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Does every n-vertex Cayley graph have an orthonormal eigenbasis all of whose coor-

dinates are O(1/
√

n)? While the answer is yes for abelian groups, we show that it

is no in general. On the other hand, we show that every n-vertex Cayley graph (and

more generally, vertex-transitive graph) has an orthonormal basis whose coordinates

are all O(
√

log n/n), and that this bound is nearly best possible. Our investigation is

motivated by a question of Assaf Naor, who proved that random abelian Cayley graphs

are small-set expanders, extending a classic result of Alon–Roichman. His proof relies

on the existence of a bounded eigenbasis for abelian Cayley graphs, which we now know

cannot hold for general groups. On the other hand, we navigate around this obstruction

and extend Naor’s result to nonabelian groups.

1 Introduction

1.1 Bounded eigenbasis

It is a fundamental problem to understand the spectral decomposition of a Cayley

graph. Since every vertex in a Cayley graph has the same degree, it does not matter

whether we are talking about the adjacency matrix or the Laplacian matrix, but we will

stick with the adjacency matrix for concreteness. Enormous attention has been given

to the eigenvalues of Cayley graphs, especially the spectral gap, due to an intimate
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6158 A. Sah et al.

connection with the expansion properties of the graph [12, 15]. In this paper, we study

the complementary question of what can arise as eigenvectors of Cayley graphs.

We adopt the following normalization. This normalization, viewing x as a

function on a set or group equipped with the averaging measure, is different from the

normalization used in the abstract, where we use the usual Euclidean distance in Rn.

Given a finite set S and a function x : S → C (sometimes viewed as a vector x ∈ CS), we

denote its Lp norm by

‖x‖Lp(S) := (Es∈S |x(s)|p)1/p .

The Hermitian inner product is defined by 〈x, y〉 = Es∈Sx(s)y(s). We say that x is

C-bounded if ‖x‖L∞(S) ≤ C, and we say that a set of functions is C-bounded if all of

its elements are C-bounded. In a unitary or orthonormal eigenbasis, each eigenfunction

x is normalized as ‖x‖L2(S) = 1.

Below is the main question that we study. Here our Cayley graphs are

unweighted and undirected. A Cayley graph on a finite group G with symmetric

generator S = S−1 (not containing the identity) has edges of form (g, sg) ranging over all

g ∈ G and s ∈ S.

Question 1.1. What is the minimum C(n) so that every n-vertex Cayley graph has a

C(n)-bounded unitary (or orthonormal) eigenbasis?

Every abelian Cayley graph has a 1-bounded unitary eigenbasis. Indeed, given

an abelian group G, the basis of Fourier characters of G forms an eigenbasis for every

Cayley graph on G. In particular, all coordinates of such a Fourier basis are roots of

unity. The existence of a bounded eigenbasis is useful in certain applications. In fact,

the initial motivation for this work is a result of Naor [16] that proves a certain small-

set expansion property of random abelian Cayley graphs, extending a classic result

of Alon–Roichman [1] that random Cayley graphs on arbitrary groups are expanders.

Naor’s argument uses that every abelian Cayley graph has a 1-bounded eigenbasis.

He asks whether his results also hold for nonabelian groups. Here we show that

general Cayley graphs do not always have a bounded eigenbasis, therefore exhibiting an

obstruction to Naor’s argument for nonabelian groups. On the other hand, we provide

an alternative argument showing that Naor’s theorem indeed extends to general groups.

See Theorem 1.7 below for a precise statement.

Our 1st result below implies that Cayley graphs do not always have a bounded

unitary eigenbasis. It gives a lower bound C(n) �
√

log n/ log log n for Question 1.1 for
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Cayley Graphs Without a Bounded Eigenbasis 6159

infinitely many n. (Notation: we write A � B and A = O(B) to mean that A ≤ CB for some

constant C > 0.)

Theorem 1.2. There exist infinitely many Cayley graphs G whose adjacency

matrix has an eigenspace all of whose eigenfunctions x : G → C satisfy ‖x‖L∞(G) ≥
c ‖x‖L2(G)

√
log n/ log log n, where n is the number of vertices and c > 0 is some absolute

constant.

The next result gives a nearly matching upper bound of C(n) �
√

log n for

Question 1.1.

Theorem 1.3. Every Cayley graph has an orthonormal C
√

log n-bounded eigenbasis,

where n is the number of vertices and C is some absolute constant.

More generally, the same upper bound holds for vertex-transitive graphs.

Theorem 1.4. Every vertex-transitive graph has an orthonormal C
√

log n-bounded

eigenbasis, where n is the number of vertices and C is some absolute constant.

It remains an intriguing open problem to close the gap between the upper and

lower bounds. This problem appears to be related to a recent deep and difficult result

of Green [8], who showed that the maximum possible width of a finite transitive subset

of the unit sphere in Rd is on the order of 1/
√

log d (in sharp contrast to infinite subsets,

e.g., the entire sphere has width 1). Green’s theorem answers a question of the 3rd

author, which was in turn prompted by [5] and this work. Green’s proof relies on the

classification of finite simple groups.

Let us mention a few directions worth further investigation. First, our construc-

tion proving Theorem 1.2 uses graphs of increasing degree. Can one also find bounded

degree Cayley graphs without a bounded eigenbasis?

Conjecture 1.5. There exists some d such that for every C there exists a d-regular

Cayley graph without an orthonormal C-bounded eigenbasis.

Another direction worth exploring further is to understand what families of

groups always have bounded eigenbasis. Extending the example of abelian groups,

it is not hard to show using nonabelian Fourier analysis that in a group where

every irreducible representation has dimension at most d, every Cayley graph has a
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√
d-bounded unitary eigenbasis. Given these examples, a natural question is if for more

natural classes of “nearly abelian” groups, every Cayley graph has a bounded eigenbasis.

Question 1.6. Do Cayley graphs on nilpotent groups of bounded step always have

bounded eigenbasis? What about affine groups?

The general problem of characterizing groups with the bounded eigenbasis

property is somewhat reminiscent of the characterization of approximate groups by

Breuillard, Green, and Tao [4], which unifies classic theorems of Freiman on sets of

bounded doubling [7] and Gromov on groups of polynomial growth [10].

Let us mention that another instance where a bounded eigenbasis came in

handy was in studying the relationship between discrepancy and eigenvalues of Cayley

graphs. Kohayakawa, Rödl, and Schacht [13] showed that for abelian Cayley graphs,

having small discrepancy is equivalent to having small 2nd eigenvalues, with a spectral

proof suggested by Gowers. The proof relies on the bounded eigenbasis of abelian

Cayley graphs. The abelian hypothesis was later removed by Conlon and Zhao [5] via

an application of Grothendieck’s inequality.

The boundedness of eigenfunctions has an appealing interpretation for spectral

graph drawings. Hall’s spectral drawing of a graph [11] (also see Spielman’s survey

[18], which contains some nice figures) places each vertex v at (x(v), y(v)) ∈ R2, where

x and y are eigenfunctions corresponding to the 2nd and 3rd eigenvalues of the graph

Laplacian (here x and y are assumed orthogonal and properly scaled). This drawing

has the property that it minimizes the sum of squared edgelengths among all drawings

of the graph in R2 with the vertices in isotropic position (so that x and y coordinates

each have variance 1 and are uncorrelated). Every abelian Cayley graph has a spectral

drawing where all the coordinates are bounded. On the other hand, Theorem 1.2 gives us

an example of a Cayley graph where no spectral drawing can fit inside a disk of radius

c
√

log n/ log log n (provided that the eigenspace in the theorem corresponds to the 2nd

and 3rd eigenvalues, which can be achieved; see the end of Section 3 for further details).

Some examples of spectral drawings of Cayley graphs used in the proof of Theorem 1.2

are shown in Figure 1.

