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The Reeb space of a continuous function is the space of connected components of the

level sets. In this paper, we first prove that the Reeb space of a smooth function on

a closed manifold with finitely many critical values has the structure of a finite graph

without loops. We also show that an arbitrary finite graph without loops can be realized

as the Reeb space of a certain smooth function on a closed manifold with finitely many

critical values, where the corresponding level sets can also be preassigned. Finally, we

show that a continuous map of a smooth closed connected manifold to a finite connected

graph without loops that induces an epimorphism between the fundamental groups is

identified with the natural quotient map to the Reeb space of a certain smooth function

with finitely many critical values, up to homotopy.

Dedicated to Professor Toshizumi Fukui on the occasion of his 60th birthday.

1 Introduction

In this article, we prove three theorems on Reeb spaces of smooth functions on compact

manifolds of dimension m ≥ 2 that have finitely many critical values. Here, the Reeb

space is the space of connected components of the level sets, endowed with the quotient

topology (for a precise definition, see Section 2).

The 1st theorem (Theorem 3.1) states that the Reeb space of such a function

always has the structure of a finite (multi-)graph without loops. Many of the results in
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Reeb Spaces of Smooth Functions on Manifolds 8741

the literature concern Morse functions or smooth functions with finitely many critical

points [7–11, 26, 29], and our theorem generalizes them. Note that the graph structure of

the Reeb space of such a smooth function with finitely many critical values satisfies

that the vertices correspond exactly to the connected components of level sets that

contain critical points. In the literature, a Reeb space is often called a Reeb graph

and our theorem justifies the terminology. We note that the same result also holds for

every smooth function on an arbitrary compact manifold of dimension m ≥ 2 possibly

with boundary provided that the function and its restriction to the boundary both have

finitely many critical values.

The 2nd result of this paper is a realization theorem (Theorem 5.3). We show

that, for each m ≥ 2, an arbitrary finite (multi)-graph without loops can be real-

ized as the Reeb space of a smooth function on a closed m-dimensional manifold

with finitely many critical values. Our result is even stronger: we can preassign

the diffeomorphism types of the components of level sets for points in the graph.

More precisely, to each edge, we assign a closed connected (m − 1)-dimensional

manifold, and to each vertex, a compact connected m-dimensional manifold so that

certain consistency conditions are satisfied; then, a graph with such a preassign-

ment, called an m-decorated graph, can always be realized as the Reeb space of a

smooth function with finitely many critical values on a closed m-dimensional manifold

in such a way that a point on an edge corresponds to the preassigned (m − 1)-

dimensional manifold and a vertex corresponds to the preassigned m-dimensional

manifold.

The 3rd result of this paper also concerns the realization of a graph as the Reeb

space (Theorem 6.1). In our 2nd result, the source manifold on which the function is

constructed is not preassigned. On the other hand, in our 3rd theorem, we fix the source

closed connected manifold M of dimension m ≥ 2 and first consider a continuous map

of M into a connected (multi-)graph without loops that induces an epimorphism between

the fundamental groups. Then, we show that such a map is homotopic to the quotient

map to the Reeb space of a smooth function on M with finitely many critical values,

where the Reeb space is identified with the given graph. Note that the condition on

the fundamental group is known to be necessary. A similar result has been obtained by

Michalak [22, 23] (see also Gelbukh [4] and Marzantowicz and Michalak [17]): for m ≥ 3,

one can realize a given graph as the Reeb space of a Morse function on a closed m-

dimensional manifold up to homeomorphism. Our theorem is slightly different from

such results in that we not only realize the topological structure of a given graph

but we also realize the given graph structure. We construct smooth functions with
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8742 O. Saeki

finitely many critical values such that the images by the quotient map of the level set

components containing critical points exactly coincide with the vertices of the given

graph.

The paper is organized as follows. In Section 2, we review the definition and

certain properties of Reeb spaces and present the problems addressed in this paper.

In Section 3, we prove that the Reeb space of a smooth function on a closed manifold

with finitely many critical values is a graph. The key to the proof is Lemma 3.8, which

guarantees that the number of connected components of a level set corresponding to

an isolated critical value is always finite. We use some general topology techniques

to prove this lemma. In Section 4, we introduce the notion of a path Reeb space,

which is the space of all path-components of level sets. We show that for the path

Reeb space, our 1st theorem does not hold in general; in fact, even for a smooth

function on a closed manifold with finitely many critical values, the path Reeb space

may not be a T1-space and hence may not have the structure of a graph. However,

we also show that the path Reeb space and the usual Reeb space coincide with

each other for an arbitrary smooth function on a closed manifold with finitely many

critical points. In Section 5, we prove the 2nd theorem. In order to construct a desired

function on a manifold, we first construct non-singular functions corresponding to

edges and constant functions corresponding to the vertices. Then, we glue them

together “smoothly” using our consistency condition. In Section 6, we prove the 3rd

theorem. By using the assumption on the fundamental groups, we first find (m − 1)-

dimensional submanifolds in the source manifold M that correspond to the edges using

surgery techniques. Then, we use the techniques employed in the proof of the 2nd

theorem.

Some of the results in this paper have been announced in [27].

Throughout the paper, all manifolds and maps between them are smooth of

class C∞ unless otherwise specified. The symbol “∼=” denotes a diffeomorphism between

smooth manifolds.

2 Reeb Space

Let f : X → Y be a continuous map between topological spaces. For two points x0, x1 ∈ X,

we write x0 ∼ x1 if f (x0) = f (x1) and x0, x1 lie on the same connected component

of f −1(f (x0)) = f −1(f (x1)). Let Wf = X/ ∼ be the quotient space with respect to this

equivalence relation, that is, Wf is a topological space endowed with the quotient

topology. Let qf : X → Wf denote the quotient map. Then, there exists a unique map
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Reeb Spaces of Smooth Functions on Manifolds 8743

Fig. 1. Example of a Reeb space and a Stein factorization

f̄ : Wf → Y that is continuous and makes the following diagram commutative:

The space Wf is called the Reeb space of f and the map f̄ : Wf → Y is called the Reeb

map of f . The decomposition of f as f̄ ◦qf as in the above commutative diagram is called

the Stein factorization of f [16]. For a schematic example, see Figure 1.

