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We study Alexeev and Brion’s moduli scheme MΓ of affine spherical varieties with

weight monoid Γ under the assumption that Γ is free. We describe the tangent space

to MΓ at its “most degenerate point” in terms of the combinatorial invariants of spher-

ical varieties and deduce that the irreducible components of MΓ , equipped with their

reduced induced scheme structure, are affine spaces.

1 Introduction

As part of the classification problem of algebraic varieties equipped with a group action,

spherical varieties, which include symmetric, toric, and flag varieties, have received con-

siderable attention; see, for example, [9, 18, 20, 21]. In [2], Alexeev and Brion introduced

an important new tool for the study of affine spherical varieties over an algebraically

closed field k of characteristic 0. We recall that an affine variety X equipped with an

action of a connected reductive group G is called spherical if it is normal and its coordi-

nate ring k[X] is multiplicity-free as a G-module. For such a variety a natural invariant,

which completely describes the G-module structure of k[X], is its weight monoid Γ (X).

By definition, Γ (X) is the set of isomorphism classes of irreducible representations of G
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that occur in k[X]. In view of the classification problem, we have the following natural

question: how “good” an invariant is Γ (X), or more explicitly: to what extent does Γ (X)

determine the multiplicative structure of k[X]?

Alexeev and Brion brought geometry to this question as follows. After choosing a

Borel subgroup B of G, and a maximal torus T in B, we can identify Γ (X) with a finitely

generated submonoid of the monoid Λ+ of dominant weights. Let Γ be another such

submonoid of Λ+ and put

V (Γ ) = ⊕λ∈Γ V (λ) ,

where we used V(λ) for the irreducible G-module corresponding to λ ∈ Λ+. Let U be the

unipotent radical of B and let V(Γ )U be the subspace of U-invariants, which is also

the space of highest weight vectors in V(Γ ). By choosing an isomorphism V(Γ )U → k[Γ ]

of T-modules, where k[Γ ] is the semigroup ring associated with Γ , we equip V(Γ )U

with a T-multiplication law. Alexeev and Brion’s moduli scheme MΓ parametrizes the

G-multiplication laws on V(Γ ) which extend the multiplication law on V(Γ )U . For an

introduction to this moduli scheme, we refer the reader to [11, Section 4.3]. Examples of

MΓ have been computed in [4, 16, 23].

Let Λ be the weight lattice of G, that is, Λ is the character group of T . Because

X is normal, its weight monoid Γ (X) also satisfies the following equality in Λ ⊗Z Q

Γ (X) = ZΓ (X) ∩ Q≥0Γ. (1.1)

By definition, this makes Γ (X) a normal submonoid of Λ+.

In [11], Brion conjectured that the irreducible components of MΓ are affine

spaces. A precise version of this conjecture is the following.

Conjecture 1.1. If Γ is a normal submonoid of Λ+, then the irreducible components of

MΓ , equipped with their reduced induced scheme structure, are affine spaces. �

This conjecture was verified for free and G-saturated monoids of dominant

weights in [4]. In fact, Bravi and Cupit-Foutou proved that under these assumptions,

MΓ is an affine space. In [23, 24], it is shown that MΓ is an affine space when Γ is the

weight monoid of a spherical G-module. Luna provided the first non-irreducible exam-

ple (unpublished): for G = SL(2) × SL(2) and Γ = 〈2ω, 4ω + 2ω′〉, where ω and ω′ are the

fundamental weights of the two copies of SL(2), the scheme MΓ is the union of two lines

meeting in a point. In this paper, we verify that Conjecture 1.1 holds when Γ is free.
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Theorem 1.2 (Corollary 5.3). If Γ is a free submonoid of Λ+, then the irreducible

components of MΓ , equipped with their reduced induced scheme structure, are

affine spaces. �

The bulk of this paper is devoted to the description of the tangent space to MΓ

at its “most degenerate point” X0 in terms of certain combinatorial invariants, called

N-spherical roots. To be more precise, we introduce some more terminology and recall

some facts. If X is an affine spherical G-variety X, then its root monoid MX is the

submonoid of Λ generated by the set

{
λ + μ − ν | λ,μ, ν ∈ Λ+ such that 〈k[X](λ) · k[X](μ)〉k ∩ k[X](ν) �= 0

}
.

Here k[X](λ) is the isotypic component of k[X] of type λ ∈ Λ+. Loosely speaking, MX

detects how far the decomposition k[X] = ⊕λ∈Γ (X)k[X](λ) is from being a grading by Γ (X).

A deep result by Knop [18, Theorem 1.3] says that the saturation of MX, which is the

intersection in Λ ⊗Z Q of the cone Q≥0MX and the lattice ZMX, is a freely generated

monoid. Its basis Σ N(X) is called the set of N-spherical roots of X. By [2, Proposi-

tion 2.13] a formal consequence of our theorem above is that if X is an affine spher-

ical G-variety with a free weight monoid, then its root monoid MX is also free; see

Corollary 5.2.

In their seminal paper [2], Alexeev and Brion equipped MΓ with an action of

the maximal torus T of G. For this action, MΓ has a unique closed orbit, which is a

fixed point X0. Consequently, the tangent space TX0MΓ to MΓ at the point X0 is a finite-

dimensional T-module. We describe this tangent space as follows.

Theorem 1.3 (Theorem 4.1 and Corollary 4.2). If Γ is a free submonoid of Λ+, then

TX0MΓ is a multiplicity-free T-module, and γ ∈ Λ occurs as a weight in TX0MΓ if

and only if there exists an affine spherical G-variety X−γ with weight monoid Γ and

Σ N(X−γ ) = {−γ }. �

To prove this, we first use the combinatorial theory of spherical varieties

[17, 20, 21] to combinatorially characterize the weights γ for which such a variety X−γ

exists; see Corollary 2.17. Such a characterization was sketched by Luna in 2005 in an

unpublished note.

To prove Theorem 1.2 we use Theorem 1.3: since it is known that the irreducible

components of MΓ , equipped with their reduced induced scheme structure, are affine
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spaces after normalization (by [18, Theorem 1.3; 2, Corollary 2.14]), it is enough to show

that they are smooth, and this follows from our description of the tangent space to MΓ

at X0 (see Section 5).

Notation

Except if explicitly stated otherwise, Γ will be a free submonoid of Λ+ with basis

F = {λ1, λ2, . . . , λr}. We will use S for the set of simple roots of G (associated with B and

T ) and R+ for the set of positive roots. The irreducible representation of G associated

with the dominant weight λ ∈ Λ+ is denoted by V(λ) and we use vλ for a highest weight

vector in V(λ). We use g, b, t, n, etc. for the Lie algebra of G, B, T,U, etc., respectively.

When α is a root, Xα ∈ gα is a root operator and α∨ the coroot. When g is simple, simple

roots are denoted by α1, . . . , αn and numbered as by Bourbaki (see [7]), the corresponding

fundamental weights are denoted by ω1, . . . , ωn.

2 Spherical Roots Adapted to Γ

In this section Γ denotes a normal, but not necessarily free, submonoid of Λ+. By

combining results from [6, 17, 20, 21] we will describe when a set of spherical roots

is “adapted” or “N-adapted” to Γ . In particular, in Corollaries 2.16 and 2.17 we give

an explicit characterization for when an element σ of the root lattice is “adapted” or

“N-adapted” to Γ .

Definition 2.1. We say that a subset Σ of NS is N-adapted to Γ if there exists an affine

spherical G-variety X such that Γ (X) = Γ and Σ N(X) = Σ . By slight abuse of language,

we say that an element σ of NS is N-adapted to Γ if {σ } is N-adapted to Γ . �

We will give the definition of “adapted”, which requires some more notions from

the theory of spherical varieties, in Definition 2.11. After recalling some basic defini-

tions concerning spherical varieties, we briefly discuss, in Section 2.2, the notion of

“spherically closed spherical systems”, and the role they play in classifying spherically

closed spherical subgroups of G. We then, in Section 2.3 review Luna’s “augmentations”.

They classify the subgroups of G which have a given spherical closure K. Finally, after

recalling some basic results from the Luna–Vust theory of spherical embeddings in

Section 2.4, we deduce the combinatorial characterization of adapted and N-adapted

spherical roots.
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2.1 Basic definitions

In this section, we briefly recall the basic definitions of the theory of spherical varieties

by freely quoting from [21]. For more details on these notions the reader can also consult

[25, 27].

We recall that a (not necessarily affine) G-variety X is called spherical if it is

normal and contains an open dense orbit for B. If X is affine, this is equivalent to the

definition given before in terms of k[X].

The complement of the open B-orbit in X consists of finitely many B-stable prime

divisors. Among those, the ones that are not G-stable are called the colors of X. The set

of colors of X is denoted by ΔX.

By the weight lattice Λ(X) of X we mean the subgroup of Λ made up of the

B-weights in the field of rational functions k(X). Since X has a dense B-orbit two ratio-

nal B-eigenfunctions on X of the same weight are scalar multiples of one another.

Let PX be the stabilizer of the open B-orbit and denote by Sp
X the subset of simple

roots corresponding to PX, which is a parabolic subgroup of G containing B.

Let VX ⊂ Hom(Λ(X), Q) be the so-called valuation cone of X, that is, the set of Q-

valued G-invariant valuations on k(X) seen as functionals on Λ(X). By [9, Theorem 3.5],

VX is a cosimplicial cone. Let Σ(X) be the set of linearly independent primitive elements

in Λ(X) such that

VX = {v ∈ Hom (Λ (X) , Q) : 〈v, σ 〉 ≤ 0 for all σ ∈ Σ (X)} ,

that is, the set of spherical roots of X.

Similarly, the discrete valuations on k(X) associated with colors give rise to

functionals on Λ(X). This yields the so-called Cartan pairing of X, a Z-bilinear map

denoted by

cX : ZΔX × Λ(X) → Z.

Since X has a dense B-orbit, it has a dense G-orbit. Let H be the stabilizer of

a point in this orbit, which we can then identify with G/H . The group H is called a

spherical subgroup of G because G/H is a spherical G-variety. To H , we can associate

a larger group H̄ , called the spherical closure of H : the normalizer of H in G acts by

G-equivariant automorphisms on G/H and H̄ is the kernel of the induced action of this

normalizer on ΔX (see [21, Section 6.1] or [5, Section 2.4.1]). We recall that it follows

from [5, Lemma 2.4.2] that ¯̄H = H̄ (see [26, Proposition 3.1] for a direct proof).
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2.2 Spherical systems

Here, we briefly recall the definition of spherical system and its role in the classification

of spherical varieties; see [5, 21].

Wonderful varieties are special spherical varieties satisfying certain regularity

properties. We do not need their definition here, we just recall that by [6, 20] wonderful

G-varieties (or their open G-orbits) are classified by their so-called spherical systems.

This was known as Luna’s conjecture, another proof of which was proposed in [13].

By [18], spherical homogeneous spaces G/K with K spherically closed (i.e., K̄ = K) can

be realized as the open G-orbit of a unique wonderful variety. Consequently, they corre-

spond to spherically closed spherical G-systems (systems satisfying certain combinato-

rial conditions, as explained below):

G/K �−→ SG/K =
(

Sp
G/K ,Σ (G/K) , AG/K

)
.

Let K be a spherically closed spherical subgroup of G. The set Σ(G/K) of

spherical roots of G/K is included in the root lattice ZS (because K contains the

center of G) and it is a basis of Λ(G/K). Let AG/K be the set of colors that are not

stable under some minimal parabolic containing B and corresponding to a simple

root belonging to Σ(G/K). The full Cartan pairing restricts to the Z-bilinear pairing

cG/K : ZAG/K × ZΣ(G/K) → Z, also called restricted Cartan pairing.

Definition 2.2. The set Σsc(G) of spherically closed spherical roots of G is defined as

Σsc (G) := {σ ∈ ZS : σ ∈ Σ (G/K) for some spherically closed spherical subgroup K of G}.

Let H be a spherical subgroup of G and let X be any spherical G-variety with open

G-orbit G/H . Let H̄ be the spherical closure of H . We define

Σsc (X) := Σsc (G/H) := Σ
(
G/H̄

) ;

Σ N (X) := Σ N (G/H) := Σ (G/NG (H)) . �

Remark 2.3.

1. It follows from [18, Theorem 1.3] that for X affine, Σ N(X) given in

Definition 2.2 agrees with the description in Section 1 of the set of

N-spherical roots of X.
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2. Thanks to [20, Theorem 2] one can precisely describe the relationship

between the three sets Σ(X), Σsc(X), and Σ N(X); see Proposition 2.9 and [28]

for more information.

3. While Σsc(X) and Σ N(X) are subsets of NS, there exist wonderful varieties X

such that Σ(X) �⊂ ZS (see [30]).

4. Σ(X) is not always a basis of Λ(X), but it is when X is wonderful.