1.2 Random Cayley graphs are small-set expanders

A classic result due to Alon and Roichman [1] shows that in a random Cayley graph of a

group G generated by k > Cε−2 log |G| independent and uniform random group elements,
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Cayley Graphs Without a Bounded Eigenbasis 6161

Fig. 1. Some spectral drawings of Cayley graphs used in the proof of Theorem 1.2, corresponding

to the group G = Sd � (Z/2Z)d, drawn for d ∈ {3, 4}. Such a spectral drawing requires a canvas of

sidelengths on the order of
√

d/ log d, where vertices have uncorrelated x and y coordinates each

having variance 1. See the remark at the end of Section 3.3 on how these figures were generated.

all eigenvalues other than the top one have absolute value at most kε. In particular, via

the expander mixing lemma, it implies that for every ∅ = X � G,

∣∣∣∣∣ e(X, G \ X)

2k
|G| |X| |G \ X| − 1

∣∣∣∣∣ ≤ ε,

where e(A, B) counts the number of edges with one endpoint in A and the other in B.

Naor [16] developed a new Banach space-valued Azuma inequality and proved

more refined small-set isoperimetry inequalities in random Cayley graphs of abelian

groups, and he asked whether his result can be extended to all groups. Here we answer

his question affirmatively. In the following theorem, by “the Cayley (multi)graph associ-

ated k independent uniformly chosen random group elements” we mean the following:

select random g1, . . . , gk and take the Cayley graph generated by g1, g−1
1 , . . . , gk, g−1

k , taken

with multiplicity. Allowing multiplicities makes the result a bit easier to state and is a

technicality that one should feel free to ignore (in many parameter ranges multiplicities

are unlikely to occur).
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Theorem 1.7. There exists a universal constant C > 0 such that for every positive

integer k and every group G, with probability at least 1/2, the Cayley (multi)graph

associated to k independent uniformly chosen random group elements has the property

that for every X ⊆ G with 1 < |X| ≤ |G| /2, the number of edges e(X, G\X) between X and

G \ X satisfies ∣∣∣∣∣ e(X, G \ X)

2k
|G| |X| |G \ X| − 1

∣∣∣∣∣ ≤ C

√
log |X|

k
.

Naor proved Theorem 1.7 for abelian groups. His proof relies on a bounded

eigenbasis of abelian Cayley graphs. In Section 5 we explain how to bypass this obstacle

in order to prove the result for nonabelian groups.

2 Preliminaries

2.1 Nonabelian Fourier transform

We begin by summarizing some standard facts on nonabelian Fourier analysis (e.g., [9]).

Given a finite group G, let Ĝ denote the set of irreducible unitary representations of G.

For each representation ρ ∈ Ĝ, call its dimension dρ , and call the space that it acts on

Wρ
∼= Cdρ . For any f : G → C and ρ ∈ Ĝ, its Fourier transform evaluated at ρ is given by

f̂ (ρ) = Eg∈Gf (g)ρ(g),

which is an endomorphism of Wρ (i.e., f̂ (ρ) ∈ End Wρ ). There is an inversion formula,

namely

f (g) =
∑
ρ∈Ĝ

dρ〈ρ(g), f̂ (ρ)〉HS

where 〈A, B〉HS = Tr(A†B) is the Hilbert–Schmidt inner product, which is just the entry-

wise Hermitian product of matrices. The Hilbert–Schmidt norm is written as ‖A‖HS =√
Tr(A†A). We have Parseval’s identity

〈f1, f2〉L2(G) = Eg∈Gf1(g)f2(g) =
∑
ρ∈Ĝ

dρ〈f̂1(ρ), f̂2(ρ)〉HS,

and in particular,

Eg∈G|f (g)|2 =
∑
ρ∈Ĝ

dρ ‖̂f (ρ)‖2
HS.
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Finally, we define a convolution of two functions f1, f2 : G → C via

( f1 ∗ f2)(g) = Eh∈Gf1(gh−1)f2(h).

The Fourier transform turns convolution into matrix multiplication:

f̂1 ∗ f2(ρ) = f̂1(ρ)f̂2(ρ)

for all ρ ∈ Ĝ.

2.2 Eigendecomposition

Given a function f : G → C, we consider the operator Mf acting on CG, the space of

functions G → C, via

Mf x = f ∗ x,

that is, (Mf x)(g) = Eh∈Gf (gh−1)x(h) for all x : G → C and g ∈ G. Equivalently, one can

also view Mf as a matrix with rows and columns indexed by G, whose entry in position

(g, h) ∈ G × G is f (gh−1)/ |G|. Then, viewing x ∈ CG as a vector, the matrix product

Mf x agrees with the definition above. The matrix can be thought of as the adjacency

matrix (after suitable normalization) of a Cayley graph. Let us explain how to analyze

the eigendata of Mf using the Fourier transform.

Assume from now on that f (g−1) = f (g) for every g ∈ G. Then

f̂ (ρ) = Eg∈Gf (g)ρ(g)

is Hermitian. For any x : G → C, applying the Fourier transform, we see that x is an

eigenfunction of Mf with eigenvalue λ (i.e., f ∗ x = λx) if and only if

f̂ (ρ)̂x(ρ) = λx̂(ρ) for allρ ∈ Ĝ,

that is, all columns of x̂(ρ) (when viewed as a dρ × dρ matrix) lie in the eigenspace of

f̂ (ρ) corresponding to the eigenvalue λ.

Let Vρ be the subspace of functions whose Fourier transform is supported on ρ:

Vρ = {x ∈ L2(G) : supp x̂ ⊆ {ρ}}
= {x ∈ L2(G) : x(g) = dρ 〈ρ(g), A〉 for some A ∈ End Wρ}. (2.1)

For any column vector v ∈ Wρ , we define

Vρ,v = {x ∈ Vρ : every column of x̂(ρ) is a multiple of v}
= {x ∈ L2(G) : x(g) = dρ〈ρ(g), vw†〉HS for some w ∈ Wρ} ⊆ Vρ . (2.2)
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In particular, if f̂ (ρ)v = λv for some λ ∈ R, then Mf x = λx for all x ∈ Vρ,v (as can

be seen by taking the Fourier transform). Furthermore, if v, v′ ∈ Wρ with v†v′ = 0, then〈
x, x′〉 = 0 for all x ∈ Vρ,v and x′ ∈ Vρ,v′ .

To summarize, we have an orthogonal decomposition (the orthogonality is easy

to check via the Fourier transform)

CG =
⊕

ρ

Vρ .

For each ρ ∈ Ĝ, let vρ
1, . . . , vρ

dρ
∈ Wρ be an eigenbasis of f̂ (ρ) ∈ End Wρ , and call the

corresponding eigenvalues λρ,1, . . . , λρ,dρ
. We have an orthogonal decomposition

Vρ =
dρ⊕
j=1

Vρ,vρ

j

and Mf x = λ
ρ

j x for each x ∈ Vρ,vρ

j
. Thus the eigenvalues of Mf consists of λρ,j with

multiplicity dρ , ranging over all ρ ∈ Ĝ and j ∈ [dρ ]. The eigenspace of Mf corresponding

to an eigenvalue λ is the direct sum of all Vρ,vρ

j
ranging over all ρ ∈ Ĝ and j ∈ [dρ ] with

λρ,j = λ.

2.3 Schatten norms

The Schatten p-norm ‖A‖Sp
of a matrix A ∈ Cn×n is defined via

‖A‖p
Sp

=
n∑

i=1

σi(A)p,

where σ1(A), . . . , σn(A) are the singular values of A.

The Schatten p-norm satisfies a noncommutative Hölder’s inequality (e.g., [3,

Corollary IV.2.6]): for 1 ≤ p ≤ q ≤ ∞ with 1/p + 1/q = 1, we have

〈A, B〉HS ≤ ‖A‖Sp
‖B‖Sq

. (2.3)

Given a function f : G → C on a finite group G, we define its Schatten p-norm

‖f ‖Sp
to be the Schatten p-norm of its associated matrix Mf (giving the linear map x �→

f ∗ x on CG):

‖f ‖Sp
=
(∑

i

σi(Mf )
p

)1/p

=
(∑

ρ

dρ ‖̂f (ρ)‖p
Sp

)1/p

. (2.4)
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3 Construction

In this section, we prove Theorem 1.2 by constructing a Cayley graph on a group G with

an eigenspace all of whose eigenfunctions satisfy ‖x‖L∞(G) � ‖x‖L2(G)

√
log |G|/ log log |G|.

To motivate our construction, we first explain in Section 3.1 what happens for

the unitary group G = U(d), which is simpler to analyze although it is not finite.