In this article, a smooth real-valued function on a manifold is called a Morse

function if its critical points are all non-degenerate. Such a Morse function is simple if

its restriction to the set of critical points is injective.

Furthermore, in the following, a graph means a finite “multi-graph” that may

contain multi-edges and/or loops. When considered as a topological space, it is a

compact one-dimensional CW complex. A manifold is closed if it is compact and has

no boundary.
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8744 O. Saeki

It is known that the Reeb space of a Morse function on a smooth closed manifold

has the structure of a graph, which is often called a Reeb graph [26] or is sometimes

called a Kronrod–Reeb graph [29]. This fact has been first stated in [26] without

proof. A proof for simple Morse functions can be found in [9, Teorema 2.1] (see also

[7]–[11]).

If we use several known results, this fact for Morse functions can also be proved

as follows, for example. First, Morse functions on closed manifolds are triangulable

(e.g., by a result of Shiota [29]). Then, by [6], its Stein factorization is triangulable

and consequently the quotient space, that is, the Reeb space, is a one-dimensional

polyhedron. Therefore, it has the structure of a graph.

Furthermore, the following properties are known for Morse functions:

1. the vertices of a Reeb graph correspond to the components of level sets that

contain critical points;

2. the restriction of the Reeb map on each edge is an embedding into R. In

particular, no edge is a loop.

Then, the following natural problems arise.

Problem 2.1. Given a smooth function on a closed manifold, does the Reeb space

always have the structure of a graph?

Problem 2.2. Given a graph, is it realized as the Reeb space of a certain smooth

function?

In this article, we consider these problems and give some answers.

3 Reeb Graph Theorem

Let M be a smooth closed manifold of dimension m ≥ 2 and f : M → R a smooth

function. Then, we have the following.

Theorem 3.1. If f has at most finitely many critical values, then the Reeb space

Wf has the structure of a graph. Furthermore, f̄ : Wf → R is an embedding on each

edge.

Remark 3.2. The above theorem has been known for smooth functions with finitely

many critical points. A proof can be found in [29].
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Remark 3.3. (1) If f has infinitely many critical values, then the above theorem does

not hold in general. Some examples will be presented later.

(2) The same result also holds for smooth functions f : M → R on compact

manifolds of dimension m ≥ 2 with ∂M 	= ∅, provided that both f and f |∂M have at most

finitely many critical values. This can be proved by the same argument as in the proof

of Theorem 3.1 given below.

Remark 3.4. It is known that if f : M → N with m = dim M > dim N = n ≥ 1 is a

smooth map between manifolds with M being compact, and if f is triangulable, then

its Reeb space Wf has the structure of an n-dimensional finite simplicial complex (or

a compact polyhedron) in such a way that f̄ is an embedding on each simplex [6]. In

particular, if f is C0–stable, then the Reeb space Wf is an n-dimensional polyhedron.

Therefore, if a smooth function f : M → R on a compact manifold is triangulable (e.g.,

if f is a Morse function), then it follows that Wf is a graph.

As we will see later, there exist smooth functions with finitely many critical

values that are not triangulable.

For the proof of Theorem 3.1, we need the following. In the following, for a

subset S of a manifold, S denotes the closure in the ambient manifold.

Lemma 3.5. Let f : M → R be a smooth function on a closed manifold. Suppose c ∈ R

is a critical value such that [c, c +2ε) does not contain any critical value other than c for

some ε > 0. Then, the number of connected components of

f −1((c, c + ε]) \ f −1((c, c + ε])

does not exceed that of f −1(c + ε), which has finitely many connected components.

Proof. Let us first consider the case where f −1(c + ε) is non-empty and connected. For

each n ≥ 1, as

f −1
((

c, c + ε

n

]) ∼= f −1(c + ε) ×
(
c, c + ε

n

]

is connected, its closure,

Xn = f −1
((

c, c + ε

n

])
,
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8746 O. Saeki

is also connected. Note that X1 ⊃ X2 ⊃ X3 ⊃ · · · . We see easily that

∞⋂
n=1

Xn = f −1((c, c + ε]) \ f −1((c, c + ε]).

Note that this is compact.

Suppose that ∩∞
n=1Xn is not connected. Then, it is decomposed into the disjoint

union A ∪ B of non-empty closed sets A and B. As A and B are compact and M is

Hausdorff, there exist disjoint open sets U and V of M such that A ⊂ U and B ⊂ V.

Note that then, we have ∩∞
n=1Xn ⊂ U ∪ V.

Suppose for all n, we have Xn 	⊂ U ∪ V. Set X̃ = X1 \ (U ∪ V), which is non-

empty and compact. As Fn = Xn \ (U ∪ V), n ≥ 1, is a family of closed sets of X̃, which

has a finite intersection property, we have ∩∞
n=1Fn 	= ∅, which contradicts the fact that

∩∞
n=1Xn ⊂ U ∪ V. This shows that we have Xn0

⊂ U ∪ V for some n0 ≥ 1.

Then, we have Xn0
∩ U ⊃ A 	= ∅ and Xn0

∩ V ⊃ B 	= ∅, which contradicts the

connectedness of Xn0
. Consequently, ∩∞

n=1Xn is connected.

If f −1(c + ε) is empty, then the consequence of the lemma trivially holds. Let us

now consider the general case where f −1(c + ε) 	= ∅ may not be connected. In this case,

f −1((c, c + ε]) has finitely many connected components, say K1, K2, . . . , Kk. By the same

argument as above, we can show that Ki \ Ki is connected for each 1 ≤ i ≤ k. Therefore,

the number of connected components of

f −1((c, c + ε]) \ f −1((c, c + ε]) =
k⋃

i=1

(Ki \ Ki)

is at most k. This completes the proof of Lemma 3.5. �

Remark 3.6. Note that in Lemma 3.5, we can similarly show that if (c − 2ε, c] does

not have any critical value other than c for some ε > 0, then the number of connected

components of

f −1([c − ε, c)) \ f −1([c − ε, c))

does not exceed that of f −1(c − ε), which has finitely many connected components.