5. The weight lattice, valuation cone and spherical roots are birational invari-

ants of the spherical variety X since they only depend on its open G-orbit

G/H . The same is true of the colors and the Cartan pairing once we (natu-

rally) identify the colors of G/H with their closures in X. �

The set Σsc(G) is finite. More precisely, there is the next proposition, which

follows from the classification of spherically closed spherical subgroups K of G with

Λ(G/K) of rank 1 [1, 20]; see also [5, Sections 1.1.6 and 2.4.1]. We recall that the sup-

port supp(σ ) of σ ∈ NS is the set of simple roots which have a nonzero coefficient in the

unique expression of σ as a linear combination of the simple roots.

Proposition 2.4. An element σ of NS belongs to Σsc(G) if and only if after numbering

the simple roots in supp(σ ) like Bourbaki (see [7]) σ is listed in Table 1. �

Recall that K is a spherically closed spherical subgroup of G. Therefore, see

[21, Section 7.1], the triple SG/K = (Sp
G/K ,Σ(G/K), AG/K) is a spherically closed Luna

spherical system in the following sense.

Definition 2.5. Let (Sp,Σ, A) be a triple where Sp is a subset of S, Σ is a subset of

Σsc(G) and A is a finite set endowed with a Z-bilinear pairing c: ZA × ZΣ → Z. For every

α ∈ Σ ∩ S, let A(α) denote the set {D ∈ A : c(D, α) = 1}. Such a triple is called a spherically

closed spherical G-system if all the following axioms hold:

(A1) for every D ∈ A and every σ ∈ Σ , we have that c(D, σ ) ≤ 1 and that if

c(D, σ ) = 1, then σ ∈ S;

(A2) for every α ∈ Σ ∩ S, A(α) contains two elements, which we denote by D+
α and

D−
α , and for all σ ∈ Σ we have c(D+

α , σ ) + c(D−
α , σ ) = 〈α∨, σ 〉;

(A3) the set A is the union of A(α) for all α ∈ Σ ∩ S;

(Σ1) if 2α ∈ Σ ∩ 2S, then 1
2 〈α∨, σ 〉 is a non-positive integer for all σ ∈ Σ \ {2α};

(Σ2) if α, β ∈ S are orthogonal and α + β belongs to Σ , then 〈α∨, σ 〉 = 〈β∨, σ 〉 for all

σ ∈ Σ ;
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Table 1. Spherically closed spherical roots

Type of support σ

A1 α

A1 2α

A1 × A1 α + α′

An, n≥ 2 α1 + · · · + αn

A3 α1 + 2α2 + α3

Bn, n≥ 2 α1 + · · · + αn

2(α1 + · · · + αn)

B3 α1 + 2α2 + 3α3

Cn, n≥ 3 α1 + 2(α2 + · · · + αn−1) + αn

Dn, n≥ 4 2(α1 + · · · + αn−2) + αn−1 + αn

F4 α1 + 2α2 + 3α3 + 2α4

G2 4α1 + 2α2

α1 + α2

(S) every σ ∈ Σ is compatible with Sp, that is, for every σ ∈ Σ there exists

a spherically closed spherical subgroup K of G with Sp
G/K = Sp and

Σ(G/K) = {σ }. �

Remark 2.6.

1. Condition (S) of Definition 2.5 can be stated in purely combinatorial terms

as follows (see [5, Section 1.1.6]). A spherically closed spherical root σ is

compatible with Sp if and only if:

• in case σ = α1 + · · · + αn with support of type Bn

{
α ∈ suppσ : 〈α∨, σ 〉 = 0

} \ {αn} ⊆ Sp ⊆ {
α ∈ S : 〈α∨, σ 〉 = 0

} \ {αn} ,

• in case σ = α1 + 2(α2 + · · · + αn−1) + αn with support of type Cn

{
α ∈ suppσ : 〈α∨, σ 〉 = 0

} \ {α1} ⊆ Sp ⊆ {
α ∈ S : 〈α∨, σ 〉 = 0

}
,

• in the other cases

{
α ∈ suppσ : 〈α∨, σ 〉 = 0

} ⊆ Sp ⊆ {
α ∈ S : 〈α∨, σ 〉 = 0

}
.
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2. Definition 2.5 combines the standard definition of spherical system, see

[21, Section 2], with the requirement that it be spherically closed, see

[21, Section 7.1] and [5, Section 2.4]. �

As shown in [21], the set ΔG/K of colors and the Cartan pairing c of G/K are

uniquely determined by SG/K , in the sense that they can be naturally identified with the

set of colors of and the full Cartan pairing of SG/K , defined as follows. Let S = (Sp,Σ, A)

be a (spherically closed) spherical G-system. The set of colors of S is the finite set Δ

obtained as the disjoint union Δ = Δa ∪ Δ2a ∩ Δb where

• Δa = A,

• Δ2a = {
Dα : α ∈ S ∩ 1

2Σ
}
,

• Δb = {
Dα : α ∈ S \ (Sp ∪ Σ ∪ 1

2Σ)
}
/ ∼, where Dα ∼ Dβ if α and β are orthogonal

and α + β ∈ Σ .

The full Cartan pairing of S is the Z-bilinear map c: ZΔ × ZΣ → Z defined as:

c (D, σ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c (D, σ ) if D ∈ Δa;
1

2
〈α∨, σ 〉 if D = Dα ∈ Δ2a;

〈α∨, σ 〉 if D = Dα ∈ Δb.

2.3 Augmentations

We continue to use K for a spherically closed spherical subgroup of G. By [21, Proposi-

tion 6.4] spherical homogeneous spaces G/H such that H̄ , the spherical closure of H , is

equal to K are classified by their weight lattice, which is an augmentation of SG/K .

Definition 2.7. Let S = (Sp,Σ, A) be a spherically closed spherical G-system with Car-

tan pairing c : ZA × ZΣ → Z. An augmentation of S is a lattice Λ′ ⊂ Λ endowed with a

pairing c′ : ZA × Λ′ → Z such that Λ′ ⊃ Σ and

(a1) c′ extends c;

(a2) if α ∈ S ∩ Σ , then c′(D+
α , ξ) + c′(D−

α , ξ) = 〈α∨, ξ 〉 for all ξ ∈ Λ′;

(σ1) if 2α ∈ 2S ∩ Σ , then α /∈ Λ′ and 〈α∨, ξ 〉 ∈ 2Z for all ξ ∈ Λ′;

(σ2) if α and β are orthogonal elements of S with α + β ∈ Σ , then 〈α∨, ξ 〉 = 〈β∨, ξ 〉
for all ξ ∈ Λ′; and

(s) if α ∈ Sp, then 〈α∨, ξ 〉 = 0 for all ξ ∈ Λ′.

4552 P. Bravi and B. Van Steirteghem

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2016/15/4544/2451642 by guest on 09 April 2024



Let Δ be the set of colors of S . The full Cartan pairing of the augmentation is the

Z-bilinear map c′ : ZΔ × Λ′ → Z given by

c′ (D, γ ) =

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

c′ (D, γ ) if D ∈ Δa;
1

2
〈α∨, γ 〉 if D = Dα ∈ Δ2a;

〈α∨, γ 〉 if D = Dα ∈ Δb.

(2.1)

�

Remark 2.8. By the definition of spherical closure, ΔG/H and ΔG/H̄ are naturally identi-

fied and the full Cartan pairing ZΔG/H × Λ(G/H) → Z on G/H is the full Cartan pairing

of the augmentation corresponding to H (see Proposition 6.4 and the proof of Theorem 3

in [21]). �

We state here, for future reference, the following consequence of [20, Theorem 2].

Proposition 2.9. Let G/H be a spherical homogeneous space with Σsc(G/H) = Σ . Then

Σ N (G/H) = (Σ \ Σl) ∪ 2Σl ,

where Σl = {α ∈ Σ ∩ S : cG/H (D+
α , γ ) = cG/H (D−

α , γ ) for all γ ∈ Λ(G/H)}. �

Proof. This follows immediately from comparing [20, Theorem 2], which describes the

relationship between Σ(G/H) and Σ N(G/H) with [21, Lemma 7.1], which describes the

relationship between Σ(G/H) and Σsc(G/H). Note that [21, Lemma 7.1] can be deduced

from [20] without appealing to Luna’s conjecture. �

2.4 Strictly convex colored cones and weight monoids of affine spherical varieties

An equivariant embedding of a spherical homogeneous space G/H as a dense orbit in a

spherical G-variety (an embedding of G/H , for short) is called simple if it has only one

closed orbit. Affine spherical varieties are simple.

If X is a simple embedding of the spherical homogeneous space G/H , let F(X) be

the set of colors of X containing the closed orbit (identified with elements of ΔG/H ), and

let C(X) be the cone in Hom(Λ(G/H), Q) generated by the valuations associated with the

G-stable divisors of X (identified with elements of VG/H ) and by c(F(X), ·). The couple

(C(X),F(X)) is a strictly convex colored cone in the sense of the following definition.
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A strictly convex colored cone is a couple (C,F) where

– F is a subset of ΔG/H such that the subset c(F , ·) of Hom(Λ(G/H), Q) does not

contain 0,

– C is a strictly convex polyhedral cone in Hom(Λ(G/H), Q) which is generated

by c(F , ·) and finitely many elements of VG/H and whose relative interior inter-

sects VG/H .

We recall from [17, Theorem 3.1] that simple embeddings X of the spherical

homogeneous space G/H are classified by their strictly convex colored cones. By

[17, Theorem 6.7], the simple embedding X is affine if and only if there exists a character

χ ∈ Λ(G/H) that is non-positive on VG/H , zero on C(X) and c(·, χ) is strictly positive on

ΔG/H \ F(X).

We gather some known results about the weight monoid of affine spherical

varieties.

Proposition 2.10. If X is an affine spherical G-variety with weight monoid Γ (X) and

open orbit G/H , then

(a) the weight lattice of X (or of G/H ) is ZΓ (X);

(b) the set Sp
X (which is the same as Sp

G/H ) is equal to {α ∈ S : 〈α∨, γ 〉 = 0 for all

γ ∈ Γ (X)};
(c) the dual cone Γ ∨(X) := {v ∈ Hom(ZΓ (X), Q) : 〈v, γ 〉 ≥ 0 for all γ ∈ Γ (X)} to

Γ (X) is a strictly convex polyhedral cone;

(d) every ray of Γ ∨(X) contains an element of c(ΔG/H , ·) or of VG/H ;

(e) Γ ∨(X) contains c(ΔG/H , ·). �

Proof. These statements are well known to experts and can be extracted from the

results summarized in [27, Section 15.1]. For the reader’s convenience, we provide

a proof. Assertion (a) follows from the fact that a rational B-eigenfunction on X is

necessarily equal to the quotient of two regular B-eigenfunctions; see for example

[10, Proposition 2.8(i)]. Assertion (b) is [12, Lemme 10.2]. It follows from the fact that

PX is the common stabilizer of the B-stable lines in k[X]. This is the case because PX

is the common stabilizer of the B-stable prime divisors of X and the union of these

divisors is the zero set of some B-eigenvector in k[X]. Assertion (c) is a standard fact in

convex geometry. Parts (d) and (e) follow from the fact that a rational B-eigenfunction

on X is regular if and only if it does not have poles along the colors or G-stable prime

divisors of X. This, in turn, is so because X is normal. �
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2.5 Adapted spherical roots

Recall that Γ is a normal submonoid of Λ+. Combining the results recalled above, one

derives the condition on a set of spherical roots Σ for being adapted to Γ .

Definition 2.11. We say that a subset Σ of Σsc(G) is adapted (or N-adapted) to Γ if there

exists an affine spherical G-variety X such that Γ (X) = Γ and Σsc(X) = Σ (respectively,

Σ N(X) = Σ ). �

Remark 2.12. Let Σ be a subset of Σsc(G). Losev’s Theorem [19, Theorem 1.2] asserts

that there is at most one affine spherical G-variety X with Γ (X) = Γ and Σ N(X) = Σ .

Because Σsc(X) determines Σ N(X) (see Proposition 2.9) there is also at most one affine

spherical G-variety Y with Σsc(Y) = Σ and Γ (Y) = Γ . �

The dual cone to Γ is

Γ ∨ := {v ∈ Hom (ZΓ, Q) : 〈v, γ 〉 ≥ 0 for all γ ∈ Γ } .

It is a strictly convex polyhedral cone. We denote the set of primitive vectors on its rays

by E(Γ ):

E (Γ ) := {
δ ∈ (ZΓ )∗ : δ spans a ray of Γ ∨ and δ is primitive

}
. (2.2)

Observe that

E (Γ ) = {
δ ∈ (ZΓ )∗ : δ is primitive, δ (Γ ) ⊂ Z≥0, δ is the equation of a face of

codimension 1 of Q≥0Γ
}
. (2.3)

Moreover, for α ∈ S ∩ ZΓ , we define

a(α) := {
δ ∈ (ZΓ )∗ : δ (α) = 1 and

(
δ ∈ E (Γ ) or α∨ − δ ∈ E (Γ )

)}
.