Then, in Section 3.2, we explain how to construct an edge-weighted Cayley graph on

a certain finite subgroup of U(d). We then explain in Section 3.3 how to convert the

edge-weighted construction to an unweighted construction via sampling and show that

eigenvectors maintain their desired properties. Only Section 3.3 is required for the proof

of Theorem 1.2, and the earlier subsections are solely for motivation, but we hope that

they are helpful to the readers.

3.1 Unitary group

Let G = U(d). Let ρ denote the standard representation of G on Cd, which is irreducible.

Let Vρ denote the subspace of L2(G) consisting of all x ∈ L2(G) of the form x(g) =
d〈ρ(g), A〉HS for some A ∈ Cd×d, that is, the Fourier transform x̂ is supported at ρ and

x̂(ρ) = A. Note that this definition of Vρ agrees with our earlier definition in (2.1) for

finite groups.

Claim 3.1. For any x ∈ Vρ , we have ‖x‖L∞(G) ≥ √
d‖x‖L2(G).

Proof. Let A ∈ Cd×d be such that x(g) = d〈ρ(g), A〉HS. By Fourier inversion and

Parseval, ‖x‖L2(G) = √
d‖A‖HS. Thus we have

‖x‖L∞(G) = d sup
U∈U(d)

〈U, A〉HS = d‖A‖S1
≥ d‖A‖S2

= d‖A‖HS = √
d‖x‖L2(G)

by definition of ρ and duality of the Schatten norms. �

For a sufficiently generic f : G → C (assuming no unwanted eigenvalue colli-

sions), the subspace Vρ is a direct sum of eigenspaces of the operator Mf , there by giving

a continuous analog of Theorem 1.2. The actual construction proving Theorem 1.2 will

involve a discretization of this construction.

3.2 Weighted construction

In this section we prove a weighted analogue of Theorem 1.2, which serves as a stepping

stone towards the entire proof. Recall from earlier that for a function f : G → C we have

Mf (g, h) = f (gh−1)/ |G|.
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Theorem 3.2. There exist some constant c > 0 and infinitely many groups G and

functions f : G → R such that Mf has an eigenspace all of whose elements x satisfy

‖x‖L∞(G) ≥ c

√
log |G|

log log |G| ‖x‖L2(G) .

Let G = Sd � (Z/2Z)d, where Sd acts on (Z/2Z)d by permuting coordinates. The

group has a natural d-dimensional representation on Cd, which we call ρ, where Sd

permutes the coordinates and (Z/2Z)d flips the signs of the coordinates. It is easy to

check that ρ is irreducible.

We need a G-orbit on the unit sphere in Cd with large width in every direction.

The next lemma serves as a finitary analogue of Claim 3.1. This lemma also appears in

[8] and we include its proof here for the convenience of the reader.

Lemma 3.3. Let a be the unit vector in the direction of (1, 1/
√

2, . . . , 1/
√

d). Then for

any v ∈ Cd we have

sup
g∈G

|〈v, ρ(g)a〉| � |v|√
log d

.

Remark . A difficult recent result of Green [8], confirming a conjecture of Zhao, showed

that for every finite subgroup G of U(d) and every unit vector a ∈ Cd, there is some unit

vector v such that supg∈G |〈v, ρ(g)a〉| � 1/
√

log d (i.e., a tight upper bound on the width of

every finite transitive subset of a sphere). In contrast, the width of an infinite transitive

subset of the sphere can be as large as 1 (e.g., the entire sphere). It is initially quite

counterintuitive that a finiteness assumption implies such a dramatic reduction in the

width of an orbit.

Proof. Let us first assume that v ∈ Rd, so

sup
g∈G

|〈v, ρ(g)a〉| = sup
g∈G

|〈ρ(g)v, a〉| ≥ 〈w, a〉,

where w is the vector obtained by making the coordinates of v nonnegative and then

rearranging them in nonincreasing order. Let w = (w1, . . . , wd) with w1 ≥ · · · ≥ wd ≥ 0.

Then

⎛⎝ d∑
j=1

1

j

⎞⎠ 〈w, a〉2 =
⎛⎝ d∑

j=1

wj√
j

⎞⎠2

� w2
1 + w2√

2

(
w1 + w2√

2

)
+ w3√

3

(
w1 + w2√

2
+ w3√

3

)
· · ·
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� w2
1 + w2

2√
2

(
1 + 1√

2

)
+ w2

3√
3

(
1 + 1√

2
+ 1√

3

)
+ · · ·

� w2
1 + · · · + w2

d = |w|2 = |v|2.

Thus

sup
g∈G

|〈v, ρ(g)a〉| � |v|√
log d

.

Finally, when v ∈ Cd, we can reduce to the real case. Assume without loss of

generality (since ρ is real) that | Re v| ≥ | Im v|. Then

sup
g∈G

|〈v, ρ(g)a〉| ≥ sup
g∈G

|〈Re v, ρ(g)a〉| � | Re v|√
log d

≥ |v|√
2 log d

.

�

Proof. Proof of Theorem 3.2 Let a be as in Lemma 3.3 (viewed as a column vector).

Define f : G → R via

f (g) = d〈ρ(g), aaᵀ〉HS.

Therefore, by Fourier inversion, f̂ is supported at ρ and f̂ (ρ) = aaᵀ. That is, f ∈ Vρ (as in

(2.1)).

As in (2.2), let Vρ,a denote the subspace of L2(G) consisting of all x ∈ L2(G) of the

form x(g) = d〈ρ(g), av†〉HS for some v ∈ Cd. From the discussions in Section 2.2, we see

that Mf has exactly one nonzero eigenvalue, namely 1, and its eigenspace is Vρ,a.

We claim that

‖x‖L∞(G) �
√

d

log d
‖x‖L2(G)

for all x ∈ Vρ,a. Letting x(g) = d〈ρ(g), av†〉HS, we have

‖x‖L∞(G) = d sup
g∈G

|〈ρ(g), av†〉HS| = d sup
g∈G

|〈v, ρ(g)a〉| � d√
log d

|v|,

where the last inequality is Lemma 3.3. Furthermore, by Parseval,

‖x‖L2(G) = √
d ‖̂x(ρ)‖HS = √

d‖av†‖HS = √
d|v|.

Since |G| = 2dd!, we have d = (1 + o(1)) log |G|/ log log |G|, which completes the proof. �
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3.3 Unweighted construction

Let us first explain the setup for this entire subsection. Let G be any finite group (later

on we will specialize to G = Sd � (Z/2Z)d). Let ρ ∈ Ĝ be a real irreducible representation

of G of dimension d = dρ , that is, ρ : G → O(d) is a homomorphism. Finally, we assume

that
√|G| / log |G| > 15d.

Fix a unit vector a ∈ Rd and let

f (g) = 1 − aᵀρ(g)a

2
. (3.1)

By Cauchy–Schwarz, f (g) ∈ [0, 1]. Furthermore, f (g−1) = f (g) since ρ(g) has real entries.

Note that f is quite similar to the example given in the proof of Theorem 3.2 but

shifted and scaled so that its values lie in [0, 1]. The idea is to sample a random Cayley

graph from f . Then its eigenvalues will be close to the original. Furthermore, we will

show that the top nontrivial eigenspace (which corresponds to ρ) does not change much,

so the estimate Lemma 3.3 will remain valid.

We now sample a random function h based on f . Let G′ be the set of elements

g ∈ G with g = g−1 and G′′ be a subset of G \ G′ containing exactly one element of each

set {g, g−1} ∈ (G2) such that g = g−1. For g ∈ G′, let h(g) be 1 with probability f (g) and

zero otherwise. For g ∈ G′′, let h(g) = h(g−1) = 1 with probability f (g) and 0 otherwise.

The choices are independent across G′ ∪ G′′. Note that f (e) = 0, so h(e) = 0.

For each g ∈ G, let Pg denote the matrix with columns and columns indexed by

G × G with entry 1/ |G| at position (gx, x) for each x ∈ G and zero elsewhere. Viewing Mf

and Mh as matrices (as described in Section 2.2), we have

Mh =
∑
g∈G′

h(g)Pg +
∑
g∈G′′

h(g)(Pg + Pg−1)

=
∑
g∈G′

(h(g) − f (g))Pg +
∑
g∈G′′

(h(g) − f (g))(Pg + Pg−1) +
∑
g∈G

f (g)Pg.

