Problem formulation and solution

In this section, we provide a formulation of the fractionation problem with two modalities using
the LQ dose-response model. We use notation that is standard in the single modality fractionation
literature, except that, in our case, modalities are indexed by i = 1, 2. Modality 1 is assumed to be
the ‘conventional’ modality such as photon EBRT. Let Ni denote the number of treatment sessions
administered (once daily) with modality i. Similarly, let di denote the tumour-dose in each one of the
Ni sessions for modality i. Moreover, ατ

i , βτ
i denote the parameters of the tumour’s LQ dose-response

model for modality i. Notation π(N1 + N2) represents tumour proliferation over a treatment course
that includes N1 + N2 sessions. We employ a particular form for the proliferation function π(·) in
our numerical results later; in this section, we simply emphasize that it depends on the length of the
treatment course as is standard in the literature. Let si denote the OAR’s sparing factor for modality
i. That is, the dose to OAR i equals sidi. A procedure for calculating sparing factors is described in

Saberian et al. (2016). Let α
φ
i , βφ

i denote the OAR’s LQ dose-response parameters for modality i.
Suppose that the OAR is known to tolerate a dose of dconv per session when administered using the
conventional modality 1 in Nconv sessions. Then, the BE of this conventional treatment plan equals

B = Nconvα
φ
1 dconv + Nconvβ

φ
1 (dconv)

2. As in Saberian et al. (2017), Nmax is a constant, which is
interpreted as a loose upper bound on the total number of sessions that is logistically viable in practice
irrespective of the selected modality. Using a large value for this constant (say 100 or 200 sessions)
ensures that all relevant combinations of N1 and N2 will be evaluated by our solution method. The
thought process in our stylized formulation is that s1, s2 characterize the physical properties of the two
modalities, whereas α, β and τ correspond to the biological ones.

We pursue the standard approach of minimizing the fraction of surviving tumour cells subject to the
constraint that the BE of the treatment plan is no more than the conventional BE that the OAR is known
to tolerate. This yields the formulation

(P) min
N1,d1,N2,d2

e−N1α
τ
1 d1−N1β

τ
1 (d1)

2−N2α
τ
2 d2−N2β

τ
2 (d2)

2+π(N1+N2) (3)

N1

[
α

φ
1 (s1d1) + β

φ
1 (s1d1)

2
]

+ N2

[
α

φ
2 (s2d2) + β

φ
2 (s2d2)

2
]

≤ B, (4)

d1 ≥ 0, (5)
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366 S. NOUROLLAHI ET AL.

d2 ≥ 0, (6)

N1 + N2 ≤ Nmax, (7)

0 ≤ N1 integer, (8)

0 ≤ N2 integer. (9)

Note that the above formulation explicitly allows N1 = 0 or N2 = 0, which corresponds to the single
modality case. It also allows other combinations where both N1 > 0 and N2 > 0, which corresponds
to administering a combination of modalities as has been attempted in some clinical studies cited in
Section 1 (Yonemoto et al., 1997; Bertuzzi et al., 2001; Feuvret et al., 2007; Torres et al., 2009;
DeLaney, 2009, 2011; DeLaney et al., 2014; Maio et al., 2015; Chen et al., 2016). A benefit of this
approach is that it exhaustively compares all such possibilities in one shot.

We now make a few observations about problem (P). It can be tackled by first solving the indexed
group of problems

(
P

(
N1, N2

))
min
d1,d2

e−N1α
τ
1 d1−N1β

τ
1 (d1)

2−N2α
τ
2 d2−N2β

τ
2 (d2)

2+π(N1+N2) (10)

N1

[
α

φ
1

(
s1d1

) + β
φ
1

(
s1d1

)2
]

+ N2

[
α

φ
2

(
s2d2

) + β
φ
2

(
s2d2

)2
]

≤ B, (11)

d1 ≥ 0, (12)

d2 ≥ 0, (13)

for all non-negative integer pairs (N1, N2) such that 0 ≤ N1+N2 ≤ Nmax. In particular, let d∗
1(N1, N2) and

d∗
2(N1, N2) denote optimal doses for modalities 1, 2 in problem (P(N1, N2)), respectively. Let F∗(N1, N2)

denote the optimal objective value of problem (P(N1, N2)). Then problem (P) can be solved by
minimizing F∗(N1, N2) over all integer pairs (N1, N2) such that 0 ≤ N1 + N2 ≤ Nmax. If the pair N∗