Remark 3.7. In Lemma 3.6, the number of connected components of

f −1((c, c + ε]) \ f −1((c, c + ε])

can be strictly smaller than that of f −1(c + ε). For an example, see Figure 2.
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Fig. 2. Number of components of f −1(c) can be strictly smaller than that of f −1(c + ε).

Lemma 3.8. Let f : M → R be a smooth function on a closed manifold. Suppose

c ∈ R is an isolated critical value of f . Then, f −1(c) has at most finitely many connected

components.

Proof. Let Aλ, λ ∈ �, be the connected components of f −1(c). Note that Aλ are closed

in M. Then, for a sufficiently small ε > 0, the cardinality of λ such that Aλ intersects

f −1([c − ε, c)) ∪ f −1((c, c + ε]) is at most finite by virtue of Lemma 3.5 and Remark 3.6.

On the other hand, suppose Aλ does not intersect f −1([c − ε, c)) ∪ f −1((c, c + ε])

for some λ ∈ �. Then, we have

Aλ ⊂ f −1(c) \ (f −1([c − ε, c)) ∪ f −1((c, c + ε])).

For every x ∈ Aλ, there exists a small open disk neighborhood Ux of M such that Ux ∩
(f −1([c−ε, c))∪f −1((c, c+ε])) = ∅. This implies that U is completely contained in f −1(c) by

the continuity of f . Then, we have Ux ⊂ Aλ. This shows that Aλ is an open codimension

zero submanifold of M. As it is also closed and connected, Aλ is a component of M. Thus,

the cardinality of such λs is at most finite.

This completes the proof of Lemma 3.8. �

Proof of Theorem 3.1. Let Cf ⊂ R be the set of critical values of f , which is finite by

our assumption. Let Gf be the graph constructed as follows. The vertices correspond

bijectively to the connected components of f −1(Cf ) that contain critical points. By our

assumption and Lemma 3.8, the number of vertices is finite. Let Lf ⊂ f −1(Cf ) denote

the union of such connected components. Then, the edges correspond bijectively to

the connected components of M \ Lf . Note that each such connected component is
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Fig. 3. A commutative diagram.

diffeomorphic to the product of a closed connected (m−1)-dimensional manifold and an

open interval. For each vertex v (or edge e), let us denote by Vv (resp. Ee) the component

of Lf (resp. M \ Lf ) corresponding to v (resp. e). Then, an edge e is incident to a vertex

v if and only if the closure of Ee intersects Vv. More precisely, each edge e is oriented

and its initial vertex (or the terminal vertex) is given by v if and only if x > f (Vv) (resp.

x < f (Vv)) for all x ∈ f (Ee) and the closure of Ee intersects Vv. Note that by the proof of

Lemma 3.5, this is well defined and we get a finite graph Gf .

In the following, the terminology edge often refers to the corresponding open 1-

cell of the graph. For each edge e, f (Ee) is an open interval, say (ae, be) for ae < be. Then,

we have a canonical orientation preserving embedding he : e → (ae, be) ⊂ R. These

functions for all e can naturally be extended to a continuous function h : Gf → R, where

h(v) = f (Vv) for each vertex v. (The reader is referred to the commutative diagram in

Figure 3 for various spaces and maps defined here and in the following.)

Let pe : Ee → e be the composition of f |Ee
: Ee → (ae, be) and h−1

e . Then, these

maps pe for all the edges e can naturally be extended to a map Qf : M → Gf in such a

way that Qf (Vv) = v for all vertices v of Gf . By our definition of Gf , this is well defined

and continuous.

Let us define the map ρ : Wf → Gf as follows. For a point y ∈ Wf , q−1
f (y) is

contained in a unique Ee or Vv. Then, ρ(y) is defined to be the point in e corresponding

to pe(q
−1
f (y)) in the former case and is defined to be v in the latter case. Since Qf = ρ ◦qf

is continuous, we see that ρ is continuous. Furthermore, we see easily that ρ is bijective.
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Since Wf is compact and Gf is Hausdorff, we conclude that ρ is a homeomorphism. Thus,

Wf has the structure of a graph.

Finally, we see easily that f̄ = h◦ρ : Wf → R. As h is an embedding on each edge,

so is f̄ . This completes the proof. �

Remark 3.9. By the above proof, for the graph structure of Wf , the set of vertices of

Wf corresponds bijectively to the set of connected components of level sets containing

critical points.

Let us give an example of a smooth function with infinitely many critical values

for which the consequence of Theorem 3.1 does not hold.

Example 3.10. Let M be an arbitrary smooth closed manifold of dimension m ≥ 2.

Then, by [30], there always exists a smooth function f : M → [0, ∞) such that f −1(0)

is a Cantor set embedded in M. In particular, f −1(0) has uncountably many connected

components. Thus, the consequence of Theorem 3.1 does not hold for such an f . In this

example, we can show that f has infinitely many critical values.

Let us give a more explicit example. Let ϕ1 : R2 → [0, 1] be a smooth function as

follows (Figure 4).

(1) The level set ϕ−1
1 (0) coincides with the complement of the open unit disk.

(2) The level set ϕ−1
1 (1) coincides with the disjoint union of two disks centered at

a1 = (−1/2, 0) and a2 = (1/2, 0) with radius (1/4) − ε for a sufficiently small

ε > 0.

(3) On ϕ−1
1 ((0, 1)), it has a unique critical point at the origin, which is non-

degenerate of index 1 and whose ϕ1-value is equal to 1/2.

(4) The level set ϕ−1
1 (t) is homeomorphic to a circle, which is connected, for

all t ∈ (0, 1/2), and is homeomorphic to the union of two circles for all

t ∈ (1/2, 1). In particular, for t sufficiently close to 0 or 1, the components

of the level sets are circles whose centers are the origin and the points a1

and a2, respectively.

Then, we define the smooth function ϕ2 : R2 → R by

ϕ2(x) = ϕ1(4(x − a1)) + ϕ1(4(x − a2)), x ∈ R
2.
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Fig. 4. Level sets of the smooth function ϕ1.