We first compute the spectrum of E[Mh] = Mf .

Lemma 3.4. Let h be as above. The spectrum of E[Mh] is 1/2 with multiplicity 1,

−1/(2d) with multiplicity d, and 0 with multiplicity |G| − d − 1.

Proof. By linearity of expectation, E[Mh] = Mf . Furthermore, since

f (g) = 1 − aᵀρ(g)a

2
= 1

2
− 1

2d
(d〈ρ(g), aaᵀ〉HS),
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Cayley Graphs Without a Bounded Eigenbasis 6169

we see that f̂ (trivG) = 1/2 and f̂ (ρ) = −aaᵀ/(2d) by Fourier inversion, with f̂ only

supported at these two representations (here trivG is the trivial representation of G).

The analysis in Section 2.2 therefore shows that Mf has eigenvalues 1/2 with

multiplicity 1, −1/(2d) with multiplicity d, and 0 for the rest. �

In order to establish quantitative concentration bounds regarding our sampling,

we use the matrix Hoeffding inequality by Tropp [19]. Recall that for self-adjoint A, B,

the notation A � B means that B − A is positive semidefinite.

Theorem 3.5 ([19, Theorem 1.3]). Consider a finite sequence {Xk} of independent,

random, self-adjoint matrices with dimension d, and let {Ak} be a sequence of fixed

self-adjoint matrices. Assume that each random matrix satisfies

EXk = 0 and X2
k � A2

k almost surely.

Then, for all t ≥ 0,

P

(
λmax

(∑
k

Xk

)
≥ t

)
≤ d · e−t2/(8σ2) where σ 2 :=

∥∥∥∥∥∑
k

A2
k

∥∥∥∥∥
op

.

Remark. The constant 8 can be replaced by 2 if Xk and Ak commute almost surely,

which will hold true in our application. See [19, Remark 7.4].

Lemma 3.6. Let h be as above. Then

P

[∥∥Mh − E[Mh]
∥∥

op ≤ 4

√
log(6 |G|)

|G|

]
≥ 2

3
.

Proof. Note that when g = g−1 we have that P2
g = I/ |G|2. Otherwise note that

(Pg + Pg−1)
2 = 2I/ |G|2 + Pg2 + Pg−2 � 4I/ |G|2

as

− 2I/ |G|2 + Pg2 + Pg−2 = (Pg − Pg−1)
2 � 0.

Here we are using that Pg − Pg−1 is antisymmetric.

Using that |h(g) − f (g)| ≤ 1 almost surely, and applying Theorem 3.5 to

Mh − E[Mh] =
∑
g∈G′

(h(g) − f (g))Pg +
∑
g∈G′′

(h(g) − f (g))(Pg + Pg−1)
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we find that

P
(
λmax

(
Mh − E[Mh]

) ≥ t
) ≤ |G| exp

(−t2 |G|
16

)
for all t ≥ 0. Applying the same inequality to −Mh yields

P
(∥∥Mh − E[Mh]

∥∥
op ≥ t

)
≤ 2 |G| exp

(−t2 |G|
16

)
.

Setting t = 4 |G|−1/2 (log 6 |G|)1/2 yields the lemma. �

This allows us to control the spectrum of Mh.

Corollary 3.7. With h as above, we have that with probability at least 2/3 the number

of eigenvalues of Mh in [−1/d, −1/(3d)] is exactly d.

Proof. This is an immediate consequence of Weyl’s inequality on deviation of

eigenvalues along with Lemma 3.4 and 3.6.

More specifically, we have that Mh and E[Mh] are self-adjoint and
∥∥Mh − E[Mh]

∥∥
op

≤ 4
√

log(6 |G|)/ |G| with probability at least 2/3. Thus, writing ν1 ≥ · · · ≥ ν|G| for the

eigenvalues of E[Mh] (which we know to be 1/2, 0, . . . , 0, −1/(2d), . . . , −1/(2d) with d

copies of −1/(2d) by Lemma 3.4) and μ1 ≥ · · · ≥ μ|G| for the eigenvalues of Mh, we have

|μj − νj| ≤ 4

√
log(6 |G|)

|G| ≤ 1

6d

for all 1 ≤ j ≤ |G| by Weyl’s inequality. The final inequality uses the assumption that√|G| / log |G| > 15d. �

We now show that ĥ(ρ) and f̂ (ρ) = E[̂h(ρ)] are close.

Lemma 3.8. Let h and ρ be as above. Then

P

[
‖ĥ(ρ) − E[̂h(ρ)]‖op ≤ 4

√
log(6d)

|G|

]
≥ 2

3
.

Proof. The proof is essentially identical to the proof of Lemma 3.6. Note that if g = g−1

then ρ(g)2 = Id. Otherwise

(ρ(g) + ρ(g−1))2 = 2Id + ρ(g2) + ρ(g−2) � 4Id

as

(ρ(g) − ρ(g−1))2 � 0.
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Cayley Graphs Without a Bounded Eigenbasis 6171

Here we are using that ρ(g) − ρ(g−1) = ρ(g) − ρ(g)ᵀ is antisymmetric.

Then, using the matrix Hoeffding bound Theorem 3.5, it immediately follows

that

P
(∥∥ĥ(ρ) − E[̂h(ρ)]

∥∥
op ≥ t

)
≤ 2d exp

(−t2 |G|
16

)
.

Setting t = 4 |G|−1/2 (log 6 |G|)1/2 yields the lemma. �

We now show that the top eigenvector of ĥ(ρ) and f̂ (ρ) = E[̂h(ρ)] are close. This

is a special case of the Davis–Kahan Theorem [6]. We include a proof (adapted from [17,

Theorem 5.9]) for completeness. Recall that ĥ(ρ) is real so its eigenvectors are real.

Lemma 3.9. Let h, ρ, a be as above. Let b be a real unit eigenvector of the top eigenvalue

of ĥ(ρ). With probability at least 2/3 we have

min{|a + b|, |a − b|} ≤ 16
√

2d

√
log(6d)

|G| .

Proof. Let

� = E[̂h(ρ)] = f̂ (ρ) = −aaᵀ

2d

and

�′ = ĥ(ρ).

Then we have that

aᵀ�a − bᵀ�b = aᵀ�′a − bᵀ�b − aᵀ(�′ − �)a

≤ bᵀ�′b − bᵀ�b − aᵀ(�′ − �)a

= 〈� − �′, aaᵀ − bbᵀ〉HS

≤ ∥∥�′ − �
∥∥

op · ||aaᵀ − bbᵀ||S1

≤ √
2
∥∥�′ − �

∥∥
op · ∥∥aaᵀ − bbᵀ∥∥

HS .

The 2nd inequality is an application of (2.3), noting that ‖·‖op = ‖·‖S∞ . The last step uses

that for a matrix M of rank at most 2, one has ‖M‖S1
≤ √

2 ‖M‖S2
= √

2 ‖M‖HS.

Furthermore we have

aᵀ�a − bᵀ�b = 1 − (b · a)2

2d
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and ∥∥aaᵀ − bbᵀ∥∥2
HS = Tr((aaᵀ − bbᵀ)2) = 2 − 2(b · a)2.

Therefore we have that

(1 − (b · a)2)1/2 ≤ 4d
∥∥�′ − �

∥∥
op .

Then

(a · b)2 ≥ 1 − 16d2
∥∥�′ − �

∥∥2
op .

Negating b if necessary so that a · b ≥ 0, we have

|a − b|2 = 2 − 2(a · b) ≤ 2
(

1 −
√

1 − 16d2 ‖�′ − �‖2
op

)
≤ 32d2

∥∥�′ − �
∥∥2

op .

By Lemma 3.8, with probability at least 3/4, one has ‖�′ − �‖2
op ≤ 16 log(6d)/ |G|, and

the lemma follows. �

We combine the concentration results derived so far.

Proposition 3.10. Let h, a be defined as above. For |G| sufficiently large, we have with

probability at least 1/3 that all of the following hold:

• Mh has exactly d eigenvalues in the interval [−1/d, −1/(3d)].

