Abstract

A system of nonlinear partial differential equations is proposed as a model for the growth of an avascular-tumour spheroid. The model assumes a continuum of cells in two states, living or dead, and, depending on the concentration of a generic nutrient, the live cells may reproduce (expanding the tumour) or die (causing contraction). These volume changes resulting from cell birth and death generate a velocity field within the spheroid. Numerical solutions of the model reveal that after a period of time the variables settle to a constant profile propagating at a fixed speed. The travelling-wave limit is formulated and analytical solutions are found for a particular case. Numerical results for more general parameters compare well with these analytical solutions. Asymptotic techniques are applied to the physically relevant case of a small death rate, revealing two phases of growth retardation from the initial exponential growth, the first of which is due to nutrient-diffusion limitations and the second to contraction during necrosis. In this limit, maximal and ‘linear’ phase growth speeds can be evaluated in terms of the model parameters.

This content is only available as a PDF.
You do not currently have access to this article.