Note that ϕ−1
2 (1) consists of disjoint four disks of radius slightly smaller than 1/16. Let

b1, b2, b3, and b4 be the centers of the disks. Then, we define ϕ3 : R2 → R by

ϕ3(x) =
4∑

i=1

ϕ1(16(x − bi)), x ∈ R
2.

Repeating this procedure inductively, we can construct a sequence of smooth

functions ϕn, n ≥ 1. Then, consider the series ψ = ∑∞
n=1 cnϕn for a rapidly decreasing

sequence {cn}∞n=1 of positive real numbers. We can show that this series converges

uniformly and that ψ defines a smooth function on R
2. Furthermore, we see that it

has the following properties:

(1) the level set ψ−1(0) coincides with the complement of the open unit disk;

(2) the level set ψ−1(c) is a Cantor set, where c = ∑∞
n=1 cn;

(3) the critical value set of ψ consists of countably many real numbers {rk}∞k=0

with 0 = r0 < r1 < r2 < · · · converging to c together with r∞ = c itself, where

rk = ∑k
n=1 cn for k ≥ 1;

(4) for t ∈ (rk, rk+1), the level set ψ−1(t) is homeomorphic to the disjoint union of

2k circles for each k ≥ 0.
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Fig. 5. Reeb space of ψ .

Then, we see that the Reeb space of ψ is as depicted in Figure 5. It consists of countably

many “edges” and uncountably many “vertices”. However, this is not a cell complex, as

every point of ψ̄−1(c) is an accumulation point. (In fact, one can show that the Reeb

space Wψ can be embedded in R
2 as in Figure 5.)

Note that, for an arbitrary closed connected surface M, by embedding R
2

into M and by extending the function ψ by the zero function on the complement,

we can construct a smooth function f : M → R whose Reeb space has the same

properties.

Let us give another example of a smooth function whose Reeb space does not

have the structure of a graph.

Example 3.11. Let us consider the smooth function f : R2 → R as follows. For n ≥ 1,

let Dn be the closed disk in R
2 centered at the point (1/n, 0) with radius 1/2n(n + 1).

Note that the disks {Dn}∞n=1 are disjoint. Let g : D2 → [0, 1] be a smooth function on the

unit disk in R
2 with the following properties:

(1) the function g restricted to a small collar neighborhood C(∂D2) of ∂D2 is

constantly zero;

(2) the restriction g|D2\C(∂D2) has the unique critical point at the origin, which is

the maximum point and takes the value 1;

(3) each level set g−1(t) is a circle centered at the origin for t ∈ (0, 1).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2022/11/8740/6128848 by guest on 25 April 2024



8752 O. Saeki

Fig. 6. Reeb space of f .

Note that the Reeb space of g can be identified with [0, 1]. Let fn be the smooth function

on Dn defined by

fn(x) = g
(

2n(n + 1)

(
x − 1

n

))
.

Then, we define f : R
2 → R by f (x) = cnfn(x) if x ∈ Dn and f (x) = 0 otherwise for a

rapidly decreasing sequence {cn}∞n=1 of positive real numbers.

We can show that f is a smooth function. Furthermore, we can also show that

the Reeb space Wf of f is homeomorphic to the union of line segments In in R
2, n ≥ 1,

where

In =
{
t
(
cos

π

n
, sin

π

n

)
∈ R

2
∣∣ 0 ≤ t ≤ cn

}
.

So, Wf is a union of infinitely many intervals where exactly one end point of each

interval is glued to a fixed point, say p (Figure 6). In this sense, it seems to have the

structure of a cell complex. However, its possible vertex set V does not have the discrete

topology. In fact, p is in the closure of V \ {p}. Therefore, Wf does not have the topology

of a graph.

Note that, in this example, the critical value set is equal to the infinite set

{cn | n = 1, 2, 3, . . .} ∪ {0}.
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Note also that by embedding R
2 into an arbitrary closed surface M and by

extending the function by the zero map in the complement, one can construct a

smooth function M → R with Reeb space having the same property. Note also that

for this example, an arbitrary level set has at most finitely many connected compo-

nents; however, the number of connected components is not uniformly bounded from

above.

Let us give an example of a non-triangulable smooth function with finitely many

critical values.

Example 3.12. Given an arbitrary smooth closed manifold M of dimension m ≥
2, there always exists a smooth function f : M → R with finitely many criti-

cal values that is not triangulable. Nevertheless, even in such a situation, Wf is

a graph.

In fact, we can construct such a function so that for a critical value c, the closed

set f −1(c) cannot be triangulated as follows. First, take any smooth function g : M →
R with finitely many critical values and a regular value c. Then, modify M along the

submanifold L = g−1(c) as follows. Since the set of critical values is closed in R, the

closed interval I = [c − ε, c + ε] contains no critical values for some ε > 0. Note that then

g−1(I) ∼= L × I. In the following, we fix such a diffeomorphism and identify g−1(I) with

L × I.

On the other hand, we consider smooth functions hi : L → I, i = 1, 2, such that

(1) h1(x) ≤ h2(x) for all x ∈ L and

(2) the set

L̃ = {(x, t) ∈ L × I | x ∈ L, h1(x) ≤ t ≤ h2(x)}

is not triangulable.

(For example, construct such functions in such a way that the interior of L̃ in the compact

set L × I has infinitely many connected components.)

Then, we consider the compact manifold M\g−1((c−ε, c+ε)) and glue L̃ along the

boundary in such a way that (x, h1(x)) (resp. (x, h2(x))) in L̃ is identified with (x, c − ε)

(resp. (x, c + ε)) in g−1(c − ε) ∼= L × {c − ε} (resp. g−1(c + ε) ∼= L × {c + ε}). Then, the

resulting space M̃ is easily seen to be a smooth manifold naturally diffeomorphic to M.

Furthermore, we can modify g slightly on a neighborhood of g−1(I) by using bump

functions to get a smooth function f : M̃ → R such that f −1(c) = L̃ and c is the unique
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Fig. 7. Non-triangulable function with finitely many critical values.

critical value of f in I. Then, the smooth function f has the desired properties. See

Figure 7.