• ĥ(ρ) has exactly one eigenvalue λ in [−1/d, −1/(3d)].

• There is a real unit eigenvector b of ĥ(ρ) of eigenvalue λ with

|a − b| ≤ 16
√

2d

√
log(6d)

|G| .

Proof. This is an immediate application of Corollary 3.7, Lemma 3.8, and Lemma

3.9. Note that although we are union-bounding over the failures of three statements

(with failure rate at most 1/3 each), the event used in Lemma 3.9 is precisely that of

Lemma 3.8. �

We are now in position to prove Theorem 1.2. The proof will mimic that of

Theorem 3.2.

Proof. Proof of Theorem 1.2 As in Section 3.2, let G = Sd�(Z/2Z)d and ρ be its standard

representation on Cd (permuting and negating coordinates), which is easily seen to be
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Cayley Graphs Without a Bounded Eigenbasis 6173

real. Furthermore let a be the unit vector in the direction of (1, 1/
√

2, . . . , 1/
√

d), viewed

as a column.

We sample h as in the beginning of this subsection (the assumption√|G| / log |G| > 15d holds for sufficiently large d). Let our graph be the Cayley graph

with adjacency matrix |G| Mh. As we care only about scale-invariant properties of

eigenspaces, we restrict attention to Mh, which acts on V = CG.

By Proposition 3.10, for |G| large enough, with probability at least 2/3 there are

exactly d eigenvalues of Mh in [−1/d, −1/(3d)], and ĥ(ρ) has one eigenvalue λ in this

range with a unit eigenvector b satisfying

|a − b| ≤ 16
√

2d

√
log(6d)

|G| . (3.2)

By the characterization of eigenspaces of Cayley graphs in Section 2.2, we see

that ĥ(ρ) contributes a d-dimensional eigenspace to Mh for each of its eigenvalues.

Therefore we see that the d eigenvalues of Mh in [−1/d, −1/(3d)] are precisely d copies

of this eigenvalue λ.

In particular, Mh has an eigenvalue λ, which has eigenspace precisely Vρ,b, which

recall from (2.2) is

Vρ,b = {x ∈ L2(G) : x(g) = d〈ρ(g), bw†〉HS for some w ∈ Cd}.

Now to show the construction satisfies the conclusion of the theorem. Let x ∈
Vρ,b. We wish to show that (recall |G| = 2dd! so that d = (1 + o(1)) log |G|/ log log |G|)

‖x‖L∞(G) �
√

d

log d
‖x‖L2(G) = (1 + o(1))

√
log |G|

log log |G| ‖x‖L2(G) .

If x(g) = d
〈
ρ(g), bv†

〉
HS = dv†ρ(g)b for some v ∈ Cd, then by Parseval,

‖x‖L2(G) = √
d‖bv†‖HS = √

d|v|.
Furthermore,

‖x‖L∞(G) = sup
g∈G

|d〈ρ(g), bv†〉HS|

≥ sup
g∈G

|d〈ρ(g), av†〉HS| − sup
g∈G

|d〈ρ(g), (a − b)v†〉HS|

� d|v|√
log d

− d|a − b||v|

�
√

d

log d
‖x‖L2(G),
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for sufficiently large d, by Lemma 3.3 and (3.2). �

Remark . To produce the graphs in Figure 1, we produce a Cayley graph on G = Sd �

(Z/2Z)d with each possible generator g = e included with probability C(1 − f (g)). (C =
2/3 for the 1st figure and C = 1/7 for the 2nd; these constants merely serve to sparsify

the graphs for aesthetic purposes.)

In the proof of Theorem 1.2 above, we sample a graph via a similar procedure

and deduce that with positive probability it has an unbounded eigenspace of dimension

d. In fact, we can further deduce that this unbounded eigenspace has negative

eigenvalue and is the largest eigenvalue in magnitude after the trivial eigenvalue. Thus,

a similar proof shows that the graph we sampled above, with positive probability,

has an unbounded eigenspace of multiplicity d ≥ 2, which contains the 2nd and 3rd

eigenvalues. Therefore, any possible spectral drawing of such a graph will have width

at least c
√

log |G|/log log |G|, as required.

Finally, in practice, we only sampled the small values d = 3 and d = 4. In this

situation there is a decent probability of sampling a graph not satisfying the desired

properties, namely of having the 2nd and 3rd eigenvalues come from the standard

representation ρ of G, and that their eigenspace is precisely d-dimensional. To produce

Figure 1, we check for these properties and resample until they hold.

4 Upper Bound

In this section we prove Theorem 1.3 and 1.4, showing that all Cayley graphs

(Section 4.1) and transitive graphs (Section 4.2) on n vertices have an O(
√

log n)-bounded

orthonormal eigenbasis.

4.1 Cayley graphs

Lemma 4.1. Given a set S of n unit vectors in Rd (resp. Cd) we can find an orthonormal

(resp. unitary) basis L of Rd (resp. Cd) such that

max
w∈L,v∈S

|〈w, v〉| �
√

log(dn)

d
.

Furthermore, when S ⊆ Cd, we can choose L to have all real vectors.

Proof. Let us first do the real case. Recall the following standard bound on the volume

of spherical caps in high dimensions (e.g., [2, Lemma 2.2]): for a uniformly random unit
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Cayley Graphs Without a Bounded Eigenbasis 6175

vector w ∈ Rd and fixed unit vector v ∈ Rd, one has

P(〈w, v〉 ≥ ε) = P(|w − v|2 ≤ 2 − 2ε) ≤ e−dε2/2. (4.1)

Let ε = √2 log(4dn)/d. Then applying union bound with (4.1), we find that an

orthonormal basis L = {w1, . . . , wd} uniformly at random satisfies

P

(
max

w∈L,w∈S
|〈w, v〉| ≥ ε

)
≤ 2dne−dε2/2 ≤ 1

2
.

So there is some L such that 〈w, v〉 < ε �
√

log(dn)/d for all w ∈ L and v ∈ S.

For the complex case, for each v ∈ S, write v = v1 + iv2 for v1, v2 ∈ Rn. We apply

the real case of this lemma to the set

S′ =
{

v1

‖v1‖2
: v ∈ S

}
∪
{

v2

‖v2‖2
: v ∈ S

}

to obtain a basis L of Rd ⊆ Cd. Then for each w ∈ L and v ∈ S, we have

|〈w, v〉| ≤ ∣∣〈w, v1

〉∣∣+ ∣∣〈w, v2

〉∣∣ ≤ ∣∣∣∣〈w,
v1

‖v1‖2

〉∣∣∣∣+ ∣∣∣∣〈w,
v2

‖v2‖2

〉∣∣∣∣ �
√

log(dn)

d
.

�

Now we are ready to prove Theorem 1.3. In essence our argument amounts to

choosing a random unitary basis (via Lemma 4.1) for each eigenspace coming from

the representation theory of the group G of the Cayley graph. However, in order to

choose a real orthonormal eigenbasis, we essentially pair up conjugate irreducible

representations. This technicality is unnecessary if we only wish to find a unitary

eigenbasis.

Proof. Proof of Theorem 1.3 Let S be the symmetric generating set of the Cayley graph

and 1S be the corresponding indicator function. Recall, from Section 2.2, the orthogonal

decomposition of V = CG as

V =
⊕
ρ∈Ĝ

Vρ =
⊕
ρ∈Ĝ

dρ⊕
j=1

Vρ,vρ

j
. (4.2)

See Section 2.2 for the definitions of Vρ and Vρ,v. Here the vectors vρ

j , j ∈ [dρ ], form

a unitary eigenbasis of 1̂S (ρ) with respective eigenvalues λρ,j. The eigenspace of M1S

corresponding to some eigenvalue λ is a direct sum of all components Vρ,vρ

j
with λρ,j = λ.
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Using this decomposition, we shall construct a real-valued unitary eigenbasis for the

operator M1S
on V as follows:

• For each conjugate pair (ρ, ρ) and eigenvector b of 1̂S(ρ), we will find a real-

valued unitary basis of Vρ,b ⊕ V
ρ,b.