1 , N∗
2

is optimal for this problem, then the quadruple N∗
1 , d∗

1(N∗
1 , N∗

2 ), N∗
2 , d∗

2(N∗
1 , N∗

2 ) is optimal for problem
(P). Since the exponential function is monotonic in its argument, minimizing the objective function in
(P(N1, N2)) is equivalent to minimizing −N1α

τ
1 d1 − N1β

τ
1 (d1)

2 − N2α
τ
2 d2 − N2β

τ
2 (d2)

2 + π(N1 + N2).
Further, since the pair N1, N2 is fixed in problem (P(N1, N2)), the proliferation term π(N1 + N2) is a
constant that can be ignored without loss of optimality. Finally, the objective function is decreasing in
d1 and d2 and the left-hand side of constraint (11) is increasing in d1 and d2. Thus, constraint (11) must
be active at an optimal solution. In other words, solving (P(N1, N2)) is equivalent to solving

(
Q

(
N1, N2

))
min
d1,d2

−
(

N1α
τ
1 d1 + N1β

τ
1

(
d1

)2 + N2α
τ
2 d2 + N2β

τ
2

(
d2

)2
)

(14)

N1

[
α

φ
1

(
s1d1

) + β
φ
1

(
s1d1

)2
]

+ N2

[
α

φ
2

(
s2d2

) + β
φ
2

(
s2d2

)2
]

= B, (15)

d1 ≥ 0, (16)

d2 ≥ 0. (17)
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Table 1 Legend of colours showing
three different modality choices.

Table 2 Parameters for the conven-
tional modality M1.

ατ
1 = 0.35 Gy−1 βτ

1 = 0.035 Gy−2

α
φ
1 = 0.35 Gy−1 β

φ
1 = 0.175 Gy−2

An exact solution method based on KKT conditions for (Q(N1, N2)) is developed in Appendix A. This
method is applied to perform numerical sensitivity analyses in the next section.

3. Numerical results

Let M1 denote a conventional modality such as photon EBRT, and let M2 denote an alternative modality.
Table 1 illustrates a legend for three colours that will be employed throughout this section to indicate
the use of modalities M1, (M1, M2) mixture and M2, respectively.
Our numerical results are categorized into two parts that are presented in Sections 3.1 and 3.2,

respectively. Section 3.1 investigates the trade-offs between M1 and a biologically superior M2.
Section 3.2 studies the trade-offs between M1 and a physically superior M2. Recall that biological
and physical are the two main characteristics of a modality as described in Section 1. As stated in
Section 1, we pursue this one-at-a-time method of performing sensitivity analyses because it facilitates
interpretation of our results. In both Sections 3.1 and 3.2, these trade-offs are explored for different
values of a biological parameter r = α

φ
2 /ατ

2 that we introduce in this paper. The thought process behind
this parameter is as follows. A biologically superior modality will inflict a higher damage on both the
tumour and the OAR. The ratio r attempts to capture the differential in the damage to the tumour and the
OAR. As r increases, the damage to the OAR relative to the damage to the tumour using M2 increases,
when all other things are equal. Thus, M2 becomes less desirable as r increases. For the conventional
modality M1, we used s1 = 1 as the base value of physical characteristics throughout this paper. Also, for
M1, we used ατ

1/βτ
1 = 10 Gy, αφ

1 /β
φ
1 = 2 Gy and the OAR tolerance was assumed to be Nconvdconv = 50

Gy delivered in Nconv = 25 fractions (Hall & Giaccia, 2005; Marks et al., 2010). Table 2 shows other

specific parameter values for M1. Similarly, βφ
2 was fixed at 0.175 Gy−2 and βτ

2 was fixed at 0.035 Gy−2

throughout this paper. These values are standard in the clinical literature (Hall & Giaccia, 2005; Fowler,
2007, 2008; Marks et al., 2010), and yield B = 35 as the right-hand side of constraint (4).