4 Path Reeb Spaces

In the definition of a Reeb space, we usually use connected components of level

sets. If we use path-components instead, then the resulting space is called the path

Reeb space.

Definition 4.1. (1) Let X be a topological space. A continuous map λ : [0, 1] → X

is called a path connecting λ(0) and λ(1) ∈ X. We say that two points x0, x1 ∈ X

are connected by a path if there exists a path connecting x0 and x1. This defines an

equivalence relation on X and each equivalence class is called a path-component of X.

A topological space X is said to be path-connected if it consists of a unique path-

component.

(2) Let f : X → Y be a continuous map between topological spaces. For two

points x0, x1 ∈ X, we define x0 ∼p x1 if f (x0) = f (x1) and x0, x1 lie on the same
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path-component of f −1(f (x0)) = f −1(f (x1)). Let Wp
f = X/ ∼p be the quotient space with

respect to this equivalence relation, that is, Wp
f is a topological space endowed with the

quotient topology. Let qp
f : X → Wp

f denote the quotient map. Then, there exists a unique

map f̄ p : Wp
f → Y that is continuous and makes the following diagram commutative:

The space Wp
f is called the path Reeb space of f and the map f̄ p : Wp

f → Y

is called the path Reeb map of f . The decomposition of f as f̄ p ◦ qp
f as in the above

commutative diagram is called the path Stein factorization of f .

The path Reeb space and the usual Reeb space are not homeomorphic to each

other in general. To see this, let us first observe the following.

Lemma 4.2. Let f : X → Y be a continuous map between topological spaces. If Y is a

T1-space, then so is the Reeb space Wf .

Proof. Take a point c ∈ Wf . Then, q−1
f (c) is a connected component of a level set

f −1(f̄ (c)). Since Y is a T1-space and f is continuous, f −1(f̄ (c)) is closed in X. Therefore,

each of its connected components is closed in X, and in particular, q−1
f (c) is closed in X.

Hence, {c} is closed in Wf . �

For example, for an arbitrary smooth closed manifold M of dimension m ≥ 2, we

can easily construct a compact set K in M, which is connected but is not path-connected.

There exists a smooth function f : M → [0, 1] such that f −1(0) = K. Then, the Reeb space

Wf and the path Reeb space Wp
f are not the same. Furthermore, we can find a compact

connected set K as above containing a path-component that is not compact. Then, the

path Reeb space of the resulting smooth function f is not a T1-space, since the point

in the path Reeb space Wp
f corresponding to that path-component is not closed. So, the

Reeb space Wf and the path Reeb space Wp
f are not homeomorphic to each other.

Let us give an example of a smooth function on a closed manifold with finitely

many critical values whose path Reeb space is not a T1-space.
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Fig. 8. Zero level set of f : S2 → R.

Example 4.3. Let 
1 and 
2 be closed 2-disks disjointly embedded in the 2-sphere

S2. Let C be a curve homeomorphic to the real line R embedded in the annular region

S2 \ (
1 ∪ 
2) whose ends wind around ∂
1 and ∂
2 as in Figure 8. Note that C is not

closed in S2 and the closure C coincides with C∪∂
1∪∂
2. Note also that K = C∪
1∪
2

is a compact connected set, which is not path-connected.

We see easily that S2 \ K is diffeomorphic to an open 2-disk. Let us fix a

diffeomorphism ϕ : Int D2 → S2 \ K, where Int D2 is the open unit disk in R
2. For n ≥ 1,

let gn : Int D2 → [0, 1] be a smooth function with the following properties:

(1) the zero level set g−1
n (0) coincides with the complement of the open disk Dn

of radius 1 − (n + 1)−1 centered at the origin;

(2) gn|Dn\{0} is a smooth function of r = √
x2 + y2 ∈ (0, 1−(n+1)−1), say gn(x, y) =

hn(r), with h′
n(r) < 0;

(3) gn|Dn
has a unique critical point at the origin, which is the maximum point

of gn, with gn(0) = 1.

Let fn : S2 → R be the function defined by fn(z) = gn ◦ ϕ−1(z) for z ∈ S2 \ K, and fn(z) = 0

otherwise. We see easily that fn defines a smooth function. Then, we set f = ∑∞
n=1 cnfn

for a rapidly decreasing sequence {cn}∞n=1 of positive real numbers, so that f defines a

smooth function f : S2 → R.

By construction, we see that f −1(0) = K. Since f takes the minimum value 0 on K,

all the points in K are critical points. Furthermore, f has a unique critical point, ϕ(0),

on S2 \ K, which is the maximum point of f . Hence, the critical value set consists of two

values: 0 and f (ϕ(0)) = ∑∞
n=1 cn.
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Fig. 9. The Reeb space and the path Reeb space of f .

The Reeb space Wf is easily seen to be homeomorphic to a closed interval, which

has the structure of a graph (Figure 9). On the other hand, the path Reeb space Wp
f is

not a T1-space. More precisely, it consists of a half open interval together with three

points v1, v2, and vC that correspond to 
1, 
2, and C, respectively: {v1} and {v2} are

closed, while {vC} is not closed and its closure coincides with {vC, v1, v2}. Furthermore,

the closure of the half open interval contains these three points (Figure 9).

This example shows that our Theorem 3.1 does not hold in general for path Reeb

spaces. In fact, Lemma 3.5 does not hold for the numbers of path-components for this

example.

However, for smooth functions with finitely many critical points, we have the

following.

Proposition 4.4. Let f : M → R be a smooth function on a closed manifold with finitely

many critical points. Then, we have Wf = Wp
f .

Proof. Take y ∈ R. If y is a regular value of f , then f −1(y) is a smooth manifold

and its connected components and path-components coincide. If y is a critical value,

then take a sufficiently small positive real number ε such that y is the unique critical

value of f in [y − ε, y + ε]. Then, by an argument using integral curves of a gradient

vector field of f together with our assumption that f has only finitely many critical

points, we can show that f −1(y) is a deformation retract of V = f −1([y − ε, y + ε]).