Finally, we put

Sp (Γ ) := {
α ∈ S : 〈α∨, γ 〉 = 0 for all γ ∈ Γ

}
.

Proposition 2.13. Let Γ be a normal submonoid of Λ+. A subset Σ of Σsc(G) is adapted

to Γ if and only if there exists a spherically closed spherical system S = (Sp,Σ, A) such

that

(1) Sp = Sp(Γ ); and

(2) ZΓ is an augmentation of ZΣ ; and
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(3) if δ ∈ E(Γ ), then 〈δ, σ 〉 ≤ 0 for all σ ∈ Σ or there exists D ∈ Δ such that c(D, ·) is

a positive multiple of δ; where Δ is the set of colors of S and c : ZΔ × ZΓ → Z

is the full Cartan pairing of the augmentation; and

(4) c(D, ·) ∈ Γ ∨ for all D ∈ Δ. �

Proof. This is a consequence of the results we reviewed in Sections 2.2–2.4. We

begin with the necessity of the conditions. Let X be an affine spherical G-variety

with Σsc(X) = Σ and Γ (X) = Γ . Let G/H be the open orbit of X and let H̄ be the

spherical closure of H . Then Σsc(X) = Σ(G/H̄) by definition, and Sp
G/H = Sp(Γ ) by Propo-

sition 2.10(b). Moreover, Sp
G/H = Sp

G/H̄
. It follows from Section 5.1 and Lemma 7.1 in [21]

that (Sp(Γ ),Σ, AG/H̄ ) is a spherically closed spherical system. Since H has spherical clo-

sure H̄ , (2) follows from [21, Proposition 6.4]. Conditions (3) and (4) follow from (d) and

(e) of Proposition 2.10.

We now show that the conditions are sufficient for Σ to be adapted to Γ . By [6]

there exists a spherically closed spherical subgroup K of G with spherical system S .

Condition (2) implies by [21, Proposition 6.4] that there exists a spherical subgroup H

of G with H̄ = K and Λ(G/H) = ZΓ . What remains is to prove that G/H has an affine

embedding X with weight monoid Γ . That is, by [17, Theorems 3.1 and 6.7] we have to

show that there exists a strictly convex colored cone (C,F) in Hom(ZΓ, Q), with respect

to V = {v ∈ Hom(ZΓ, Q) : 〈v, σ 〉 ≤ 0 for all σ ∈ Σ} and the set of colors Δ of S , such that

(i) there exists χ ∈ ZΓ that is non-positive on V, zero on C and strictly positive

on Δ \ F ; and

(ii) Γ = {γ ∈ ZΓ : 〈v, γ 〉 ≥ 0 for all v ∈ C ∪ Δ}.

We claim that if (1), (3), and (4) hold, then the desired strictly convex colored cone exists.

Indeed, take C to be the maximal face of Γ ∨ whose relative interior meets V with F the set

of colors contained in C (such a maximal face exists since the zero face actually meets V).

The set c(F , ·) does not contain 0. Indeed, a color D with c(D, ·) = 0 necessarily belongs

to Δb, whence c(D, ·) = 〈α∨, ·〉 for some α ∈ S but by (1) this implies α ∈ Sp. Moreover, C is

contained in a hyperplane that separates V and Δ \ F . This yields χ . The inclusion “⊂”

of (ii) holds because C ⊂ Γ ∨ and because c(Δ, ·) ⊂ Γ ∨ by (4). The other inclusion follows

from (3) and the maximality of C. �

Remark 2.14. It follows from equation (2.4) below that the spherical system S and the

Cartan pairing of the augmentation in Proposition 2.13 are uniquely determined by Γ

and Σ . �
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Corollary 2.15. Let Γ be a normal submonoid of Λ+. A subset Σ of Σsc(G) is N-adapted

to Γ if and only if there exists a subset Σ̃ of Σsc(G) which is adapted to Γ and such that

Σ = (Σ̃ \ Σ̃l) ∪ 2Σ̃l , where Σ̃l = {α ∈ Σ̃ ∩ S : a(α) has one element}. �

Proof. This is a consequence of Propositions 2.13 and 2.9 once we show the follow-

ing: if c is the full Cartan pairing of an augmentation ZΣ̃ ⊂ ZΓ of a spherical system

S = (Sp(Γ ), Σ̃, A) as in Proposition 2.13, then

a(α) = {
c
(
D+

α , ·) , c
(
D−

α , ·)} (2.4)

for all α ∈ Σ̃ ∩ S. To prove the inclusion “⊂” in (2.4), let δ ∈ a(α). Then, 〈δ, α〉 = 〈α∨ − δ, α〉 =
1 > 0 and at least one of δ and α∨ − δ is in E(Γ ). By (3) in Proposition 2.13 it follows that

{δ, α∨ − δ} contains a positive rational multiple of c(D, ·) for some color D. By axiom

(A1) of the spherical system S , and the description (2.1) of c, the color D must be

D+
α or D−

α . Since c(D+
α , α) = c(D−

α , α) = 1, this implies that the two sets {δ, α∨ − δ} and

{c(D+
α , ·), c(D−

α , ·)} intersect, and so by axiom (a2) of the augmentation, they are equal.

For the reverse inclusion in (2.4) we have to show that c(D+
α , ·) or c(D−

α , ·) belongs to

E(Γ ). If neither belongs to E(Γ ), then by (3) and (4) in Proposition 2.13 together with

the description (2.1) of c and axiom (A1) in Definition 2.5, each of them is a linear

combination with positive rational coefficients of elements of Hom(ZΓ, Q) which are

nonpositive on α. This contradicts the fact that c(D+
α , α) = 1 and finishes the proof of

equation (2.4). �

As the next two corollaries show, one can characterize very explicitly whether

a single spherical root is adapted (Corollary 2.16) or N-adapted (Corollary 2.17) to Γ .

In a 2005 working document, Luna had proposed a statement like Corollary 2.16. We

remark that while Proposition 2.13 and Corollary 2.15 depend on the full classification

of wonderful varieties by spherical systems (Luna’s conjecture), the next two results only

use the combinatorial classification of rank 1 wonderful varieties, which was obtained

in [8] and also in [1].

Corollary 2.16. Let Γ be a normal submonoid of Λ+. If σ ∈ Σsc(G), then σ is adapted to

Γ if and only if all of the following conditions hold:

(1) σ ∈ ZΓ ;

(2) σ is compatible with Sp(Γ );
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(3) if σ /∈ S and δ ∈ E(Γ ) such that 〈δ, σ 〉 > 0, then there exists β ∈ S \ Sp(Γ ) such

that β∨ is a positive multiple of δ;

(4) if σ ∈ S, then

(a) a(σ ) has one or two elements; and

(b) 〈δ, γ 〉 ≥ 0 for all δ ∈ a(σ ) and all γ ∈ Γ ; and

(c) 〈δ, σ 〉 ≤ 1 for all δ ∈ E(Γ );

(5) if σ = 2α ∈ 2S, then α /∈ ZΓ and 〈α∨, γ 〉 ∈ 2Z for all γ ∈ Γ ;

(6) if σ = α + β with α, β ∈ S and α ⊥ β, then α∨ = β∨ on Γ . �

Proof. Let σ ∈ Σsc(G). Define the triple S by

S :=
⎧⎨
⎩

(Sp (Γ ) , {σ } ,∅) if σ /∈ S;(
Sp (Γ ) , {σ } ,

{
D+

σ , D−
σ

})
if σ ∈ S.

Let Δ be the set of colors of S (see Section 2.2) and let c : ZΔ × ZΓ be the bilinear pairing

given by equation (2.1) if σ /∈ S and by

c (D, γ ) = 〈α∨, γ 〉 if D = Dα ∈ Δb;
{
c
(
D+

σ , ·) , c
(
D−

σ , ·)} = a(σ ) ,

(2.5)

if σ ∈ S. By Remark 2.14, we have to show that the conditions of the corollary hold if

and only if S is a spherically closed spherical system of which ZΓ together with c is

an augmentation such that conditions (3) and (4) of Proposition 2.13 hold. We briefly

describe the straightforward verification.

We begin with the case σ /∈ S. Then we have that S is a spherically closed spher-

ical G-system if and only if (2) holds. Then c gives an augmentation of S if and only if

(1), (5) and (6) hold. Condition (4) of Proposition 2.13 is vacuous since Γ ⊂ Λ+ and every

c(D, ·) is a positive multiple of a coroot. Condition (3) in the corollary is the same as

condition (3) of Proposition 2.13 by the definition of c.

We proceed to the case σ ∈ S. Now S is a spherically closed spherical G-system

if and only if (2) and (a) hold. Next, by construction, c gives an augmentation of S if and

only if we have (1). Condition (4) of Proposition 2.13 is equivalent to (b). Finally, condition

(3) of Proposition 2.13 is equivalent to (c), again by the definition of c. �
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The combinatorial conditions that characterize N-adapted spherical roots are

exactly the same except for conditions (a) and (5). We report all of them again entirely in

the next statement for later reference.

Corollary 2.17. Let Γ be a normal submonoid of Λ+. If σ ∈ Σsc(G), then σ is N-adapted

to Γ if and only if all of the following conditions hold:

(1) σ ∈ ZΓ ;

(2) σ is compatible with Sp(Γ );

(3) if σ /∈ S and δ ∈ E(Γ ) such that 〈δ, σ 〉 > 0, then there exists β ∈ S \ Sp(Γ ) such

that β∨ is a positive multiple of δ;

(4) if σ ∈ S, then

(a) a(σ ) has two elements; and

(b) 〈δ, γ 〉 ≥ 0 for all δ ∈ a(σ ) and all γ ∈ Γ ; and

(c) 〈δ, σ 〉 ≤ 1 for all δ ∈ E(Γ );

(5) if σ = 2α ∈ 2S, then 〈α∨, γ 〉 ∈ 2Z for all γ ∈ Γ ;

(6) if σ = α + β with α, β ∈ S and α ⊥ β, then α∨ = β∨ on Γ . �

Proof. By Corollary 2.15, if σ /∈ S ∪ 2S, then σ is adapted to Γ if and only if it is

N-adapted to Γ . From the same corollary it follows that σ ∈ S is N-adapted to Γ if and

only if it is adapted to Γ and a(σ ) has two elements. The only remaining case is σ = 2α

for some α ∈ S. Again by Corollary 2.15, 2α is N-adapted to Γ if and only if either

(i) 2α is adapted to Γ ; or

(ii) α is adapted to Γ and a(α) has one element.

We assume that (1) and (2) hold and claim that (3) and (5) hold if and only if (i) or (ii)

is true. Indeed, it is clear from Corollary 2.16 that if 2α is adapted to Γ , then we have

(3) and (5). On the other hand, if α is adapted to Γ and a(α) has one element, then that

element is 1
2α∨ and so (5) holds. Moreover, condition (c) of Corollary 2.16 implies (3) of

this corollary. Conversely, suppose that we have (3) and (5). Since the restriction of α∨ to

ZΓ belongs to Γ ∨ and 〈α∨, 2α〉 > 0, there exists δ ∈ E(Γ ) such that 〈δ, 2α〉 > 0. It follows

from (3) that δ = qβ∨ for some β ∈ S \ Sp(Γ ) and q ∈ Q>0. Clearly, β = α, which proves that

δ is the only element of E(Γ ) that takes a positive value on 2α. Now, suppose that 2α

is not adapted to Γ , that is, that (i) does not hold. Then α must be an element of ZΓ .

By (5), 1
2α∨ takes integer values on ZΓ , and since it takes value 1 on α, it is primitive
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in (ZΓ )∗ and therefore an element of E(Γ ) and the only element of a(α). It follows from

Corollary 2.16 that (ii) is true. This finishes the proof. �

3 The Tad-Weights in (V/g · x0)
Gx0

For the remainder of the paper, Γ will be a free monoid with basis F ⊂ Λ+. In this

section, we begin by recalling that the moduli scheme MΓ is an open subscheme of a

certain invariant Hilbert scheme HΓ . This allows one to realize the tangent space TX0MΓ

as a T-submodule of a certain vector space (V/g · x0)
Gx0 . In Section 3.2, we prove that

if γ is a T-weight in (V/g · x0)
Gx0 , then it is a spherical root of spherically closed type.

In Section 3.3, we further show that γ is compatible with Sp(Γ ). We also show that if

γ /∈ S, then the weight space (V/g · x0)
Gx0
(γ ) has dimension at most 1. For notational and

computational convenience, we actually work with the opposite of Alexeev and Brion’s

T-action on MΓ and with a twist of their action on HΓ (see Section 3.1).