For the tumour repopulation term π(N1 + N2) in the expression for BE in the objective function of
problem (P), we used

π
(
N1 + N2

) =
[
(N1 + N2) − 1 − Tlag

]+
ln 2

Td
, (18)
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368 S. NOUROLLAHI ET AL.

where Td and Tlag are tumour doubling time and lag time, respectively; and [·]+ = max(·, 0). This
functional form for tumour repopulation is common in the literature (Hall & Giaccia, 2005; Fowler,
2007), and it assumes that tumour repopulation does not start until Tlag days after treatment begins.

In this study, we present results with Td = 3 days and Tlag = 0 day as representative values since
qualitative trends in our results were invariant with respect to these numbers. We fixed Nmax at 200 days
throughout.

Our evaluation criterion equals the ratio of surviving cells attained by an optimal modality relative
to that attained by the conventional modality. We assume that ‘standard practice’ delivers radiotherapy
using conventional modality (M1) only for 25 fractions, i.e. Nconv = 25. We compute the ratio of
surviving cells in three ways. First, we fix the number of treatment sessions to Nconv = 25, and compute
the ratio of surviving cells attained by an optimal modality relative to that attained by the conventional
modality. This amounts to comparing the effect of optimizing the choice of modality (without optimizing
the number of sessions) against standard practice. Second, we re-compute this ratio, but this time by
also optimizing the number of sessions in the numerator. This amounts to comparing the effect of
solving problem (P) against standard practice. Finally, we calculate this ratio again, but this time by
also optimizing the number of sessions in the denominator.

3.1 Biologically superior modality M2 combined with conventional modality M1

In this section, we investigate the case where M2 is biologically superior to M1 (when r = 1) as
characterized by higher values of ατ

2 in the range 0.35–0.8 Gy−1. The physical characteristics of M2
are assumed to be similar to M1 and hence s2 is fixed at 1 in this section. For example, this section
therefore studies trade-offs between conventional photon EBRT and neutrons. Results are summarized
in Tables 3–6.

Table 3 shows the ratio of surviving cells when an optimal modality (or combination) is used with
the total number of fractions fixed at Nconv = 25, relative to the standard practice of using M1 with
Nconv = 25 fractions. The table shows that for a fixed ατ

2 , the optimal modality switches from M2 to M1
as r increases since the relative damage to the OAR from M2 becomes larger, making M2 less desirable.
For a fixed r, the optimal modality switches from M1 to M2 as ατ

2 increases since the biological power
of M2 becomes larger. Therefore, for sufficiently low fixed values of r, i.e. when the damage to the
OAR from M2 is relatively lower than the damage to the tumour, M2 dominates M1 for all values of

Table 3 Ratio of surviving cells attained by using an optimal modality (or combination) with
Nconv = 25 fractions, relative to using M1 with Nconv = 25 fractions.
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OPTIMAL MODALITY SELECTION IN EXTERNAL BEAM RADIOTHERAPY 369

ατ
2 because of M2’s superior biological power (ατ

2 > ατ
1 ). Similarly, M1 dominates M2 for all values of

ατ
2 for sufficiently high values of r due to the high toxicity to the OAR from M2. The switch from M1

to M2 occurs at higher values of ατ
2 as r increases. This is because, the biological power of M2, i.e. ατ

2
has to be sufficiently high for that modality to become desirable despite its higher damage to the OAR
(large r). Similarly, the switch from M2 to M1 occurs at higher values of r as ατ

2 increases. For each fixed
value of ατ

2 , the surviving cell ratio is nondecreasing as r increases because M2 becomes less desirable.
Similarly, for each fixed value of r, the surviving cell ratio is nonincreasing as ατ

2 increases because M2
becomes more desirable.

Table 4 shows optimal modalities and the optimal number of fractions obtained by solving problem
(P) (in contrast with Table 3 wherein the number of fractions is not optimized). The qualitative trends in
the choice of optimal modality are identical to that in Table 3 as expected. Moreover, for each fixed ατ

2 ,
the optimal number of fractions is nonincreasing as r increases when M2 is the optimal modality. This
may be because as M2 damages the OAR more and more relative to the tumour, prolonged fractionation
is less desirable. For each fixed r, the optimal number of fractions follows a more complicated trend as
ατ

2 increases when M2 is the optimal modality. For some values of r, it first increases and then decreases,
whereas for other values of r it decreases. The optimal number of fractions is independent of ατ

2 and r
as expected, when M1 is the optimal modality.