As V is a compact manifold with boundary and is locally path-connected, we see that
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the connected components and the path-components coincide with each other and the

numbers are finite. As f −1(y) is homotopy equivalent to V, the number of connected

components (or the number of path-components) coincides with that of V. This implies

that the number of connected components and that of path-components also coincide

with each other for f −1(y). As the numbers are finite, we see that the connected com-

ponents and the path-components coincide with each other for f −1(y). This completes

the proof. �

The above example shows that this proposition is no longer true for smooth

functions with finitely many critical values in general.

5 Realization I

Let G be a graph without loops. In this section, we prove that G is always real-

ized as the Reeb space of a certain smooth function on a closed manifold with

finitely many critical values. In fact, our theorem is stronger: (fat) level sets can also

be preassigned.

Definition 5.1. For m ≥ 2, consider maps

� : {edges of G} → {diffeomorphism types of closed connected

(m − 1)–dimensional manifolds},
� : {vertices of G} → {diffeomorphism types of compact connected

m–dimensional manifolds},

such that for each vertex v of G, we have

∂(�(v)) ∼= �v∈e�(e), (5.1)

that is, the boundary of �(v) is diffeomorphic to the disjoint union of the finitely many

manifolds �(e), where e runs over all edges incident to v. The triple (G, �, �) is called

an m-decorated graph.

Definition 5.2. We say that an m-decorated graph (G, �, �) is Reeb realizable if there

exists a smooth function f : M → R on a closed m-dimensional manifold M with finitely

many critical values such that
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Fig. 10. Realizing an m-decorated graph (G, �, �), where dim M = m.

(1) G is identified with the Reeb space Wf ;

(2) for each edge e of G = Wf , we have q−1
f (x) ∼= �(e), ∀x ∈ Int e;

(3) for each vertex v of G = Wf , we have q−1
f (N(v)) ∼= �(v), where N(v) is a small

regular neighborhood of v in G.

See Figure 10.

Then, we have the following realization theorem.

Theorem 5.3. For m ≥ 2, every m-decorated graph (G, �, �) is Reeb realizable.

Proof. Let us first construct a continuous function h : G → R such that it is an

embedding on each edge. Such a function can easily be constructed by first defining

h on the set of vertices so that it is injective, and then, by extending it on the closure of

each edge “linearly”.

By h, we can identify each edge of G with an open interval of R.
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Now, for each vertex v, define fv : �(v) → R as a constant function by fv(�(v)) =
h(v). For each edge e, identified with a bounded open interval (a, b), consider a smooth

function ϕe : e → e such that

(1) ϕe is a monotone increasing diffeomorphism,

(2) ϕe can be extended to a smooth homeomorphism [a, b] → [a, b] such that the

r-th derivatives of f at a and b all vanish for all r ≥ 1.

Such a smooth function can be constructed, for example, by integrating a bump

function. Then, for each vertex e, define the smooth function fe : �(e) × e → R by

h ◦ ϕe ◦ pe, where pe : �(e) × e → e is the projection to the 2nd factor.

Then, by condition (5.1), we can glue the m-dimensional manifolds �(v) and

�(e)×e over all vertices v and all edges e of G in such a way that ∂(�(v)) and �v∈e�(e) are

identified by diffeomorphisms. Let us denote by M the resulting closed m-dimensional

manifold. Then, we can also glue the smooth functions fv and fe over all vertices v and

all edges e of G in order to obtain a continuous function f : M → R. This function f is

smooth by construction.

Then, by construction and by our assumption that �(v) and �(e) are connected,

the Reeb space Wf of f can be identified with G. Furthermore, we see easily that for each

edge e of G = Wf , we have q−1
f (x) ∼= �(e), ∀x ∈ Int e, and for each vertex v of G = Wf , we

have q−1
f (N(v)) ∼= �(v) for a small regular neighborhood N(v) of v in G. This completes

the proof. �

Remark 5.4. We have a similar theorem for functions on compact manifolds with

boundary as well. In this case, � associates to each edge of G a compact connected

(m − 1)-dimensional manifold possibly with boundary and � associates to each vertex

of G a compact connected m-dimensional manifold with corners. Condition (5.1) should

appropriately be modified.

Corollary 5.5. For all m ≥ 2, every graph without loops is the Reeb space of

a smooth function on a closed m-dimensional manifold with finitely many critical

values.

Remark 5.6. In the above corollary, we can even construct such a smooth function in

such a way that

(1) every regular level set is a finite disjoint union of standard (m − 1)-spheres

and
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(2) the source manifold is diffeomorphic to Sm or a connected sum of a finite

number of copies of S1 × Sm−1.

This can be achieved by associating Sm−1 to each edge, Sm \ (�d
k=1 Int Dm

k ) to each vertex

with degree d, and by choosing the attaching diffeomorphisms appropriately, where Dm
k ,

k = 1, 2, . . . , d, are disjoint m-dimensional disks embedded in Sm.

Remark 5.7. Some results similar to Theorem 5.3 and Remark 5.6 are presented in

[13, 14].

6 Realization II

Let f : M → R be a smooth function on a closed manifold of dimension m ≥ 2 with

finitely many critical values. Then, it is easy to show that the homomorphism (qf )∗ :

π1(M) → π1(Wf ) induced by the quotient map is surjective. See [26, Théorème 6] for a

related statement. (In fact, this is true for an arbitrary continuous function f as long as

Wf is semilocally simply connected. See [1].)

We have the following theorem, which corresponds to the converse of this fact.

Theorem 6.1. Let M be a smooth closed connected manifold of dimension m ≥ 2, G

a connected graph without loops, and Q : M → G a continuous map such that Q∗ :

π1(M) → π1(G) is surjective. Then, there exists a smooth function f : M → R with

finitely many critical values such that

(1) G can be identified with Wf in such a way that the vertices are identified with

the qf -images of the level set components containing critical points and

(2) qf : M → Wf = G is homotopic to Q.

Remark 6.2. A similar result also holds for functions on compact manifolds with non-

empty boundary.