• For each irreducible representation ρ ∈ Ĝ such that ρ and ρ are isomorphic

(such representations are called self-dual), we will find a special eigenbasis

of 1̂S(ρ), and a specific construction giving a unitary basis of Vρ that will

depend on whether the matrix Q satisfying ρQ = Qρ is symmetric or

antisymmetric.

Note that the 2nd case includes ρ which can be realized as a real representation, but

not all self-dual representations are of this form (e.g., the two-dimensional irreducible

representation of the quaternion group Q8). Furthermore, we will ensure that all the

functions x chosen as basis elements above satisfy

‖x‖L∞(G) �
√

log |G| ‖x‖L2(G) .

As a model case we consider ρ ∈ Ĝ a real irreducible representation of dimension

d = dρ , acting on Rd. We will not, strictly speaking, need this analysis in the final

argument as our treatment of self-dual representations is strictly more general. Let

b ∈ Rd be a real eigenvector of 1̂S(ρ). Recall

Vρ,b = {x ∈ L2(G) : x(g) = d〈ρ(g), bw†〉HS for some w ∈ Cd}.

Similar to in the proof of Theorem 1.2, writing xv : G → C for the function xv(g) =
d〈ρ(g), bv†〉HS = d〈ρ(g)v, b〉, we have

‖xv‖L∞(G) = d · sup
g∈G

|〈v, ρ(g)b〉|

and

‖xv‖L2(G) = √
d|b||v| = √

d|v|.

By the real version of Lemma 4.1 applied to S = {ρ(g)b : g ∈ G}, there is an orthonormal

basis L of Rd such that (note that d2 ≤ |G|)

sup
v∈L,g∈G

|〈v, ρ(g)b〉| �
√

log(d |G|)
d

�
√

log |G|
d

.

Then for each v ∈ L we have

‖xv‖L∞(G) �
√

log |G|‖xv‖L2(G).
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Cayley Graphs Without a Bounded Eigenbasis 6177

By Parseval’s identity, we see that {xv/
√

d : v ∈ L} forms a unitary basis of Vρ,b. Also

note that xv is real-valued for each v ∈ Rd. This completes the case of real ρ.

Next, let (ρ, ρ) be a conjugate pair of irreducible representations with ρ and

ρ not isomorphic to each other. Again let d = dρ . For each eigenvector b ∈ Cd of

1̂S(ρ), by the complex version of Lemma 4.1, we find a unitary basis L of Cd so that

supv∈L,g∈G

∣∣〈v, ρ(g)b
〉∣∣ � √(log |G|)/d. Again writing xv(g) = d〈ρ(g), bv†〉, we find that

{xv/
√

d : v ∈ L} is a unitary basis of Vρ,b and

‖xv‖L∞(G) �
√

log |G|‖xv‖L2(G).

Likewise, taking conjugates, we see that {xv/
√

d : v ∈ L} is a unitary basis of V
ρ,b. Recall

that if M1S
xv = λxv then M1S

xv = λxv as M1S
is symmetric and hence λ is real.

The collection of 2d vectors

y0
v = xv + xv√

2d
and y1

v = xv − xv

i
√

2d
,

as v ranges over L, forms a real-valued unitary basis of Vρ,b ⊕ V
ρ,b. Furthermore,

‖y0
v‖L∞(G) ≤

√
2

d

∥∥xv

∥∥
L∞(G)

�
√

log |G|
d

∥∥xv

∥∥
L2(G)

= √log |G|
∥∥∥y0

v

∥∥∥
L2(G)

and similarly for y1
v . This completes the case of non-self-dual complex irreducible

representations.

Finally, let ρ be a self-dual irreducible representation. Again let d = dρ . Note

that 1̂S(ρ) is Hermitian, hence we can choose coordinates on the representation so that

it is a real diagonal matrix. Having done so, we now note that g �→ ρ(g) and g �→ ρ(g)

are isomorphic representations on the same space, since ρ is self-dual (where complex

conjugation is done in the natural way with respect to the coordinates chosen on the

space). Hence there is a unitary operator Q so that

ρ(g)Q = Qρ(g)

for all g ∈ G. Thus

ρ(g)QQ = Qρ(g)Q = QQρ(g)

for all g ∈ G. By Schur’s lemma, we deduce that

QQ = ωI
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for some ω ∈ C. Since Q is unitary, QQ† = I (we use † to denote Hermitian transpose and
ᵀ for transpose), which yields

Q = ωQᵀ = ω2Q.

Since Q is invertible, we deduce ω2 = 1, and hence ω ∈ {±1}.
From 1̂S(ρ) =∑g∈S ρ(g)/ |G| and ρ(g)Q = Qρ(g) we obtain

Q†1̂S(ρ)Q = 1̂S(ρ) = 1̂S(ρ),

since 1̂S(ρ) is a real diagonal matrix, as noted earlier. Therefore Q and 1̂S(ρ) commute.

Now choose a unitary simultaneous eigenbasis of Q and 1̂S(ρ), which can be done by the

spectral theorem as both operators are normal.

We will actually take a specific basis with more structure. First, note that if b is

an eigenvector of Q with eigenvalue λ then

Q−1b = Q†b = QTb = ω−1Qb = ω−1λb.

Thus b is an eigenvector of Q with eigenvalue (ω−1λ)−1 = ωλ, using |λ| = 1 since Q is

unitary. Now we break into sub-cases depending on the value of ω ∈ {±1}.
If ω = −1, then we see that our unitary simultaneous eigenbasis of Q and 1̂S(ρ)

can be chosen so that if b is in it, then so is b, since b and b lie in distinct orthogonal

eigenspaces of Q. For such an eigenvector b, as earlier we can apply Lemma 4.1 to obtain

a unitary basis L of Cd so that supv∈L,g∈G

∣∣〈v, ρ(g)b
〉∣∣ � √(log |G|)/d. Again writing xv(g) =

d〈ρ(g), bv†〉, we find that {xv/
√

d : v ∈ L} is a unitary basis of Vρ,b and ‖xv‖L∞(G) �√
log |G|‖xv‖L2(G).

Note that xv ∈ V
ρ,b since

xv(g) = d〈ρ(g)v, b〉 = d〈ρ(g)v, b〉 = d〈Q†ρ(g)Qv, b〉 = d〈ρ(g)Qv, Qb〉 = d〈ρ(g)Qv, ωλb〉.

This shows that Vρ,b = V
ρ,b. Furthermore, as M1S

xv = λxv, we have M1S
xv = λxv since λ

is real. Then, as v varies over L, the functions

y0
v = xv + xv√

2d
and y1

v = xv − xv

i
√

2d

form a real-valued unitary basis of Vρ,b ⊕ V
ρ,b. This completes the proof of the case

ω = −1.
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If ω = 1, then for every eigenvector b of Q with eigenvalue λ, b is another

eigenvector of Q also with the same eigenvalue λ. Thus every eigenspace U of Q satisfies

U = U. A C-vector space U satisfying U = U is always the C-extension of the R-vector

space ReU = {(Reu1, . . . , Reud) : (u1, . . . , ud) ∈ U} (since every v ∈ U can be written as

x + iy with x = (v + v)/2 and y = (v − v)/(2i) both having real coordinates). Thus we can

choose an orthonormal basis of Rd consisting of real-valued eigenvectors b of Q.

Fix such a real eigenvector b of Q. For any v ∈ Cd, setting xv(g) = d〈ρ(g), bv†〉 as

before, we have xv ∈ Vρ,b since

xv(g) = d〈ρ(g)v, b〉 = d〈ρ(g)v, b〉 = d〈Q†ρ(g)Qv, b〉 = d〈ρ(g)Qv, Qb〉 = d〈ρ(g)Qv, λb〉.

Thus Vρ,b = Vρ,b, which then must be the C-extension of the d-dimensional R-vector

space ReVρ,b.

We now apply Lemma 4.1 to find a unitary basis L of the d-dimensional R-

vector space {v ∈ Cd : xv ∈ ReVρ,b} satisfying supv∈L,g∈G

∣∣〈v, ρ(g)b
〉∣∣ � √(log |G|)/d. Then

{xv/
√

d : v ∈ L} is a real-valued unitary basis of Vρ,b with ‖xv‖L∞(G) �
√

log |G|‖xv‖L2(G).�

4.2 Vertex-transitive graphs

We now extend Theorem 1.3 to vertex-transitive graphs; the idea is the same as before,

except we first lift to a Cayley graph on the automorphism group G of the original. This

trick is closely related to the proof of [5, Theorem 2.2].