3.1 The invariant Hilbert scheme and its tangent space

We briefly review some known facts regarding MΓ and its relation to a certain invariant

Hilbert scheme HΓ . For more details we refer the reader to [2, 11, Section 4.3] and to

[23, Sections 2.1 and 2.2]. Recall that Γ is a free monoid of dominant weights with basis

F = {λ1, λ2, . . . , λr}, and put

V := V (λ1) ⊕ V (λ2) ⊕ . . . ⊕ V (λr) ;

x0 := vλ1 + vλ2 + · · · + vλr .

We denote by HΓ the Hilbert scheme HilbG
h (V) of [2], where h is the characteristic

function of Γ ∗ := −w0Γ (where w0 is the longest element in the Weyl group of G). The

scheme HΓ parametrizes the G-stable ideals I of k[V ] such that k[V ]/I � ⊕λ∈Γ ∗ V(λ) as

G-modules. We equip HΓ with the action of T described in [23, Section 2.2]. This is the

same action as in [4], and is a “twist” of the action in [2] and in [11, p. 101]. We briefly

recall its definition. Let GL(V)G be the group of linear automorphisms of V that commute

with the action of G. Note that GL(V)G is a torus of dimension r. The natural action of

GL(V)G on V (by G-equivariant automorphisms) induces an action on HΓ . Composing

with the homomorphism

T → GL (V)G : t �→ (λ1 (t) , λ2 (t) , . . . , λr (t)) , (3.1)

we obtain our action of T on HΓ .
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The center Z(G) of G belongs to the kernel of this action, which therefore

descends to an action of Tad := T/Z(G). We will refer to our action as the “Tad-action”

on HΓ . For the reader’s convenience, the corresponding Tad-action induced on the tan-

gent space to HΓ at the Tad-fixed point is recalled below in (3.3). As was reviewed in

[23, Section 2.2] it follows from [2, Corollary 1.17, Lemma 2.2] that since Γ ∗ is free, we

can view MΓ ∗ as a Tad-stable open subscheme of HΓ . Under this identification, the Tad-

fixed point X0 of MΓ ∗ corresponds to a certain subvariety of V which we also denote by

X0, namely

X0 = the closure of the G-orbit of x0 in V. (3.2)

The next proposition relates MΓ to HΓ .

Proposition 3.1. Let Γ be a free monoid of dominant weights. If we equip MΓ with the

opposite of the Tad-action in [2] and HΓ with the Tad-action in [23, Section 2.2], then there

is a Tad-equivariant open embedding

MΓ ↪→ HΓ

which sends the unique Tad-fixed point of MΓ to the point X0 in equation (3.2). �

Proof. This a matter of “formal bookkeeping.” Composing the action of G on V(Γ ) with

the Chevalley involution of G induces an isomorphism MΓ � MΓ ∗ . Composing this iso-

morphism with the open Tad-equivariant embedding MΓ ∗ ↪→ HΓ chosen above gives an

open embedding MΓ ↪→ HΓ . Comparing the definition of the action in [2] with that of the

action in [23, Section 2.2] one shows that this open embedding is Tad-equivariant for the

actions as given in the proposition. �

Remark 3.2. In what follows, MΓ and HΓ will always be equipped with the actions

given in Proposition 3.1. The action Alexeev and Brion defined on MΓ is conceptually

the most natural, while we find the action we are using on HΓ computationally more

convenient. �

By [2, Proposition 1.13], there is a canonical isomorphism

TX0HΓ � H0(X0,NX0|V )G

where H0(X0,NX0|V )G is the space of G-invariant global sections of the normal sheaf

NX0|V of X0 in V . Moreover, by [11, Proposition 3.10], there is an inclusion of Tad-modules

H0 (
X0,NX0|V

)G
↪→ (V/g · x0)

Gx0 � H0 (
G · x0,NX0|V

)G
,
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where the Tad-action on (V/g · x0)
Gx0 is induced by the following action of Tad on V . For

t ∈ Tad and v a T-weight vector of weight δ in V(λ) ⊂ V , we put

t · v := λ (t) δ (t)−1 v. (3.3)

3.2 The Tad-weights in (V/g · x0)Gx0 are spherical roots of G

In this section, we prove the following theorem.

Theorem 3.3. If γ is a Tad-weight in (V/g · x0)
Gx0 , then γ is a spherically closed spherical

root of G. �

Proof. Corollaries 3.8 and 3.14. �

For future use, we recall the following elementary and well-known facts regard-

ing (V/g · x0)
Gx0 . We include proofs for convenience. Before stating them we define

F ⊥ := {
β ∈ R+ : 〈λ, β∨〉 = 0 for all λ ∈ F

}
.

Proposition 3.4.

(a) A basis of Tad-eigenvectors of g · x0 is given by {vλ : λ ∈ F } ∪ {X−β · x0 : β ∈
R+ \ F ⊥}.

(b) If [v] is a Tad-eigenvector in V/g · x0 of weight γ , then [v] ∈ (V/g · x0)
Gx0 if and

only if γ ∈ ZΓ and Xβ · v ∈ g · x0 for all β ∈ S ∪ −(S ∩ F ⊥). �

Proof. Assertion (a) follows from the fact that g · x0 = b− · x0 = t · x0 + n− · x0 and that F

is linearly independent. Assertion (b) follows from [23, Lemma 2.16] and the fact that gx0

is generated as a Lie algebra by tx0 and the root spaces gβ with β ∈ S ∪ −(S ∩ F ⊥) (see,

e.g., [15, Theorem 30.1]). �

In the remainder of this section, γ is a Tad-weight occurring in (V/g · x0)
Gx0 and

v ∈ V a Tad-eigenvector of weight γ such that [v] is a nonzero element of (V/g · x0)
Gx0 . By

Proposition 3.4 (and the choice of our Tad-action), the weight γ belongs to NS ∩ ZΓ .

Lemma 3.5 ([4, Lemma 3.3]).

(1) There exists at least one simple root α such that Xαv �= 0.

(2) If α is a simple root such that Xαv �= 0 and γ �= α, then γ − α is a positive root.
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(3) If α is a simple root such that γ − α is a root, then there exists z∈ k such that

Xαv = z X−γ+αx0. �

Proof. The vector v cannot be a linear combination of the highest weight vectors vλi ,

otherwise (since the weights λi are linearly independent) it would belong to t · x0 ⊂ g · x0.

Moreover, since Xα ∈ gx0 for all α ∈ S, Xαv is a Tad-eigenvector of weight γ − α in g · x0. �

We first deal with the case where γ is a root. Note that since γ ∈ NS, it is then a

positive root. As is well known, we then also have that supp(γ ) is a connected subset of

the Dynkin diagram of G.

Lemma 3.6. If γ is a root, which is not simple, then there exist at least two distinct

simple roots α such that γ − α is a root. �

Proof. Assume that there exists only one simple root α such that γ − α is a root. By

Lemma 3.5, there exists z∈ k such that Xαv = z X−γ+αx0. Moreover, there exists z′ ∈ k×

such that [Xα, X−γ ] = z′ X−γ+α. Therefore, if we put z′′ = z/z′, then Xα(v + z′′ X−γ x0) = 0.

Since [v] = [v + z′′ X−γ x0] in V/g · x0 we can assume that Xαv = 0. Since γ − α′ is not a

positive root for all α′ ∈ S \ {α}, it then follows that Xαv = 0 for all α ∈ S, which contradicts

Lemma 3.5(1). �

Proposition 3.7. If γ is a root, of which the support is not of type G2, then it is a locally

dominant short root, that is, the dominant short root in the root subsystem generated

by the simple roots of its support. �

Proof. (I) Let α1 and α2 be two orthogonal simple roots such that γ − α1 and γ − α2

are roots. Note that γ − α1 − α2 is also a root. We claim that if there exists λ ∈ F not

orthogonal to γ − α1 − α2, then we can assume

Xα1v = Xα2v = 0. (3.4)

Indeed, there exist z1, z2 ∈ k× such that

[Xα1 , X−γ ] = z1 X−γ+α1;

[Xα2 , X−γ ] = z2 X−γ+α2 .

Moreover, using the Jacobi identity and the fact that [Xα1 , Xα2 ] = 0 one finds that

[
Xα2 , X−γ+α1

] = z2

z1

[
Xα1 , X−γ+α2

]
.
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By Lemma 3.5(3), there exist z′
1, z′

2 ∈ k such that

Xα1v = z′
1 X−γ+α1 x0;

Xα2v = z′
2 X−γ+α2 x0.

Since Xα2 Xα1v = Xα1 Xα2v we obtain that

(
z2

z1
z′

1 − z′
2

)
[Xα1 , X−γ+α2 ]x0 = 0.

Using that there exists λ ∈ F not orthogonal to the root γ − α1 − α2 it follows that z2
z1

z′
1 − z′

2 = 0, that is

z′
1

z1
= z′

2

z2
.

This implies that by replacing v by v − z′
1

z1
X−γ x0 = v − z′

2
z2

X−γ x0, we can assume (3.4).

(II) The same can be done if we have α1, α2, . . . , αk simple roots with α j orthogonal

to α j+1 for all j ∈ {1, 2, . . . , k − 1} and such that γ − α j is a root for all j ∈ {1, 2, . . . , k}. More

precisely, we claim that if there exists λ ∈ F not orthogonal to γ − α1 − · · · − αk, then we

can assume that for all j ≤ k

Xα j v = 0. (3.5)

Indeed, for every j ∈ {1, 2, . . . , k} there exists, as in Part I, zj ∈ k× and z′
j ∈ k such

that [Xα j , X−γ ] = zj X−γ+α j and Xα j v = z′
j X−γ+α j x0. Let λ be an element of F that is

not orthogonal to γ − α1 − . . . − αk. Then λ is not orthogonal to γ − α j − α j+1 for all

j ∈ {1, 2, . . . , k − 1}. By applying Part I (k − 1) times to the pairs α j, α j+1 we obtain that

z′
1

z1
= z′

2

z2
= · · · = z′

k

zk
.

This implies that by replacing v by v − z′
1

z1
X−γ x0, we can assume (3.5).

(III) Assume that there exist more than two simple roots, say α1, . . . , αk, such that

γ − α j is a root for all j ∈ {1, 2, . . . , k}. We claim that they can be reordered such that α j

is orthogonal to α j+1 for all j < k as in part II.

This can be verified by making use of the classification of root systems, check-

ing case-by-case all the positive roots, noticing along the way (although we will not need

this) that k is at most 3. This is straightforward for the classical types. To avoid the large

number of case-by-case checkings in the exceptional types E6, E7, E8, and F4 one can use
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for example the following argument. If it were not possible to reorder the simple roots

α1, . . . , αk as required, then there would exist three roots among them, say α j1 , α j2 , α j3 ,

such that α j2 is not orthogonal to both α j1 and α j3 . We will now show that this is impos-

sible for each exceptional type using well-known properties of root systems of rank 2

and 3. Note, in particular, that if the support of γ is not of type G2 and if γ − α is a root

for some simple root α, then

〈α∨, γ 〉 ≥ 0

since otherwise there would exist a root string of length greater than 3.

In types E6, E7, and E8 all the roots have the same length so we would necessarily

have 〈(α jm)∨, γ 〉 = 1 for m ∈ {1, 2, 3}, but this is absurd since it would mean that 〈(α j1 +
α j2 + α j3)

∨, γ 〉 = 3. In type F4, the three simple roots would generate a root subsystem of

type B3 or of type C3. In the former case (type B3) we would necessarily have 〈(α j1)
∨, γ 〉 =

〈(α j2)
∨, γ 〉 = 1 assuming α j1 and α j2 are long, but this is absurd since it would mean 〈(α j1 +

α j2 + α j3)
∨, γ 〉 ≥ 4. In the latter case (type C3) we would necessarily have 〈(α j1)

∨, γ 〉 = 1

assuming α j1 is long. If 〈(α j3)
∨, γ 〉 is positive, then 〈(α j1 + α j2 + α j3)

∨, γ 〉 is greater than 2,

which is not possible in type F4. If 〈(α j3)
∨, γ 〉 = 0, then γ + α j3 is a root, and 〈(α j1 + α j2 +

α j3)
∨, γ + α3〉 is greater than 2, which is again absurd.

(IV) We now want to prove that γ is locally dominant (if the support of γ is not

of type G2). The fact that γ is locally short then follows. Indeed, if the support of γ is not

simply laced, then the highest root in the root system generated by that support does

not satisfy Lemma 3.6:

– in type Bn, n≥ 2, the highest root is α1 + 2(α2 + · · · + αn) = ω2;

– in type Cn, n≥ 3, the highest root is 2(α1 + · · · + αn−1) + αn = 2ω1;

– in type F4 the highest root is 2α1 + 3α2 + 4α3 + 2α4 = ω1.

To obtain a contradiction we assume that γ is not locally dominant, that is, we

assume that there exists β ∈ supp(γ ) such that 〈β∨, γ 〉 < 0. Recall from Part III that in

type different from G2 if γ − α is a root for a simple root α, then 〈α∨, γ 〉 ≥ 0.