Table 5 shows the ratio of surviving cells when an optimal modality is used with an optimal number
of fractions, relative to the standard practice of using M1 with Nconv = 25 fractions (in contrast to

Table 4 Optimal number of fractions and optimal modality.

Table 5 Ratio of surviving cells attained by using an optimal modality with an optimal number of
fractions, relative to using M1 with Nconv = 25 fractions.
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Table 6 Ratio of surviving cells attained by using an optimal modality with an optimal number of
fractions, relative to using M1 only with a number of fractions that is optimal for M1.

Table 7 Ratio of surviving cells attained by using an optimal modality (or combination) with
Nconv = 25 fractions, relative to using M1 with Nconv = 25 fractions.

Table 3 wherein the number of fractions is not optimized). As expected, the surviving cell ratios are
lower in Table 5 than in Table 3. This is because (for the optimal modality) the number of fractions is
optimized in Table 5 whereas it is fixed at Nconv = 25 in Table 3. All other qualitative trends regarding
the choice of optimal modalities in Table 5 are identical to those in Table 3.

Finally, Table 6 shows the ratio of surviving cells when an optimal modality is used with an optimal
number of fractions, relative to using M1 with a number of fractions that is optimal for M1 (contrast this
with Tables 5 and 3). As expected, the surviving cell ratios are higher in Table 6 than in Table 5. This is
because the number of fractions with M1 is optimized in Table 6 but not in Table 5. All other qualitative
trends regarding the choice of optimal modalities in Table 6 are identical to those in Table 5.

3.2 Physically superior modality M2 combined with conventional modality M1

In this section, we investigate the case where M2 is physically superior to M1 as characterized by s2 <

s1 = 1 (recall that we fix s1 = 1 in all numerical experiments). The biological characteristics of M2 are
assumed to be similar to M1 when r = 1. For example, this section therefore studies trade-offs between
conventional photon EBRT and protons. Results are summarized in Tables 7–10 over the ranges of
0.2–1.8 for r, and 1.0–0.75 for s2.

Table 7 shows the ratio of surviving cells when an optimal modality (or combination) is used
with the total number of fractions fixed at Nconv = 25, relative to the standard practice of using M1
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with Nconv = 25 fractions. The table shows that for a fixed s2, the optimal modality switches from
M2 to M1 as r increases because the relative damage to the OAR from M2 becomes larger, making M2
less desirable. For a fixed r, the optimal modality switches from M1 to M2 because M2 delivers less
dose to the OAR (superior physical characteristics). Therefore, for sufficiently low fixed values of r, M2
dominates M1 for all values of s2 because M2 inflicts only a small damage to the OAR compared to the
tumour. Similarly, for sufficiently high values of r, M1 or (M1, M2) dominates M2 for all values of s2.
The switch from M1 to M2 occurs at lower values of s2 as r increases. Similarly, the switch from M2
to M1 occurs at higher values of r as s2 decreases. For each fixed value of s2, the surviving cell ratio is
nondecreasing as r increases because M2 becomes less desirable. Similarly, for each fixed value of r,
the surviving cell ratio is nonincreasing as s2 decreases because M2 becomes more desirable. The logic
behind all these trends is qualitatively similar to that in Table 3.

Table 8 shows optimal modalities and the optimal number of fractions obtained by solving problem
(P) (in contrast with Table 7 wherein the number of fractions is not optimized). The qualitative trends

Table 8 Optimal number of fractions and optimal modality.