Proof. Proof of Theorem 1.4 Let G denote the automorphism group of the given vertex-

transitive graph, acting on the vertex-set from the right. Fix a vertex as the root of the

graph. Let H denote the stabilizer of the root. Then the vertices of the graph are given

by right cosets Hg, g ∈ H\G, with the root corresponding to the trivial coset H. Thus

|H\G| = n.

Let f : H\G → C denote the edge weights from the root to other vertices of the

graph. Since G induces automorphisms on the graph, the edgeweight of (H, Hg) equals

that of (Hh, Hgh) = (H, Hgh) for all h ∈ H. Hence f (gh) = f (g) for all g ∈ G and h ∈ H. So

we can view f as a function f : G → C that is H-invariant from both the left and right.

A function on the vertex set is represented as x : H\G → C, which we will view

as a left-H-invariant x : G → C, that is, x(hg) = x(g) for all g ∈ G and h ∈ H.

A function x : G → C satisfies x(hg) = x(g) for all g ∈ G and h ∈ H (i.e., it is left-

H-invariant) if and only if x̂(ρ) = ρ(h)̂x(ρ) for all ρ ∈ Ĝ and h ∈ H. The latter condition
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is equivalent to saying that the column-space of x̂(ρ) lies in Uρ , the 1-eigenspace of ρ|H :

Uρ := {v ∈ Wρ : ρ(h)v = v for allh ∈ H}.

The forward implication follows from the Fourier transform formula x̂(ρ) =
Eg∈Gx(g)ρ(g), while the reverse implication follows from the inversion formula

x(g) =∑ρ dρ tr(ρ(g)†x̂(ρ)).

Let mρ = dim Uρ . By counting the dimension of the space of all left-H-invariant

functions, we obtain

∑
ρ∈Ĝ

dρmρ = |H\G| = n. (4.3)

Indeed, the condition that x̂(ρ) has column-space contained within Uρ restricts x̂(ρ) to

a dρmρ-dimensional subspace of End Wρ .

Since f : G → C is both left- and right-H-invariant, f̂ (ρ) = ρ(h)̂f (ρ)ρ(h′) for all

h, h′ ∈ H. So f̂ (ρ) leaves Uρ invariant. Let vρ
1 , . . . , vρ

mρ
∈ Uρ be an eigenbasis of the action

of f̂ (ρ) on Uρ .

For each ρ ∈ Ĝ, choose a unitary basis aρ
1, . . . , aρ

dρ
of Wρ , and for each j ∈ [dρ ] and

k ∈ [mρ ], define xρ

j,k : G → C by setting x̂ρ

j,k(ρ) = vρ

k (aρ

j )†/
√

dρ and x̂(ρ′) = 0 for all ρ′ = ρ.

The functions xρ

j,k, with ρ ∈ Ĝ, j ∈ [dρ ], k ∈ [mρ ] satisfy the following properties.

(1) xρ

j,k is left-H-invariant, that is, are functions H\G → C (since the columns of

x̂ρ

j,k are in Uρ ),

(2) xρ

j,k is an eigenfunctions of Mf (since f̂ (ρ)x̂ρ

j,k(ρ) is a scalar multiple of x̂ρ

j,k(ρ))

(3) The functions xρ

j,k are pairwise orthogonal and ‖xρ

j,k‖2 = 1. Indeed, by

Parseval, one has 〈xρ

j,k, xρ′
j′,k′ 〉HS = 0 if ρ = ρ′, and

〈xρ

j,k, xρ

j′,k′ 〉 = dρ〈x̂ρ

j,k(ρ), x̂ρ

j′,k′(ρ)〉HS = 〈aρ

j′ , aρ

j 〉〈vρ

k , vρ

k′ 〉 = 1j=j′1k=k′ .

(4) They form a basis of all functions H\G → C (by orthogonality and dimension

counting (4.3).

Furthermore, we have for each ρ, j ∈ [dρ ], and k ∈ [mρ ] that

xρ

j,k(g) = dρ

〈
ρ(g), x̂ρ

j,k(ρ)
〉
HS

=
√

dρ

〈
ρ(g), vρ

k (aρ

j )†
〉
HS

=
√

dρ

〈
ρ(g)aρ

j , vρ

k

〉
.

For each fixed ρ ∈ Ĝ, set Sρ = {ρ(g)vρ

k : g ∈ G, k ∈ [mρ ]}. Now since ρ(h)vρ

k = vρ

k

for all k ∈ [mρ ] (because Mρ is the 1-eigenspace of ρ|H ), we see that |S| ≤ |G/H|mρ ≤
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n2. By the complex version of Lemma 4.1, there exists a choice of the unitary basis

aρ
1, . . . , aρ

dρ
in the definition of xρ

j,k(g) earlier so that

sup
j∈[dρ ],k∈[mρ ]

sup
g∈G

|xρ

j,k(g)| = sup
j∈[dρ ],k∈[mρ ]

√
dρ

〈
ρ(g)aρ

j , vρ

k

〉
�
√

log n.

Thus the functions xρ

j,k, ranging over all irreducible representations ρ and indices j ∈
[dρ ] and k ∈ [mρ ], form a unitary

√
log n-bounded eigenbasis.

To obtain a real orthonormal eigenbasis, we can repeat the technique in the

proof of Theorem 1.3 in the previous subsection. We omit the details. �

5 Small-Set Expansion in Random Cayley Graphs

In this section we prove Theorem 1.7, extending Naor’s theorem [16] on small-set

expansion for random Cayley graphs to nonabelian groups. Recall the definition of the

Schatten p-norm ‖·‖Sp
from Section 2.3. We state below a Hausdorff–Young inequality

for groups, which is standard though we include its short proof (see [14] for a proof for

locally compact unimodular groups).

Lemma 5.1 (Hausdorff–Young inequality for groups). Let G be a finite group and

f : G → C. For any 1 ≤ p ≤ 2 ≤ q ≤ ∞ with 1/p + 1/q = 1, one has

‖f ‖Sq
≤ ‖f ‖Lp(G) .

Proof. By the Riesz–Thorin interpolation theorem, it suffices to check the inequality

for (p, q) = (2, 2) and (1, ∞). For (p, q) = (2, 2), we have ‖f ‖S2
= ‖f ‖2 by Parseval. For

(p, q) = (1, ∞) we have

‖f ‖S∞ = max
ρ∈Ĝ

‖̂f (ρ)‖op = max
ρ∈Ĝ

∥∥∥Egf (g)ρ(g)

∥∥∥
op

≤ Eg∈G |f (g)| = ‖f ‖1

as ‖ρ(g)‖op = 1 for all g ∈ G. �

Lemma 5.2. Let G be a finite group. For functions f , x : G → C and real p ≥ 1, one has

|〈x, f ∗ x〉| ≤ ‖f ‖Sp
‖x‖2

2p/(p+1) .
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Proof. For each ρ ∈ Ĝ we have∣∣〈̂x(ρ), f̂ (ρ)̂x(ρ))
〉
HS

∣∣ = ∣∣∣Tr
(
x̂(ρ)†f̂ (ρ)̂x(ρ)

)∣∣∣ = ∣∣∣Tr
(
x̂(ρ)̂x(ρ)†f̂ (ρ))

)∣∣∣
≤ ‖̂f (ρ)‖Sp

‖̂x(ρ)̂x(ρ)†‖Sp/(p−1)
= ‖̂f (ρ)‖Sp

‖̂x(ρ)‖2
S2p/(p−1)

. (5.1)

Here the inequality step uses the matrix Hölder inequality (2.3): Tr(AB) ≤ ‖A‖Sp
‖B‖Sp/(p−1)

for all p ∈ [1, ∞]. The last step uses that the singular values of a matrix A are the square

roots of the singular values of AA†.