Suppose first that there are exactly k> 2 simple roots, say α1, . . . , αk, such that

γ − α j is a root for all j ≤ k. From the assumption that γ is not locally dominant, it

follows that there exists λ ∈ F not orthogonal to γ − α1 − · · · − αk. By Parts II and III, we

can then assume that Xα j v = 0 for all j ≤ k. This contradicts Lemma 3.5(1).

If there are exactly two simple roots α1 and α2 such that γ − α1 and γ − α2 are

roots, and α1 and α2 are orthogonal, then by Part I we get the same contradiction with

Lemma 3.5(1).
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Furthermore, if the support of γ has cardinality ≤ 2, then the proposition

follows by Lemma 3.6. Indeed, the only roots with support of cardinality ≤ 2 satisfying

Lemma 3.6 are:

– with support of type A1, α1,

– with support of type A2, α1 + α2,

– with support of type B2, α1 + α2.

Therefore, we now restrict to the case of support of γ of cardinality > 2, and

assume that there are only two simple roots α1 and α2, such that γ − α1 and γ − α2 are

roots, and that α1 and α2 are not orthogonal. Note that α1 + α2 is a root. Up to exchanging

α1 and α2 we can assume that

〈α∨
2 , γ 〉 > 0 and α1 + 2α2 /∈ R. (3.6)

Indeed, at least one of the two 〈α∨
1 , γ 〉 and 〈α∨

2 , γ 〉 must be positive (otherwise γ would be

antidominant), and 2α1 + α2 and α1 + 2α2 cannot both be roots. If say 2α1 + α2 is a root,

then ‖α1‖ < ‖α2‖, hence α2 is long and therefore 〈α∨
2 , γ 〉 must be > 0.

Under (3.6) we have

〈α∨
2 , γ − α1〉 ≥ 1 + 1

hence γ − α1 − α2 and γ − α1 − 2α2 are roots. Since γ is not locally dominant, there is an

element λ of F such that 〈(γ − α1 − 2α2)
∨, λ〉 �= 0.

To conclude the proof of the proposition, we use once again an argument similar

to that of Part I. Indeed, we will show in Part V that we can assume that Xα1v = Xα2v = 0,

which contradicts Lemma 3.5(1).

(V) We finish by proving the following claim: if α1 and α2 are simple roots such

that

– α1 + 2α2 is not a root;

– γ − α1, γ − α2, γ − α1 − α2, and γ − α1 − 2α2 are roots; and

– 〈(γ − α1 − 2α2)
∨, λ〉 �= 0 for some λ ∈ F ; then

we can assume that Xα1v = Xα2v = 0.

Since α1 + 2α2 is not a root we have that [Xα2 , Xα1+α2 ] = 0. By the third assumption

of the claim,

X−(γ−α1−2α2)x0 �= 0. (3.7)
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We first show that we can assume that

Xα2v = Xα1+α2v = 0. (3.8)

There exist z′
1, z′

2 ∈ k such that

Xα2v = z′
1 X−(γ−α2)x0;

Xα1+α2v = z′
2 X−(γ−α1−α2)x0.

Next, there exist z1, z2 ∈ k× such that

[Xα2 , X−γ ] = z1 X−(γ−α2);

[Xα1+α2 , X−γ ] = z2 X−(γ−α1−α2).

As in Part I, one deduces from Xα2 Xα1+α2v = Xα1+α2 Xα2v that

(
z2

z1
z′

1 − z′
2

)
[Xα2 , X−(γ−α1−α2)]x0 = 0.

Using (3.7), it follows that
z′

1

z1
= z′

2

z2
. (3.9)

Hence, if we replace v by v − z′
1

z1
X−γ x0 = v − z′

2
z2

X−γ x0, then equations (3.8) hold.

We now complete the proof by showing that (3.8) implies that

Xα1v = 0. (3.10)

There exists z∈ k such that Xα1v = zX−(γ−α1)x0. From (3.8) we have that

0 = Xα1+α2v = Xα2 Xα1v = zXα2 X−(γ−α1)x0 = zX−(γ−α1−α2)x0,

where the second equality uses that Xα2v = 0 and the fourth one uses that Xα2 x0 = 0.

Since equation (3.7) implies that Xα2 X−(γ−α1−α2)x0 �= 0, we have that X−(γ−α1−α2)x0 �= 0, and

therefore that z= 0 which proves equation (3.10), the claim at the start of Part V and the

proposition. �

The following is Theorem 3.3 for the case that γ is a root.

Corollary 3.8. Let γ be a Tad-weight in (V/g · x0)
Gx0 . If γ is a root, then γ is a spherically

closed spherical root of G. �
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Proof. If the support of γ is not of type G2, then by Proposition 3.7 we have only to

check the locally dominant short roots. The following roots do not satisfy Lemma 3.6.

– With support of type Dn, n≥ 4: α1 + 2(α2 + · · · + αn−2) + αn−1 + αn = ω2.

– With support of type E6: α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 = ω2.

– With support of type E7: 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 = ω1.

– With support of type E8: 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 + 2α8 = ω8.

Therefore, we are left with all spherically closed spherical roots.

– With support of type An, n≥ 1: α1 + · · · + αn.

– With support of type Bn, n≥ 2: α1 + · · · + αn.

– With support of type Cn, n≥ 3: α1 + 2(α2 + · · · + αn−1) + αn.

– With support of type F4: α1 + 2α2 + 3α3 + 2α4.

If the support of γ is of type G2 the only positive root satisfying Lemma 3.6 is α1 + α2,

which is a spherically closed spherical root. �

Let us now consider the case where γ is not a root. In contrast to the root case,

here we notice the following general fact.

Proposition 3.9. Let α be a simple root and let β be a non-simple positive root such

that α + β is not a root. Then there exists no simple root α′ �= α such that (α + β) − α′

is a root. �

Proof. Assume that there exists a simple root α′ �= α such that α + β − α′ is a root.

Since β − α′ is nonzero, it is a root. This follows from the fact that α + β is not a root,

whence〈α∨, β〉 ≥ 0, and so 〈α∨, α + β − α′〉 > 0. Finally, to deduce that α + β is a root (i.e.,

a contradiction), one can use for example a saturation argument (see [14, Lemma 13.4.B])

as follows.

Restrict the adjoint representation to the Levi subalgebra associated with α

and α′. Since β − α′ is a root, both β and α + β − α′ occur as weights in the same

irreducible summand, say of highest weight λ. From 〈α∨, β〉 ≥ 0, we get that 〈α∨, α +
β〉 > 0, and since α + β is not a root, 〈(α′)∨, α + β − α′〉 ≥ 0, and so 〈(α′)∨, α + β〉 > 0.

Consequently, α + β is dominant with respect to α and α′. Moreover, λ − α − β is a sum of

simple roots, because λ − β and λ − (α + β − α′) both belong to span
N
{α, α′}. This implies

that α + β is a root. �

4568 P. Bravi and B. Van Steirteghem

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2016/15/4544/2451642 by guest on 09 April 2024



Let γ be a Tad-weight in (V/g · x0)
Gx0 which is not a root. Until Proposition 3.13,

we assume that γ is not the sum of two orthogonal simple roots, so that we can speak

of the unique simple root α such that γ − α is a root.

Lemma 3.10. Let α be the simple root such that γ − α is a root. If γ �= 2α, then α is

orthogonal to γ − α. �

Proof. We can choose a basis of g

{
Xβ : β root

} ∪ {
α∨ : α simple root

}

such that [Xβ, X−β ] = β∨ for all positive roots β, and then for all roots β1, β2 denote by

cβ1,β2 the scalar such that [Xβ1 , Xβ2 ] = cβ1,β2 Xβ1+β2 . For example, a Chevalley basis does the

job (see [14, Theorem 25.2]).

Since Xαv �= 0, we can assume that Xαv = X−γ+αx0. Assume also, to obtain a con-

tradiction, that 〈α∨, γ − α〉 > 0. Hence γ − 2α is a positive root. Since γ is not a root, we

have that Xγ−α Xαv = Xα Xγ−αv. From the following identities

Xγ−α Xαv = 1

cγ−2α,α

[Xγ−2α, Xα]Xαv = 1

cγ−2α,α

[Xγ−2α, Xα]X−γ+αx0

= 1

cγ−2α,α

(
Xγ−2α[Xα, X−γ+α] − Xα[Xγ−2α, X−γ+α]

)
x0

= cα,−γ+α

cγ−2α,α

[Xγ−2α, X−γ+2α]x0 − cγ−2α,−γ+α

cγ−2α,α

[Xα, X−α]x0

Xα Xγ−αv = 1

cγ−2α,α

Xα[Xγ−2α, Xα]v = 1

cγ−2α,α

Xα[Xγ−2α, X−γ+α]x0

= cγ−2α,−γ+α

cγ−2α,α

[Xα, X−α]x0

it then follows that

cα,−γ+α

cγ−2α,α

(γ − 2α)∨ − 2
cγ−2α,−γ+α

cγ−2α,α

α∨ (3.11)

takes value zero on all λ ∈ F . Since γ ∈ ZF , the expression (3.11) takes value zero on γ ,

too.
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Actually, the linear combination (3.11) of coroots does not depend on the choice

of the basis of g. Indeed,

cγ−2α,α (γ − α)∨ = [[Xγ−2α, Xα], X−γ+α]

= [Xγ−2α, [Xα, X−γ+α]] − [Xα, [Xγ−2α, X−γ+α]]

= cα,−γ+α (γ − 2α)∨ − cγ−2α,−γ+αα∨

and

(γ − α)∨ = ‖γ − 2α‖2

‖γ − α‖2
(γ − 2α)∨ + ‖α‖2

‖γ − α‖2
α∨.

Therefore, since (γ − 2α)∨ and α∨ are linearly independent, (3.11) becomes

‖γ − 2α‖2

‖γ − α‖2
(γ − 2α)∨ + 2

‖α‖2

‖γ − α‖2
α∨ (3.12)

which is proportional to γ ∨. Since ‖γ ‖2 is not zero, the expression in (3.11) cannot take

value zero on γ , and we have obtained the desired contradiction. �

Lemma 3.11 ([4, Lemma 3.6]). Let α be the simple root such that γ − α is a positive root.

If γ − α = β1 + β2 with β1 and β2 positive roots, then α + β1 or α + β2 is a root. �

Proof. Since Xαv �= 0, we can assume that Xαv = X−γ+αx0. Next, we claim that if α + β1 �∈
R+, then Xβ2v = 0. Indeed, if Xβ2v were nonzero, then it would be a Tad-weight vector of

weight α + β1. Since Xβ2v ∈ g · x0 it would follow by Proposition 3.4(a) that α + β1 ∈ R+.

This proves the claim. Similarly, if α + β2 �∈ R+, then Xβ1v = 0. Therefore, if neither α + β1

nor α + β2 is a root, then Xγ−αv = 0. Since γ �∈ R+, this implies

0 = Xα Xγ−αv = Xγ−α Xαv = Xγ−α X−γ+αx0

which means X−γ+αx0 = 0, a contradiction. �

Lemma 3.12. Let α be the simple root such that γ − α is a root. Let δ be a simple root

and k an integer 2 ≤ k≤ 4 such that γ − jα − δ is a root for 1 ≤ j ≤ k, jα + δ is a root

for 1 ≤ j < k, but kα + δ is not a root. Then γ − kα is orthogonal to every λ ∈ F ; and in

particular

‖γ − α‖2 = (k − 1) ‖α‖2. (3.13)

�
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Proof. We can choose a basis as in the proof of Lemma 3.10 and, since Xαv �= 0, we can

assume that Xαv = X−γ+αx0.