Table 9 Ratio of surviving cells attained by using an optimal modality with an optimal number of
fractions, relative to using M1 with Nconv = 25 fractions.
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Table 10 Ratio of surviving cells attained by using an optimal modality with an optimal number of
fractions, relative to using M1 only with a number of fractions that is optimal for M1.

in the choice of optimal modality are identical to that in Table 7 as expected. Moreover, for each
fixed s2, the optimal number of fractions is nonincreasing as r increases when M2 is the optimal
modality. Again, this may be because as M2 damages the OAR more and more relative to the tumour,
prolonged fractionation is less desirable. For each fixed r, the optimal number of fractions seems to be
nondecreasing as s2 decreases when M2 is the optimal modality. This may be because the damage to
the OAR decreases as s2 decreases and hence prolonged fractionation could be beneficial. The optimal
number of fractions is independent of s2 and r as expected, when M1 is the optimal modality.

Table 9 shows the ratio of surviving cells when an optimal modality is used with an optimal number
of fractions, relative to using M1 with Nconv = 25 fractions (in contrast to Table 7 wherein the number
of fractions is not optimized). As expected, the surviving cell ratios are lower in Table 9 than in Table 7.
This is because (for the optimal modality) the number of fractions is optimized in Table 9 whereas it is
fixed at Nconv = 25 in Table 7. All other qualitative trends regarding the choice of optimal modalities in
Table 9 are identical to those in Table 7.

Finally, Table 10 shows the ratio of surviving cells when an optimal modality is used with an optimal
number of fractions, relative to using M1 with a number of fractions that is optimal with M1 (contrast
this with Tables 9 and 7). As expected, the surviving cell ratios are higher in Table 10 than in Table 9.
This is because the number of fractions with M1 is optimized in Table 10 but not in Table 9. All other
qualitative trends regarding the choice of optimal modalities in Table 10 are identical to those in Table 9.

4. Conclusions

We presented the first-ever mathematical formulation of the optimal fractionation problem with two
modalities under the LQ dose-response model. We showed that KKT conditions for this formulation
can be tackled by solving a quartic equation. Our numerical experiments explored the effect of varying,
in a one-at-a-time manner, parameters that characterize physical and biological properties of the two
modalities. The results of these experiments were consistent with clinical intuition. This at least
partially validates our formulation and solution methodology, and therefore, the proposed framework
may provide optimal solutions for more complex scenarios where clinical intuition is less obvious.

Although we focused on the case of a single OAR for simplicity, our methodology can be easily
extended to multiple OAR. To see this, consider a problem with M OAR. Its formulation would include
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M constraints similar to (4). At least one of these constraints must be active at an optimal solution.
So, if there is exactly one constraint active at an optimal solution, we need to consider M different
possibilities. Furthermore, at most two active constraints are needed to uniquely determine a (d1, d2)

combination. There are M
2 ways in which we can have two active constraints. These observations suggest

that a problem with M OAR can be solved by (i) solving M problems with one OAR each via the method
presented in this paper, (ii) solving M

2 quartic equations to uniquely identify additional candidate (d1, d2)

pairs and (iii) identifying and comparing all feasible (d1, d2) pairs derived from steps (i) and (ii).
The framework proposed in this paper can be further extended to clinically relevant scenarios.

For example, uncertainty in various problem parameters was not explicitly incorporated into our
formulation, although it is of special interest in some modalities such as protons. Effects of uncertainty
were only indirectly studied via sensitivity analyses. Formulations that explicitly include uncertainty in
parameters may provide an interesting direction for future research.
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Appendix A. Technical details about solution method for Q(N1, N2)

There are three possibilities: d1 > 0, d2 = 0; d1 = 0, d2 > 0; and d1 > 0, d2 > 0. In the first two cases,
the problem reduces to a single modality problem, which can be solved simply by solving a quadratic
equation derived from constraint (15). Specifically, in the first case, a candidate d1 is given by

d1 = −N1s1α
φ
1 +

√
N2

1 s2
1

(
α

φ
1

)2 + 4N1β
φ
1 s2

1B

2N1β
φ
1 (s1)

2
. (A.1)

In the second case, a candidate d2 is given by

d2 = −N2s2α
φ
2 +

√
N2

2 s2
2

(
α

φ
2

)2 + 4N2β
φ
2 s2

2B

2N2β
φ
2 (s2)

2
. (A.2)