Remark 6.3. A similar result has been obtained by Michalak [22, 23] (see also Gelbukh

[4] and Marzantowicz and Michalak [17]). For m ≥ 3, one can realize a given graph

as the Reeb space of a Morse function on a closed manifold of dimension m up to

homeomorphism. Our theorem is slightly different from such results in that we not only

realize the topological structure of a given graph but we also realize the given graph

structure. We construct smooth functions with finitely many critical values such that
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the images by the quotient map of the level set components containing critical points

exactly coincide with the vertices of the graph.

For example, if G is a connected graph consisting of two vertices and a unique

edge connecting them, then for any closed connected manifold M of dimension m ≥ 2,

there exists a smooth function f : M → R with exactly two critical values such that Wf

has the graph structure equivalent to G. Note that according to Michalak [22, 23], there

exists a Morse function g : M → R such that Wf is homeomorphic to G; however, the

graph structure of Wf may not be equivalent to that of G in general. In fact, if M admits

a smooth function f : M → R with exactly two (possibly degenerate) critical points, then

M must be homeomorphic to the sphere Sn [24, 25].

Proof of Theorem 6.1. Let r denote the 1st Betti number of G. Then, we can find points

x1, x2, . . . , xr on edges of G such that G \ {x1, x2, . . . , xr} is connected and contractible. Let

h : G → R be a continuous map such that h is an embedding on each edge. By using h,

we induce a differentiable structure on each edge of G. By perturbing Q by homotopy

if necessary, we may assume that Q is transverse to x1, x2, . . . , xr. Then, each Q−1(xi) is

a compact (m − 1)-dimensional submanifold of M, which might not be connected. Let r̃

denote the total number of connected components of ∪r
i=1Q−1(xi).

Let us show that we may arrange, by homotopy of Q, so that r̃ = r, that is, each

Q−1(xi) is connected.

Suppose that r̃ > r. Then, by re-ordering the points, we may assume that E1 =
Q−1(x1) is not connected. As M is connected and m = dim M ≥ 2, there is a smooth

embedded curve γ in M whose end points lie in distinct components of E1. Note that Q|γ
is a loop in G based at x1. Since Q induces an epimorphism Q∗ : π1(M, x̃1) → π1(G, x1),

where x̃1 is the initial point of γ , we may assume that Q|γ represents the neutral element

of π1(G, x1) by adding a loop based at x̃1 to γ and by modifying it by a suitable homotopy.

We may further assume that γ is transverse to Q−1(xi) for all i.

First, suppose that γ does not intersect with Q−1(xi) for i > 1 and that γ

intersects with E1 = Q−1(x1) only at the end points. In this case, Q|γ starts from x1

in a certain, say positive, direction of the edge on which x1 lies and returns to x1 in

the reverse, say negative, direction. Furthermore, Q|γ does not intersect xi for i > 1.

Thus, Q|γ is null homotopic in G relative to x1 and such a homotopy can be constructed

in such a way that the paths avoid {x1, x2, . . . , xr} during the homotopy except at the

end points and except for the final constant path. Let N(γ ) ∼= γ × Dm−1 be a small

tubular neighborhood of γ in M such that N(γ ) ∩ E1
∼= ∂γ × Dm−1. We may assume that

N(γ ) does not intersect Q−1(xi) for i > 1. Let N′(γ ) be a smaller tubular neighborhood
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corresponding to γ × Dm−1
1/3 , where Dm−1 is the unit disk in R

m−1 and Dm−1
ρ is the disk

with radius ρ > 0 with the same center. We can first modify Q by homotopy supported

on N(γ ) so that Q|γ×{p} coincides with Q|γ for all p ∈ Dm−1
2/3 . As Q|γ is null-homotopic in

G relative to x1 as described above, we may further modify Q so that Q|N′(γ ) is a constant

map to x1.

At this stage, we have Q−1(x1) = E1 ∪ N′(γ ). Let E′
1 be the smooth (m − 1)-

dimensional submanifold of M obtained from (E1 \ (∂γ × Int Dm−1
1/3 )) ∪ (γ × ∂Dm−1

1/3 ) by

smoothing the corner. Then, we may further modify Q by homotopy supported on a

neighborhood of N′(γ ) in such a way that Q is transverse to x1 and that Q−1(x1) = E′
1.

This can be achieved by sending the part γ × Int Dm−1
1/3 to the negative side of x1. Then,

the number of connected components of Q−1(x1) decreases by 1. As Q−1(xi) for i > 1 stay

the same, the total number of connected components of ∪r
i=1Q−1(xi) decreases by 1.

Now, consider the case where Int γ intersects with Q−1(xi) for some i ≥ 1. We

fix a positive direction on each edge on which x1, x2, . . . , xr lie. Let ω be the word on

x1, x2, . . . , xr constructed by associating xi (or x−1
i ) every time Q|γ passes through xi

in the positive (resp. negative) direction. As π1(G, x1) is a free group of rank r freely

generated by the elements corresponding to xi, i = 1, 2, . . . , r and Q|γ represents the

neutral element of π1(G, x1), we see that x�x
−1
� or x−1

� x� appears in the word ω for some

� with 1 ≤ � ≤ r. Let γ� be the sub-arc of γ that corresponds to that sub-word, that is,

Q|γ�
starts from x� in a certain direction and returns to x� in the reverse direction, where

Q|Int γ�
does not intersect x1, x2, . . . , xr.

If the end points of γ� lie on the same connected component of Q−1(x�), then

for γ , we can replace the sub-arc γ� by a path in Q−1(x�) connecting the end points of

γ� and slightly modify it so as to get a new smooth embedded curve γ ′ such that the

corresponding word has strictly fewer letters.

On the other hand, if the end points lie on distinct components of Q−1(x�), then

we can modify Q by homotopy as described above so that we decrease the total number

of connected components of ∪r
i=1Q−1(xi).

In this way, we get a continuous map Q homotopic to the original one such that

Q is transverse to x1, x2, . . . , xr and that Q−1(xi) are all connected.