First, let us assume also, for simplicity, that k= 2. Then one has the following

identities:

Xγ−α Xαv = 1

cγ−α−δ,δ

[Xγ−α−δ, Xδ]X−γ+αx0

= 1

cγ−α−δ,δ

(
Xγ−α−δ[Xδ, X−γ+α] − Xδ[Xγ−α−δ, X−γ+α]

)
x0

= cδ,−γ+α

cγ−α−δ,δ

[Xγ−α−δ, X−γ+α+δ]x0 − cγ−α−δ,−γ+α

cγ−α−δ,δ

[Xδ, X−δ]x0

Xα Xγ−αv = 1

cγ−α−δ,δ

Xα[Xγ−α−δ, Xδ]v = − 1

cγ−α−δ,δ

Xα Xδ Xγ−α−δv

= − 1

cγ−α−δ,δcγ−2α−δ,α

Xα Xδ[Xγ−2α−δ, Xα]v

= − 1

cγ−α−δ,δcγ−2α−δ,α

Xα Xδ[Xγ−2α−δ, X−γ+α]x0

= − cγ−2α−δ,−γ+α

cγ−α−δ,δcγ−2α−δ,α

Xα[Xδ, X−α−δ]x0

= −cγ−2α−δ,−γ+αcδ,−α−δ

cγ−α−δ,δcγ−2α−δ,α

[Xα, X−α]x0

We thus find a linear combination of co-roots

cδ,−γ+α

cγ−α−δ,δ

(γ − α − δ)∨ − cγ−α−δ,−γ+α

cγ−α−δ,δ

δ∨ + cγ−2α−δ,−γ+αcδ,−α−δ

cγ−α−δ,δcγ−2α−δ,α

α∨ (3.14)

which must take value zero on all λ ∈ F . We now compute the coefficients in the above

linear combination of coroots, showing they do not depend on the choice of the basis of

g. Indeed,

cγ−α−δ,δ (γ − α)∨ = [[Xγ−α−δ, Xδ], X−γ+α]

= [Xγ−α−δ, [Xδ, X−γ+α]] − [Xδ, [Xγ−α−δ, X−γ+α]]

= cδ,−γ+α (γ − α − δ)∨ − cγ−α−δ,−γ+αδ∨

and, since

cγ−α−δ,δcγ−2α−δ,α (γ − α)∨ + cγ−α−δ,−γ+αcγ−2α−δ,αδ∨

= [[[Xγ−2α−δ, Xα], Xδ], X−γ+α] − [[[Xγ−2α−δ, Xα], X−γ+α], Xδ]
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= [[Xγ−2α−δ, Xα], [Xδ, X−γ+α]]

= [[Xγ−2α−δ, [Xδ, X−γ+α]], Xα] − [Xγ−2α−δ, [[Xδ, X−γ+α], Xα]]

= [[Xδ, [Xγ−2α−δ, X−γ+α]], Xα] − [Xγ−2α−δ, [[Xδ, X−γ+α], Xα]]

= −cδ,−α−δcγ−2α−δ,−γ+αα∨ − c−γ+α+δ,αcδ,−γ+α (γ − 2α − δ)∨ ,

also

c−γ+α+δ,αcδ,−γ+α (γ − 2α − δ)∨ = −cγ−2α−δ,αcδ,−γ+α (γ − α − δ)∨ − cδ,−α−δcγ−2α−δ,−γ+αα∨.

On the other hand,

(γ − α)∨ = ‖γ − α − δ‖2

‖γ − α‖2
(γ − α − δ)∨ + ‖δ‖2

‖γ − α‖2
δ∨

and

(γ − 2α − δ)∨ = ‖γ − α − δ‖2

‖γ − 2α − δ‖2
(γ − α − δ)∨ − ‖α‖2

‖γ − 2α − δ‖2
α∨.

Therefore, since (γ − α − δ)∨ is neither proportional to δ∨ nor to α∨, (3.14)

becomes
‖γ − α − δ‖2

‖γ − α‖2
(γ − α − δ)∨ + ‖δ‖2

‖γ − α‖2
δ∨ − ‖α‖2

‖γ − α‖2
α∨ (3.15)

which is proportional to (γ − 2α)∨.

For k> 2, the proof is similar. If k= 3, the analog of (3.14) is

cδ,−γ+α

cγ−α−δ,δ

(γ − α − δ)∨ − cγ−α−δ,−γ+α

cγ−α−δ,δ

δ∨ + cγ−2α−δ,−γ+αcδ,−α−δ

cγ−α−δ,δcγ−2α−δ,α

α∨+

− cγ−3α−δ,−γ+αcδ,−α−δcα,−2α−δ

cγ−α−δ,δcγ−2α−δ,αcγ−3α−δ,α

α∨

which is proportional to (γ − 3α)∨. If k= 4, we get

cδ,−γ+α

cγ−α−δ,δ

(γ − α − δ)∨ − cγ−α−δ,−γ+α

cγ−α−δ,δ

δ∨ + cγ−2α−δ,−γ+αcδ,−α−δ

cγ−α−δ,δcγ−2α−δ,α

α∨

− cγ−3α−δ,−γ+αcδ,−α−δcα,−2α−δ

cγ−α−δ,δcγ−2α−δ,αcγ−3α−δ,α

α∨ + cγ−4α−δ,−γ+αcδ,−α−δcα,−2α−δcα,−3α−δ

cγ−α−δ,δcγ−2α−δ,αcγ−3α−δ,αcγ−4α−δ,α

α∨

which is proportional to (γ − 4α)∨.

Finally, since γ − kα is orthogonal to every λ ∈ F , we have (γ − kα, γ ) = 0,

which yields (3.13). Indeed, the assumption implies that γ �= 2α, hence (α, γ − α) = 0 by

Lemma 3.10, and

0 = (γ − kα, γ ) = ‖γ − α‖2 − (k − 1) ‖α‖2. �
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Proposition 3.13. Suppose γ is not a root and let α be a simple root such that γ − α is a

root. Then γ − α is locally the highest root, that is, the highest root in the root subsystem

generated by the simple roots of its support. �

Proof. (I) First we want to prove that γ − α is locally dominant. We can assume that

γ − α is not simple. Hence, by Lemma 3.10, α is orthogonal to γ − α.

There exists a simple root δ (different from α) such that γ − α − δ is a root. By

Proposition 3.9 and Lemma 3.11 α + δ is a root.

Since α + δ is a root, 〈α∨, δ〉 < 0. Therefore, 〈α∨, γ − α − δ〉 > 0 hence γ − 2α − δ is

a root. If moreover 2α + δ is a root, then by sl(2)-theory, 〈α∨, α + δ〉 ≤ 0 and so 〈α∨, γ −
2α − δ〉 ≥ 0, whence γ − 3α − δ is a root. If 3α + δ is also a root, then α and δ span a root

system of type G2. Consequently, 〈α∨, γ − 3α − δ〉 = −1 and γ − 4α − δ is a root.

Therefore, we can apply Lemma 3.12 and obtain that, for some k≥ 1, γ − kα is

orthogonal to every λ ∈ F . This implies that 〈(α′)∨, γ 〉 = 0 for all α′ ∈ supp(γ ) \ {α}, whence

〈(α′)∨, γ − α〉 ≥ 0 for all such α′. Since α is orthogonal to γ − α, it follows that γ − α is

locally dominant.

(II) To obtain a contradiction, we now assume that γ − α is not locally the highest

root, that is, a locally short dominant root with support of non-simply laced type:

– in type Bn, n≥ 2, the short dominant root is α1 + · · · + αn = ω1;

– in type Cn, n≥ 3, the short dominant root is α1 + 2(α2 + · · · + αn−1) + αn = ω2;

– in type F4 the short dominant root is α1 + 2α2 + 3α3 + 2α4 = ω4;

– in type G2 the short dominant root is 2α1 + α2 = ω1.

By equation (3.13), α is also short and k= 2, in particular the support of γ is not of type

G2. Moreover, by Lemma 3.10, α is orthogonal to γ − α. In type Bn and in type F4 this

implies that γ is a root.

We are left with the case where the support of γ − α is of type Cn. Since α is

short, α is orthogonal to γ − α, γ is not a root, and moreover there exists a simple root

δ �= α satisfying the hypothesis of Lemma 3.12 for k= 2, we have that n> 3, δ = α2 and

α = α3. This contradicts Lemma 3.11, because α1 and γ − α − α1 are roots, but neither

α1 + α nor γ − α1 is a root. �

The following is Theorem 3.3 for the case that γ is not a root.

Corollary 3.14. Let γ be a Tad-weight in (V/g · x0)
Gx0 . If γ is not a root, then γ is a

spherically closed spherical root of G. �

4573The Moduli Scheme of Affine Spherical Varieties with a Free Weight Monoid

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2016/15/4544/2451642 by guest on 09 April 2024



Proof. We list all the locally highest roots β and deduce which are the only possi-

ble non-roots γ (obtained by adding to β a simple root) satisfying Lemmas 3.10, 3.11,

and 3.12.

In general, 〈α∨, β〉 must be ≥ 0 otherwise α + β ∈ R+. If α is not in the support

of β it must be orthogonal to β, and in this case, by Lemma 3.11, β must necessarily be

simple.

Let us start with β simple, that is, with support of type A1: β = α1 = 2ω1 gives

only

2α1

or

α1 + α′
1.

Let us now pass to β not simple and recall that α must necessarily belong to the

support of β, moreover by Lemma 3.10 〈α∨, β〉 = 0 and by Lemma 3.12, for all α′ ∈ S \ {α},
〈(α′)∨, α + β〉 = 0.

With support of type An, n≥ 2: β = α1 + · · · + αn = ω1 + ωn gives only, for n= 3,

α1 + 2α2 + α3.

With support of type Bn, n≥ 2: β = α1 + 2(α2 + · · · + αn) = ω2 if n≥ 3 (it equals 2ω2

if n= 2) gives only

2(α1 + · · · + αn)

or, for n= 3,

α1 + 2α2 + 3α3.

With support of type Dn, n≥ 4: β = α1 + 2(α2 + · · · + αn−2) + αn−1 + αn = ω2 gives

only

2(α1 + · · · + αn−2) + αn−1 + αn

or, for n= 4,

α1 + 2α2 + 2α3 + α4

and

α1 + 2α2 + α3 + 2α4

which are equal to 2α1 + 2α2 + α3 + α4 up to an automorphism of the Dynkin diagram.

4574 P. Bravi and B. Van Steirteghem

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2016/15/4544/2451642 by guest on 09 April 2024



With support of type G2: β = 3α1 + 2α2 = ω2 gives only

4α1 + 2α2.

The remaining cases give no other possibilities:

– with support of type Cn, n≥ 3, β = 2(α1 + · · · + αn−1) + αn = 2ω1;

– with support of type E6, β = α1 + 2α2 + 2α3 + 3α4 + 2α5 + α6 = ω2;

– with support of type E7, β = 2α1 + 2α2 + 3α3 + 4α4 + 3α5 + 2α6 + α7 = ω1;

– with support of type E8, β = 2α1 + 3α2 + 4α3 + 6α4 + 5α5 + 4α6 + 3α7 +
2α8 = ω8;

– with support of type F4, β = 2α1 + 3α2 + 4α3 + 2α4 = ω1. �

3.3 Further properties of Tad-weights in (V/g · x0)Gx0

After Theorem 3.3 the only possible Tad-weights in (V/g · x0)
Gx0 are spherically closed

spherical roots of G, but each of them occur only under special conditions which we are

going to describe.

The first statement is indeed a refinement of Theorem 3.3. Recall the notion of

compatibility with Sp (see axiom (S) of Definition 2.5 and Remark 2.6.1).

Theorem 3.15. If γ is a Tad-weight in (V/g · x0)
Gx0 , then γ is a spherically closed spheri-

cal root of G compatible with Sp(Γ ). �

Proof. If γ = α1 + α2 + · · · + αn with support of type An, then {α2, α3, . . . , αn−1} ⊂ Sp(Γ ).

This follows from Part I of the proof of Proposition 3.7.

If γ = α1 + 2α2 + α3 with support of type A3, then {α1, α3} ⊂ Sp(Γ ). This follows by

Lemma 3.12 (α = α2, δ = α1 and k= 2).

If γ = α1 + α2 + · · · + αn with support of type Bn, then {α2, α3, . . . , αn−1} ⊂ Sp(Γ )

and αn �∈ Sp(Γ ). The former follows from Part I of the proof of Proposition 3.7. For the

latter, we can assume that Xαnv = 0 and Xα1v = X−γ+αnx0 nonzero, which implies αn �∈ Sp.

If γ = 2(α1 + · · · + αn) with support of type Bn, then {α2, . . . , αn} ⊂ Sp(Γ ). This fol-

lows by Lemma 3.12 (α = α1, δ = α2 and k= 2).

If γ = α1 + 2α2 + 3α3 with support of type B3, then {α1, α2} ⊂ Sp(Γ ). This follows

by Lemma 3.12 (α = α3, δ = α2 and k= 3).

If γ = α1 + 2(α2 + · · · + αn−1) + αn with support of type Cn, then {α3, α4, . . . , αn} ⊂
Sp(Γ ). This follows from part V of the proof of Proposition 3.7.
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If γ = 2(α1 + · · · + αn−2) + αn−1 + αn with support of type Dn, then {α2, . . . , αn} ⊂
Sp(Γ ). This follows by Lemma 3.12 (α = α1, δ = α2 and k= 2).

If γ = α1 + 2α2 + 3α3 + 2α4 with support of type F4, then {α1, α2, α3} ⊂ Sp(Γ ). This

follows from part V of the proof of Proposition 3.7.

If γ = 4α1 + 2α2 with support of type G2, then α2 ∈ Sp(Γ ). This follows by

Lemma 3.12 (α = α1, δ = α2, and k= 4). �

Proposition 3.16. If γ is not a simple root then the Tad-eigenspace (V/g · x0)
Gx0
(γ ) has

dimension ≤ 1. �

Proof. If γ is a root (not simple), recall that there exist two simple roots, say α1 and

α2, such that γ − α1 and γ − α2 is a root, and γ − α is not a root for all α ∈ S \ {α1, α2}. In

particular, for all α ∈ S \ {α1, α2}, we necessarily have Xαv = 0. By adding to v a suitable

scalar multiple of X−γ x0, we can assume that also Xα2v = 0. Moreover, by choosing a

suitable scalar multiple, we can assume that Xα1v = X−γ+α1 x0.