In order to explore the third case, we attach Lagrange multipliers λ, μ1 and μ2 with the three
constraints (11)–(13), respectively. Then KKT conditions (see Equations (5.49) on page 243 of Boyd &
Vandenberghe, 2004) for this problem can be written as μ1 ≥ 0, μ2 ≥ 0, μ1d1 = 0, μ2d2 = 0, d1 ≥ 0,
d2 ≥ 0 and

N1s1α
φ
1 d1 + N1β

φ
1 (s1d1)

2 + N2s2α
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φ
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. (A.4)
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Since d1 > 0 and d2 > 0, we know that μ1 = μ2 = 0. Substituting this into the system (A.4) of
equations yields

d1 = λs1α
φ
1 − ατ

1

2
(
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φ
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1

) , (A.5)
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) . (A.6)

Substituting this back into (A.3) yields the following quartic equation:
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This quartic equation can be easily solved analytically or numerically. Its real roots can then be
substituted back into (A.5) and (A.6) to obtain candidate solutions. After solving the quartic equation,
there are four possible cases for each real root that need to be considered separately based on the form
of (A.5) and (A.6). In particular, the cases evaluate whether or not the numerator and/or denominator in
(A.5) and (A.6) are zero.
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1. Denominator and numerator of (A.5) are zero: λ = βτ
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we do not even need the KKT conditions, since problem (P(N1, N2)) can be rewritten by
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Thus, all feasible solutions are optimal as they all have the same objective function value
of −cB (note that the problem does have feasible solutions, e.g. d2 = 0 and d1 obtained
by solving a quadratic equation).

ii. Numerator of (A.6) is not zero: λ �= ατ
2/(α

φ
2 s2).

This situation does not yield a feasible d2, because the denominator in (A.6) is zero but
the numerator is not. Thus, this case does not yield any candidate solutions.
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2).

i. Numerator of (A.6) is zero: λ = ατ
2/(α

φ
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This implies from (A.6) that d2 = 0. This is contrary to the assumed scenario that d1 > 0
and d2 > 0. Thus, this case does not yield any candidate solutions.

ii. Numerator of (A.6) is not zero: λ �= ατ
2/(α

φ
2 s2).

In this case, we can obtain d2 from (A.6), substitute its value into (A.3) and solve a
quadratic equation to get d1. That is,
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2. Denominator of (A.5) is zero but numerator is not: λ = βτ
1 /(β

φ
1 s2

1) and λ �= ατ
1/(α

φ
1 s1).

This situation does not yield a feasible d1 because the denominator in (A.5) is zero but the
numerator is not. Thus, this case does not yield any candidate solutions.

3. Denominator of (A.5) is not zero but numerator is: λ �= βτ
1 /(β

φ
1 s2

1) and λ = ατ
1/(α

φ
1 s1).

This implies from (A.5) that d1 = 0. This is contrary to the assumed scenario that d1 > 0 and
d2 > 0. Thus, this case does not yield any candidate solutions.

4. Neither the denominator nor the numerator of (A.5) is zero: λ �= βτ
1 /(β

φ
1 s2

1) and λ �= ατ
1/(α

φ
1 s1).
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(a) Denominator of (A.6) is zero: λ = βτ
2 /(β

φ
2 s2

2).

i. Numerator of (A.6) is zero: λ = ατ
2/(α

φ
2 s2).

Here d1 can be obtained from (A.5). We can substitute its value into (A.3) and solve a quadratic
equation to calculate d2. That is,
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ii. Numerator of (A.6) is not zero: λ �= ατ
2/(α

φ
2 s2).

Here we cannot obtain any feasible d2 because the denominator in (A.6) is zero but the
numerator is not. Thus, this case does not yield any candidate solutions.

(b) Denominator of (A.6) is not zero: λ �= βτ
2 /(β

φ
2 s2

2).

i. Numerator of (A.6) is zero: λ = ατ
2/(α

φ
2 s2).

Here (A.6) yields d2 = 0. This is contrary to the assumed scenario that d1 > 0 and d2 > 0.
Thus, this case does not yield any candidate solutions.

ii. Numerator of (A.6) is not zero: λ �= ατ
2/(α

φ
2 s2).

In this case, d1 and d2 can be obtained from (A.5) and (A.6).

The objective values of all candidate solutions can then be compared to find an optimal solution.
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