Thus, applying the convolution and Parseval identities for the nonabelian

Fourier transform (Section 2.1), we have

|〈x, f ∗ x〉| =
∣∣∣∣∣∣
∑
ρ∈Ĝ

dρ

〈̂
x(ρ), f̂ (ρ)̂x(ρ))

〉
HS

∣∣∣∣∣∣ [Convolution & Parseval]

≤
∑
ρ∈Ĝ

dρ ‖̂f (ρ)‖Sp
‖̂x(ρ)‖2

S2p/(p−1)
[by (5.1)]

≤
(∑

ρ

dρ ‖̂f (ρ)‖p
Sp

)1/p (∑
ρ

dρ ‖̂x(ρ)‖2p/(p−1)

S2p/(p−1)

)(p−1)/p

[Hölder’s inequality]

= ‖f ‖Sp
‖x‖2

S2p/(p−1)
[by (2.4)]

≤ ‖f ‖Sp
‖x‖2

2p/(p+1) . [by Lemma 5.1]

This proves the desired inequality. �

Naor proved the following uniform bound on the Schatten norms of random

Cayley graphs via a novel Azuma-type concentration inequality in uniformly smooth

normed spaces.

Lemma 5.3 ([16, Lemma 4.1]). There exists a universal constant C > 0 with the

following property. For any positive integer k and any finite group G, if g1, . . . , gk ∈ G

are chosen independently and uniformly at random, then, with probability at least 1/2,

the function f : G → R given by

f = 1{g1} + 1{g−1
1 } + · · · + 1{gk} + 1{g−1

k } − 2k
|G| (5.2)

satisfies

‖f ‖Sp
≤ C |G|−1+1/p

√
pk

simultaneously for every integer p ≥ 2.
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Using this concentration lemma, we can now prove Theorem 1.7. Unlike the proof

in [16] for abelian groups, we do not need to rely on a bounded eigenbasis.

Proof. Proof of Theorem 1.7 Let g1, . . . , gk ∈ G be the random group elements

generating the Cayley (multi)graph. Define f : G → R as in (5.2).

Let X ⊆ G with 1 < |X| ≤ |G| /2. Define a function x : G → R by

x = |G \ X|1X − |X|1G\X .

It is straightforward to check that

〈x, f ∗ x〉 = 2k
|G| |X| |G \ X| − e(X, G \ X).

We also have

‖x‖2p/(p+1) =
⎛⎝ |X| |G \ X| 2p

p+1 + |X| 2p
p+1 |G \ X|

|G|

⎞⎠
p+1
2p

.

Applying the inequality |〈f ∗ x, x〉| ≤ ‖f ‖Sp
‖x‖2

2p/(p+1) from Lemma 5.2, and with the

upper bound ‖f ‖Sp
� |G|−1+1/p

√
pk from Lemma 5.3, we obtain that with probability

at least 1/2, one has

∣∣∣∣ 2k
|G| |X| |G \ X| − e(X, G \ X)

∣∣∣∣ � |G|−1+1/p
√

pk

⎛⎝ |X| |G \ X| 2p
p+1 + |X| 2p

p+1 |G \ X|
|G|

⎞⎠
p+1

p

simultaneously for all positive integers p. Dividing both sides by 2k |X| |G \ X| / |G|, we

obtain

∣∣∣∣∣ e(X, G \ X)

2k
|G| |X| |G \ X| − 1

∣∣∣∣∣ � |G|1/p

√
p

k

⎛⎝ |X| 1
p+1 |G \ X| p

p+1 + |X| p
p+1 |G \ X| 1

p+1

|G|

⎞⎠
p+1

p

� |X|1/p

√
p

k
,

where in the last step we apply the inequality xt(1−x)1−t +x1−t(1−x)t ≤ xt +x1−t ≤ 2xt

for x = |X| / |G| ≤ 1/2 and t = 1/(p + 1) ∈ [0, 1/2]. Finally, setting p = ⌈log |X|⌉, we see

the final expression has an upper bound of O(
√

(log |X|)/k). �

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/8/6157/6019978 by guest on 19 April 2024



6184 A. Sah et al.

Funding

This work was supported by the National Science Foundation Award [DMS-1764176 to Y.Z.]; a

Sloan Research Fellowship [to Y.Z.]; and the Massachusetts Institute of Technology Solomon

Buchsbaum Fund [to Y.Z.].

Acknowledgments

Zhao thanks Assaf Naor for discussions and for encouraging him to work on this problem. We

thank Shengtong Zhang for pointing out some typographical errors.

References

[1] Alon, N. and Y. Roichman. “Random Cayley graphs and expanders.” Random Struct.

Algorithms 5 (1994): 271–84.

[2] Ball, K. “An Elementary Introduction to Modern Convex Geometry.” In Flavors of Geometry.

Math. Sci. Res. Inst. Publ., vol. 31. 1–58. Cambridge: Cambridge Univ. Press, 1997.

[3] Bhatia, R. Matrix Analysis. Graduate Texts in Mathematics, vol. 169. New York: Springer,

1997.

[4] Breuillard, E., B. Green, and T. Tao. “The structure of approximate groups.” Publ. Math. Inst.

Hautes Études Sci. 116 (2012): 115–221.

[5] Conlon, D. and Y. Zhao. “Quasirandom Cayley graphs.” Discrete Anal. Paper No. 6 (2017):

14pp.

[6] Davis, C. and W. M. Kahan. “The rotation of eigenvectors by a perturbation. III.” SIAM J.

Numer. Anal. 7 (1970): 1–46.

[7] Frei˘man, G. A. Foundations of a Structural Theory of Set Addition. Providence, RI: Ameri-

can Mathematical Society, 1973. Translated from the Russian, Translations of Mathematical

Monographs, vol. 37.

[8] Green, B. “On the width of transitive sets: bounds on matrix coefficients of finite groups.”

Duke Math. J. 169 (2020): 551–78.

[9] Green, B. and A. Wigderson. Lecture Notes for the 22nd McGill Invitational Work-

shop on Computational Complexity, 2010, https://www.math.ias.edu/~avi/TALKS/Green_

Wigderson_lecture.pdf.

[10] Gromov, M. “Groups of polynomial growth and expanding maps.” Inst. Hautes Études Sci.

Publ. Math. 53 (1981): 53–73.

[11] Hall, K. M. “An r-dimensional quadratic placement algorithm.” Manag. Sci. 17 (1970): 219–29.

[12] Hoory, S., N. Linial, and A. Wigderson. “Expander graphs and their applications.” Bull. Amer.

Math. Soc. (N.S.) 43 (2006): 439–561.

[13] Kohayakawa, Y., V. Rödl, and M. Schacht. “Discrepancy and eigenvalues of Cayley graphs.”

Czechoslovak Math. J. 66 (2016): 941–54.

[14] Kunze, R. A. “Lp Fourier transforms on locally compact unimodular groups.” Trans. Amer.

Math. Soc. 89 (1958): 519–40.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/8/6157/6019978 by guest on 19 April 2024

https://www.math.ias.edu/~avi/TALKS/Green_Wigderson_lecture.pdf
https://www.math.ias.edu/~avi/TALKS/Green_Wigderson_lecture.pdf


Cayley Graphs Without a Bounded Eigenbasis 6185

[15] Lubotzky, A. “Expander graphs in pure and applied mathematics.” Bull. Amer. Math. Soc.

(N.S.) 49 (2012): 113–62.

[16] Naor, A. “On the Banach-space-valued Azuma inequality and small-set isoperimetry of Alon–

Roichman graphs.” Combin. Probab. Comput. 21 (2012): 623–34.

[17] Rigollet, P. and J.-C. Hütter. High Dimensional Statistics (Lecture Notes), 2019, draft version

November 5, 2019, available at http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf.

[18] Spielman, D. “Spectral Graph Theory.” In Combinatorial Scientific Computing. 495–524.

Boca Raton, FL: Chapman & Hall/CRC Comput. Sci. Ser. CRC Press, 2012.

[19] Tropp, J. A. “User-friendly tail bounds for sums of random matrices.” Found. Comput. Math.

12 (2012): 389–434.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/8/6157/6019978 by guest on 19 April 2024

http://www-math.mit.edu/~rigollet/PDFs/RigNotes17.pdf

	Cayley Graphs Without a Bounded Eigenbasis
	1 Introduction
	2 Preliminaries
	3 Construction
	4 Upper Bound
	5 Small-Set Expansion in Random Cayley Graphs