If γ is neither a root nor the sum of two orthogonal simple roots, recall that

there exists a simple root α1 such that γ − α1 is a root, and γ − α is not a root for all

α ∈ S \ {α1}. In particular, for all α ∈ S \ {α1}, we necessarily have Xαv = 0. Therefore, by

choosing a suitable scalar multiple, we can assume that Xα1v = X−γ+α1 x0.

In both cases, we claim that under the above assumptions v is uniquely deter-

mined. Indeed, if v1 and v2 are two vectors in V of Tad-weight γ fulfilling the above

conditions, then Xα(v1 − v2) = 0 for all α ∈ S, which implies v1 = v2.

We are left with only one case: the spherical root γ = α + α′ with support of type

A1 × A1. We can assume Xαv = X−α′ x0. For all i ∈ {1, . . . , r}, dim V(λi)(γ ) ≤ 1, and the con-

dition Xαv = X−α′ x0 uniquely determines every component vi ∈ V(λi) of v. �

4 The Weight Spaces of TX0HΓ

In this section, we prove the following theorem.

Theorem 4.1. If Γ is a free monoid of dominant weights, then TX0HΓ is a multiplicity-

free Tad-module of which all the weights belong to Σsc(G). Moreover, if γ ∈ Σsc(G) occurs

as a Tad-weight in TX0HΓ , then γ is N-adapted to Γ . �

Proof. The assertion that all Tad-weights of TX0HΓ belong to Σsc(G) follows from the

inclusion TX0HΓ ↪→ (V/g · x0)
Gx0 and Theorem 3.3, while the assertion that the weight

space (TX0HΓ )(γ ) has dimension at most one follows from Proposition 3.16 if γ /∈ S, and
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from Proposition 4.6 if γ ∈ S. The statement that if γ ∈ Σsc(G) is a Tad-weight in TX0HΓ ,

then γ is N-adapted to Γ , is contained in Proposition 4.6 for γ ∈ S and is shown in

Section 4.3 for γ /∈ S. �

Recall from Proposition 3.1 that MΓ is Tad-equivariantly isomorphic to an

open subscheme of HΓ . Because every Tad-weight in TX0MΓ � TX0HΓ is an element of

Σsc(G) (see Theorem 3.3) we obtain the following converse to the second statement in

Theorem 4.1.

Corollary 4.2. Let Γ be a free monoid of dominant weights and let σ ∈ Σsc(G). If σ is

N-adapted to Γ , then σ is a Tad-weight in TX0MΓ . �

Proof. Let X be an affine spherical G-variety with Γ (X) = Γ and Σ N(X) = {σ }, and let

MX be its root monoid. Recall that Σ N(X) is the basis of the saturation of MX. Let

{a1, a2, . . . , ak} be a subset of N such that {a1σ, a2σ, . . . , akσ } is the minimal set of gener-

ators of MX. By [2, Proposition 2.13], the Tad-orbit closure of X, seen as a closed point

of MΓ , is Spec(k[−MX]). A straightforward computation using the basic theory of semi-

group rings (see, e.g., [22, Section 7.1]) shows that

TX0

(
Tad · X

) � ka1σ ⊕ ka2σ ⊕ · · · ⊕ kakσ

as Tad-modules, where we used kaiσ for the one-dimensional Tad-representation of weight

aiσ . We claim that one of the ai is equal to 1 (and consequently that MX is generated by

{σ }). We show this by contradiction. Suppose that all of the ai are at least 2. Then k≥ 2,

since otherwise σ would not be in ZMX. Since TX0(Tad · X) ⊂ TX0MΓ ⊂ (V/g · x0)
Gx0 , it then

follows from Theorem 3.3 that {σ, a1σ, a2σ } ⊂ Σsc(G). By the classification of spherically

closed spherical roots (cf. Proposition 2.4) this is impossible: only the double or half of

a spherically closed spherical root can be a spherically closed spherical root, and never

both. �

As before, Γ will be a free monoid of dominant weights with basis F =
{λ1, λ2, . . . , λr}. If λ ∈ F , then we will write λ# for the corresponding element of the dual

basis of (ZΓ )∗; in other words, for all μ ∈ F \ {λ} we have 〈λ#, μ〉 = 0, whereas 〈λ#, λ〉 = 1.

Recall that E(Γ ) is defined in (2.3). Because Γ is free, we have that E(Γ ) is the dual

basis to F :

E(Γ ) = {
λ# ∈ (ZΓ )∗ : λ ∈ F

}
.
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For λ ∈ F we put

zλ := x0 − vλ.

4.1 The extension criterion

We recall from [24] a criterion which allows to decide whether a Tad-eigenvector [v] ∈
(V/g · x0)

Gx0 � H0(G · X0,NX0|V )G belongs to the subspace TX0HΓ � H0(X0,NX0|V )G .

We denote by X≤1
0 ⊂ X0 the union of G · x0 with all G-orbits of X0 that have codi-

mension 1. By [10, Lemma 1.14] X≤1
0 is an open subset of X0. The following proposition is

a special case of [11, Lemma 3.9]. Together with Theorem 4.5 it gives the aforementioned

criterion.

Proposition 4.3. A section s ∈ H0(G · X0,NX0|V ) extends to X0 if and only if it extends

to X≤1
0 . �

We recall that the orbit structure of X0 is well understood [29, Theorem 8]. It is

easy to describe the orbits of codimension 1 (see, e.g., [23, Proposition 3.1] for details).

Proposition 4.4. The G-orbits of codimension 1 in X0 are exactly the orbits G · zλ where

λ is an element of F that satisfies the following property:

for every α ∈ S such that 〈α∨, λ〉 �= 0 there exists μ ∈ F \ {λ} such that 〈α∨, μ〉 �= 0. �

Theorem 4.5 ([24, Theorem 2.5]). Let v ∈ V be a Tad-eigenvector of weight γ such that

0 �= [v] ∈ (V/g · x0)
Gx0 . Let λ ∈ F . Recall that zλ = x0 − vλ. Assume that zλ ∈ X≤1

0 and put Z :=
G · x0 ∪ G · zλ. Put a := 〈λ#, γ 〉. Denote by s ∈ H0(G · x0,NX0|V )G the G-equivariant section

such that s(x0) = [v].

(A) If a≤ 0, then s extends to an element of H0(Z ,NX0|V )G .

(B) If a> 1, then s does not extend to an element of H0(Z ,NX0|V )G .

(C) If a= 1, then the following are equivalent:

(i) s extends to an element of H0(Z ,NX0|V )G ;

(ii) there exist v̂ ∈ V(λ) such that [v] = [v̂] as elements of V/g · x0. �

4.2 The spherical root γ = α ∈ S

In this section, we discuss the Tad-weight space (TX0HΓ )(α), where α is a simple

root. Specifically, we will prove the following proposition, which is a special case of

Theorem 4.1.
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Proposition 4.6. If α is a simple root, then dim(TX0HΓ )(α) ≤ 1. Moreover, if

dim(TX0HΓ )(α) = 1, then α is N-adapted to Γ . �

The proof of Proposition 4.6 will be given on p. 37. We first need a few lemmas

and introduce notation we will use for the remainder of this section. Put F (α) := {λ ∈
F : 〈α∨, λ〉 �= 0}. We order the elements of F such that for F (α) = {λ1, λ2, . . . , λp} for some

p≤ r. Then F \ F (α) = {λp+1, λp+2, . . . , λr}.

Lemma 4.7. For every i ∈ {1, 2, . . . , p}, put vi = X−αvλi . Then v1 + v2 + · · · + vp spans the

Tad-weight space of weight α in g · x0. If α ∈ ZΓ , then

(V/g · x0)
Gx0
(α) = 〈[v1], [v2], . . . , [vp−1]〉k. �

Proof. By elementary highest weight theory, the Tad-weight space in V of weight α is

spanned by {v1, v2, . . . , vp}, and the intersection of this weight space with g · x0 is the line

spanned by X−αx0 = v1 + v2 + · · · + vp. A straightforward application of Proposition 3.4

shows that [vi] ∈ (V/g · x0)
Gx0 for every i ∈ {1, 2, . . . , p− 1}. �

Lemma 4.8. Suppose α ∈ ZΓ and |F (α)| ≥ 2. Let λ ∈ F . If 〈λ#, α〉 > 0, then G · zλ has codi-

mension 1 in X0. �

Proof. We will apply Proposition 4.4. Since α ∈ ZΓ and Γ is free, there exists a partition

F = F1 ∪ F2 of F and for every μ ∈ F a unique nonnegative integer aμ such that

α =
∑
μ∈F1

aμμ −
∑
μ∈F2

aμμ. (4.1)

By assumption λ ∈ F1 and aλ = 〈λ#, α〉 > 0. Let β ∈ S \ {α} such that 〈β∨, λ〉 �= 0. Then, since

F ⊂ Λ+ and 〈β∨, α〉 ≤ 0, it follows from the expression (4.1) that

∑
μ∈F2

aμ〈β∨, μ〉 ≥ aλ〈β∨, λ〉 > 0.

In particular, there exists μ ∈ F2 such that 〈β∨, μ〉 �= 0. Furthermore, whether 〈α∨, λ〉
is zero or not, by the assumption that |F (α)| ≥ 2, there exists μ ∈ F \ {λ} such that

〈α∨, μ〉 �= 0. This finishes the proof. �
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Lemma 4.9. Let α be a simple root. Recall that F (α) = {λ ∈ F : 〈α∨, λ〉 �= 0} and put E(α) :=
{δ ∈ E(Γ ) : 〈δ, α〉 = 1}. Then dim(TX0HΓ )(α) ≤ 1 and if dim(TX0HΓ )(α) = 1, then

(i) α ∈ ZΓ ;

(ii) |F (α)| ≥ 2;

(iii) 〈δ, α〉 ≤ 1 for all δ ∈ E(Γ );

(iv) |E(α)| ≤ 2;

(v) If |E(α)| = 2, then E(α) = {λ# ∈ E(Γ ) : λ ∈ F (α)}. �

Proof. Let us assume that dim(TX0HΓ )(α) ≥ 1. Let [v] be a nonzero element of (V/g · x0)
Gx0
(α)

such that the G-equivariant section s ∈ H0(G · x0,N )G defined by s(x0) = [v] extends to

X0. By Proposition 3.4 and Lemma 4.7, conditions (i) and (ii) hold. Lemma 4.8 and

Theorem 4.5 then imply (iii). We now prove (iv). If |E(α)| ≥ 3, then by Theorem 4.5 and

Lemma 4.8, there exist at least three elements λ,μ, and ν in F (α) such that there exist yλ ∈
V(λ), yμ ∈ V(μ) and yν ∈ V(ν) for which [v] = [yλ] = [yμ] = [yν ] ∈ V/g · x0. This is impossible

by Lemma 4.7 and (iv) is proved. We turn to (v). Suppose E(α) = {λ#, μ#}. By Lemma 4.8

and Theorem 4.5, there exist yλ ∈ V(λ) and yμ ∈ V(μ) such that [v] = [yλ] = [yμ] ∈ V/g · x0.

Using Lemma 4.7 again, (v) follows.

Finally, we show that dim(TX0HΓ )(α) ≤ 1. Since α ∈ ZΓ , there is at least one

λ ∈ E(α). Lemma 4.8 and Theorem 4.5 again imply that [v] = [yλ] for some yλ ∈ V(λ), which

finishes the proof. �

Remark 4.10. By Corollary 4.2 and the proof of Proposition 4.9, the preceding lemma

gives alternative conditions for α to be N-adapted to Γ when Γ is free. We list them as

a separate lemma, since they seem easier to check then those in Corollary 2.17. �

Proof of Proposition 4.6. Lemma 4.9 says that dim(TX0HΓ )(α) ≤ 1. We assume condi-

tions (i)–(v) in Lemma 4.9 and deduce conditions (1), (2), (a), (b), and (c) in Corollary 2.17.

For (1) and (c), there is nothing to show. For the spherical root α, (2) follows from (1).

To show (a), we first claim that E(α) contains at least one element. Indeed, α ∈ ZΓ

and 〈λ#, α〉 > 0 for at least one λ ∈ F , for otherwise −α would be a dominant weight.