Let M ′ be the compact m-dimensional manifold with boundary obtained by

cutting M along ∪r
i=1Q−1(xi). Note that M ′ is connected. Let G′ be the graph obtained

by cutting G at x1, x2, . . . , xr. Note that G′ is a tree and has 2r distinguished vertices

corresponding to x1, x2, . . . , xr. We denote the distinguished vertices corresponding to

xi by xi+ and xi−, i = 1, 2, . . . , r. Then, we have a natural continuous map Q′ : M ′ →
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G′ induced by Q, where ∂M ′ = ∪r
i=1((Q′)−1(xi+) ∪ (Q′)−1(xi−)). In the following, we

will construct disjoint (m − 1)-dimensional closed connected submanifolds of M ′ that

correspond bijectively to the edges of G′ in such a way that the closures of the connected

components of the complement in M ′ correspond bijectively to the vertices of G′ and that

a condition similar to (5.1) is satisfied for each vertex of G′ except for the distinguished

vertices.

First, for each edge incident to a distinguished vertex xi±, we associate to the

edge a submanifold in Int M ′ parallel and close to the boundary component (Q′)−1(xi±)

of M ′. Note that if an edge is incident to two distinct distinguished vertices, then G

must be a circle and has no vertex, which is a contradiction. So, this submanifold is

well defined.

Let e be an edge, not incident to a distinguished vertex. We denote by xe a point

in the interior of e. Since G′ is a tree, G′ \ {xe} has exactly two connected components,

say G′
1 and G′

2. Let Vj denote the set of distinguished vertices belonging to G′
j, j = 1, 2.

Then, we can construct an (m − 1)-dimensional closed connected submanifold Ee of M ′

such that

(1) Ee ⊂ Int M ′;
(2) Ee is disjoint from the submanifolds corresponding to the edges incident to

distinguished vertices;

(3) M ′ \ Ee has exactly two connected components, say M ′
1 and M ′

2; and

(4) the submanifolds corresponding to the edges incident to distinguished

vertices in Vj are contained in M ′
j, j = 1, 2, after renumbering M ′

1 and M ′
2

if necessary.

Such a submanifold Ee can be constructed, for example, as follows. Let Fk, k =
1, 2, . . . , a, be the (m − 1)-dimensional submanifolds associated with the edges incident

to the distinguished vertices in V1. Since M ′ is connected, and Fk are parallel to boundary

components, we can find smoothly embedded arcs αk, k = 1, 2, . . . , a−1, in M ′ such that

(1) αk intersects Fk and Fk+1 exactly at the end points and the intersections are

transverse;

(2) αk does not intersect Fj, j 	= k, k + 1;

(3) α1, α2, . . . , αa−1 are disjoint.

If m = dim M ′ ≥ 3, then such arcs as above can easily be found. When m = 2,

consider an arbitrary properly embedded arc in a compact connected surface such that

the end points lie in different components of the boundary. Then, such an arc is never

separating. Therefore, a set of arcs as above can be found for this case as well. Now,
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consider small tubular neighborhoods hk
∼= [0, 1] × Dm−1 of αk as 1-handles attached to

F1, F2, . . . , Fa, and use them to perform surgery on F0 = ∪a
k=1Fk so that we get

Ee = (F0 \ ((∪a−1
k=1hk) ∩ F0)) ∪ (∪a−1

k=1dhk),

where dhk
∼= [0, 1] × ∂Dm−1. After the surgery, we smooth the corners so that Ee is

a smoothly embedded (m − 1)-dimensional submanifold of M ′. By construction, it is

connected and closed. We can further move Ee by isotopy so that it is disjoint from

∪a
k=1Fk. Then, we can easily check that Ee has the desired properties.

For the moment, we ignore Q′ and cut M ′ along Ee to get two compact connected

manifolds. We also cut G′ at xe into two trees, where each tree has an additional

distinguished vertex. Then, we continue the same procedures to get an (m − 1)-

dimensional connected closed submanifold corresponding to an edge not incident to

a distinguished vertex. As the number of edges is finite, this process will terminate in a

finite number of steps. Finally, we get a family of closed connected (m − 1)-dimensional

submanifolds of M ′ that correspond bijectively to the edges of G′. By construction, each

component of the complement corresponds to a unique vertex of G′ in such a way that

the closure contains an (m − 1)-dimensional submanifold Ee corresponding to an edge

e if and only if the vertex is incident to the edge e.

Recall that M can be reconstructed from M ′ by identifying pairs of boundary

components. In this sense, we identify the submanifolds in Int M ′ with those in M.

Likewise, G is also reconstructed from G′. Now, we associate the above constructed

(m−1)-dimensional submanifold Ee to each edge e of G, where for the edge e containing

xi, we put Ee = Q−1(xi), i = 1, 2, . . . , r. Furthermore, we associate to each vertex of G the

closure of the component as described in the previous paragraph. All these ingredients

show that we have constructed an m-decorated graph as in Section 5. By construction,

condition (5.1) is automatically satisfied.

Then, by using the techniques used in the proof of Theorem 5.3, we can construct

a smooth function f : M ′′ → R with finitely many critical values that realizes the

m-decorated graph as the Reeb space. By using the original identification maps for

diffeomorphisms for gluing the pieces when constructing M ′′, we can arrange so that M ′′

is naturally identified with M. Then, the Reeb space Wf can also be naturally identified

with G.

Finally, we should note that the quotient map qf : M → Wf = G is homotopic

to Q. This follows from the fact that G \ {x1, x2, . . . , xr} is contractible. This completes

the proof. �
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For a finitely generated group H, set

corank(H) = max{r | There exists an epimorphism H → Fr},

where Fr is the free group of rank r ≥ 0. This is called the co-rank of the group H ( see,

e.g., [2, 3]).

As an immediate corollary to Theorem 6.1, we get the following.

Corollary 6.4. Let M be a smooth closed connected manifold of dimension m ≥ 2 and

G a connected graph without loops. Then, G arises as the Reeb space of a certain smooth

function on M with finitely many critical values if and only if β1(G) ≤ corank(π1(M)),

where β1 denotes the 1st Betti number.

Remark 6.5. There has been a lot of research on the realization of Reeb graphs,

for example, by Sharko [29], Martínez-Alfaro et al. [18–20], Masumoto and Saeki [21],

Gelbukh [2–5], Kaluba et al. [12], Michalak [22, 23], Michalak and Marzantowicz [17],

Kitazawa [13–15], etc. Our theorems generalize some of them.
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