The claim now follows from (iii). Next, suppose λ# ∈ E(α). Clearly λ# ∈ a(α). We claim

that α∨ − λ# �= λ#. Otherwise, we would have λ# = 1
2α∨, which would contradict (ii). This

shows |a(α)| ≥ 2. Now, if a(α) had a third element, then E(α) would have two elements,

say λ# and μ#, with α∨ − λ# �= μ#. But this yields a contradiction: by (v), we have that

〈α∨, λ〉 = 〈α∨, μ〉 = 1 and then that α∨ − λ# takes the same values as μ# on F . We have

deduced (a). Finally, (b) is clear since a(α) = {λ#, α∨ − λ#} for some λ ∈ F (α). �
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4.3 The non-simple spherical roots

To complete the proof of Theorem 4.1, we show in this section that if γ is a spherically

closed spherical root, which is not a simple root and which occurs as a Tad-weight in

TX0HΓ , then γ is N-adapted to Γ .

We recall that conditions (1) and (2) of Corollary 2.17 follow from Theorem 3.15.

We now verify condition (3): if δ ∈ E(Γ ) such that 〈δ, γ 〉 > 0, then there exists β ∈ S \ Sp(Γ )

such that β∨ is a positive multiple of δ. The argument is the same for all the non-simple

spherical roots γ .

Let v ∈ V be a Tad-eigenvector of weight γ such that 0 �= [v] ∈ (V/g · x0)
Gx0 . Let

λ ∈ F . Recall that zλ = x0 − vλ and put a= 〈λ#, γ 〉. Assume a> 0.

We claim that under this assumption, codimX0 G · zλ ≥ 2. Indeed, if codimX0 G · zλ

were 1, then by Theorem 4.5(B) a= 1 and by Theorem 4.5(C) there would exist v̂ ∈ V(λ)

such that [v] = [v̂] as elements of V/g · x0. Therefore, there would exist α ∈ S such that

γ − α ∈ R+, and such that Xαv̂ is nonzero and is equal to X−γ+αx0 up to a nonzero scalar

multiple. This would imply X−γ+αvλ �= 0 and X−γ+αvμ = 0 for all μ ∈ F \ {λ}, and therefore

that there exists α′ ∈ S such that 〈(α′)∨, λ〉 > 0 and 〈(α′)∨, μ〉 = 0 for all μ ∈ F \ {λ}, which

gives a contradiction with Proposition 4.4 and proves the claim.

The fact that codimX0 G · zλ ≥ 2 means that there exists β ∈ S such that 〈β∨, λ〉 > 0

and 〈β∨, μ〉 = 0 for all μ ∈ F \ {λ}. This says exactly that the restriction of β∨ to ZΓ is a

positive multiple of λ#, which is condition (3).

We continue with the remaining conditions of Corollary 2.17. Condition (4) does

not apply to non-simple spherical roots.

Condition (5) follows using the analysis of Section 3. Indeed, we have shown that

if [v] is a nonzero Tad-eigenvector of weight 2α in (V/g · x0)
Gx0 , with α ∈ S, then Xαv is a

(nonzero) scalar multiple of X−αx0. Since 2α ∈ ZΓ , there exists λ ∈ F such that 〈α∨, λ〉 > 0

and 〈λ#, 2α〉 > 0. By the argument we used for condition (3), λ is the unique element of

F which is non-orthogonal to α. It follows that we actually have that Xαv is a nonzero

scalar multiple of X−αvλ. This implies that the T-eigenspace of weight λ − 2α in V(λ) is

nonzero, hence 〈α∨, λ〉 ≥ 2. Consequently 〈α∨, λ〉 ∈ {2, 4} and 〈α∨, μ〉 = 0 for all μ ∈ F \ {λ},
hence α∨ takes an even value on every element of ZΓ .

Condition (6) follows analogously from Section 3. Indeed, we have shown that if

[v] is a nonzero Tad-eigenvector of weight α + α′ in (V/g · x0)
Gx0 , with α and α′ orthogonal

simple roots, then Xαv, if nonzero, is a scalar multiple of X−α′ x0, and Xα′v, if nonzero, is

a scalar multiple of Xαx0.

Since α + α′ ∈ ZΓ , there exists λ ∈ F such that 〈α∨, λ〉 > 0 and 〈λ#, α + α′〉 > 0.

By the argument we used for condition (3), λ is the unique element of F which is
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non-orthogonal to α. Then Xαv �= 0. Indeed if it were 0, then Xα′v would be nonzero,

hence scalar multiple of X−αvλ, which yields a contradiction:

0 = Xα′ Xαv = Xα Xα′v = Xα X−αvλ �= 0,

Therefore Xαv = X−α′ x0, and if 〈(α′)∨, μ〉 �= 0 then the T-eigenspace of weight μ − α − α′ in

V(μ) is nonzero, hence also 〈α∨, μ〉 �= 0. This implies that α′ is non-orthogonal to λ and

orthogonal to μ for all μ ∈ F \ {λ}. Therefore α∨ and (α′)∨ are equal on every element of

ZΓ . This completes the proof of Theorem 4.1.

Remark 4.11. The information given in this remark is not needed for our results. We

include it because it gives explicit conditions on F for each spherically closed spherical

root γ , which is not a simple root, to occur as a Tad-weight in TX0HΓ , that is, to be

N-adapted to Γ .

For each spherically closed spherical root γ , there exists α ∈ S such that

〈α∨, γ 〉 > 0. If γ is a Tad-weight in TX0HΓ , then γ ∈ ZΓ , and so there exits λ ∈ F such that

〈α∨, λ〉 > 0 and 〈λ#, γ 〉 > 0. If γ is not a simple root, then by the argument above showing

that γ satisfies condition (3) of Corollary 2.17, we have that λ is the only element of F

which is not orthogonal to α, that is, bλ# = α∨ on ZΓ for some positive integer b.

We now list, for each γ , the possibilities for λ#.

(1) If γ = 2α, with α a simple root, then locally γ = 4ω. In this case α∨ = bλ# with

b ∈ {2, 4}.
(2) If γ = α + α′, with α and α′ two orthogonal simple roots, then locally

γ = 2ω + 2ω′. In this case α∨ = (α′)∨ = bλ# with b ∈ {1, 2}.
(3) If γ = α1 + α2 + · · · + αn with support of type An with n≥ 2, then locally

γ = ω1 + ωn. In this case, α∨ = λ# with α ∈ {α1, αn}.
(4) If γ = α1 + 2α2 + α3 with support of type A3, then locally γ = 2ω2. In this case,

we have α∨
2 = bλ# with b ∈ {1, 2}.

(5) If γ = α1 + · · · + αn with support of type Bn with n≥ 2, then locally γ = ω1.

Here α∨
1 = λ#.

(6) If γ = 2α1 + 2α2 + · · · + 2αn with support of type Bn with n≥ 2, then locally

γ = 2ω1. Here α∨
1 = bλ#, with b ∈ {1, 2}.

(7) If γ = α1 + 2α2 + 3α3 with support of type B3, then locally γ = 2ω3. Here α∨
3 =

bλ# with b ∈ {1, 2}.
(8) If γ = α1 + 2α2 + 2α3 + · · · + 2αn−1 + αn with support of type Cn with n≥ 3,

then locally γ = ω2. Here α∨
2 = λ#.
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(9) If γ = 2α1 + 2α2 + · · · + 2αn−2 + αn−1 + αn with support of type Dn with n≥ 4,

then locally γ = 2ω1. Here α∨
1 = bλ# with b ∈ {1, 2}.

(10) If γ = α1 + 2α2 + 3α3 + 2α4 with support of type F4, then locally γ = ω4. Here

α∨
4 = λ#.

(11) If γ = 4α1 + 2α2 with support of type G2, then locally γ = 2ω1. Here α∨
1 = bλ#

with b ∈ {1, 2}.
(12) If γ = α1 + α2 with support of type G2, then locally γ = −ω1 + ω2. Here

α∨
2 = λ#. �

5 The Irreducible Components of MΓ

In this section, we prove the following theorem.

Theorem 5.1. Let Γ be a free monoid of dominant weights. Then the Tad-orbit closures

in MΓ , equipped with their reduced induced scheme structure, are affine spaces. �

The proof is given below. By [2, Proposition 2.13] this theorem has the following

formal consequence.

Corollary 5.2. If X is an affine spherical variety with free weight monoid, then its root

monoid MX is free too. �

Another consequence is that Conjecture 1.1 holds for free monoids.

Corollary 5.3. If Γ is a free monoid of dominant weights, then the irreducible com-

ponents of MΓ , equipped with their reduced induced scheme structure, are affine

spaces. �

Proof. Since the Tad-orbits in MΓ are in bijection with isomorphism classes of affine

spherical G-varieties, by [2, Theorem 1.12] and there are only finitely many such isomor-

phism classes, by [2, Corollary 3.4], we have that every irreducible component Z of MΓ

contains a dense Tad-orbit. It then follows from Theorem 5.1 that Z , equipped with its

reduced induced scheme structure, is an affine space. �

Proof of Theorem 5.1. Let X be an affine spherical G-variety of weight monoid Γ , seen

as a (closed) point in MΓ . By [2, Corollary 2.14], we know that the normalization of Tad · X

is an affine space. It is therefore enough to show that Tad · X is smooth at X0. We do this
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by showing that

dim TX0

(
Tad · X

) = dim Tad · X. (5.1)

Recall that Σ N(X) is the basis of the monoid obtained by saturation of the

root monoid MX. To deduce (5.1) we make use of Theorem 4.1: the Tad-weights in

TX0(Tad · X) ⊆ TX0MΓ are spherical roots N-adapted to Γ , each one occurring with mul-

tiplicity 1. This, together with the fact that every Tad-weight in TX0(Tad · X) has to be

an element of the root monoid MX, and hence a nonnegative integer linear combination

of elements of Σ N(X), gives (5.1) once we prove Proposition 5.4. Indeed, applying this

proposition with Σ = Σ N(X) yields that the Tad-weights in TX0(Tad · X) belong to Σ N(X),

while dim Tad · X = |Σ N(X)| by [2, Proposition 2.13]. �

Proposition 5.4. Let Σ be a subset of Σsc(G) such that every γ ∈ Σ is N-adapted to Γ .

If σ ∈ Σsc(G) ∩ NΣ is N-adapted to Γ , then σ ∈ Σ . �

Proof. First of all, σ (of spherically closed type) must be compatible with Sp(Γ ) and

is a nonnegative integer linear combination of other elements of Σsc(G) that satisfy the

same compatibility condition. This gives strong restrictions. Indeed, σ can only be the

sum of two simple roots (equal or not, orthogonal or not). All the other types of spherical

roots have support that nontrivially intersects Sp(Γ ), and they can be excluded by a

straightforward if somewhat lengthy case-by-case verification.

Moreover, σ cannot be the double of a simple root, say 2α, with α ∈ Σ , since α and

2α cannot both be N-adapted to Γ . Indeed, if 2α is N-adapted to Γ then, since 〈α∨, 2α〉 > 0

and α∨ ∈ Γ ∨, there exists δ ∈ E(Γ ) such that 〈δ, 2α〉 > 0. Condition (3) of Corollary 2.17

tells us that α∨ is a positive multiple of δ. By condition (5) of the same corollary, α∨ is

not primitive in (ZΓ )∗. If now α ∈ ZΓ , then it follows from 〈α∨, α〉 = 2 that α∨ = 2δ on ZΓ .

Hence δ is the only element of a(α) and α is not N-adapted to Γ .

Analogously, σ cannot be the sum of two orthogonal simple roots, say α + α′,

with α and α′ in Σ . Indeed, since α + α′ is adapted to Γ and 〈α∨, α〉 �= 〈(α′)∨, α〉, α cannot

belong to ZΓ .

Finally, let σ be the sum of two nonorthogonal simple roots, say α1 + α2, with

α1 and α2 in Σ . Take δ ∈ E(Γ ) with 〈δ, σ 〉 > 0. Such a δ exists because 〈α∨
1 , σ 〉 or 〈α∨

2 , σ 〉 is

positive, σ ∈ ZΓ and Γ ⊂ Λ+. Then δ must be positive on at least one of the two simple

roots α1 or α2. Suppose it is positive on α1. Then δ ∈ a(α1), since α1 is N-adapted to Γ ,

hence δ takes the value 1 on α1. By condition (3) of Corollary 2.17 it follows that α∨
1 = 2δ,

which is not possible if α1 is N-adapted to Γ . �
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Remark 5.5. While the reduced induced scheme structure is the only natural scheme

structure on the Tad-orbit closures of Theorem 5.1, there is at least one other natu-

ral scheme structure on the irreducible components of MΓ , namely the one given by

the primary ideals of k[MΓ ] associated with minimal primes. One can ask whether

Conjecture 1.1 remains true for that scheme structure. Another natural question is

whether or when MΓ is in fact a reduced scheme. We note that the tangent space TX0MΓ

might fail to detect the “non-reducedness” of MΓ . For example, the two affine schemes

Spec(k[x, y]/〈xy〉) and Spec(k[x, y]/〈x2y〉) have the same tangent space at the point corre-

sponding to the maximal ideal 〈x, y〉. �
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