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We give a functorial description of the Kato–Nakayama space of a fine saturated log

analytic space, that is similar in spirit to the functorial description of root stacks. As a

consequence we get a global description of the comparison map constructed in [2] from

the Kato–Nakayama space to the (topological) infinite root stack.

1 Introduction

Let X be a fine saturated log scheme, locally of finite type over C, or a log analytic space.

There have been a few constructions aimed at capturing the “log geometry” of X in more

familiar forms. Two of those are the “Kato–Nakayama” space Xlog (a topological space,

introduced in [7]), and the “infinite root stack”
∞√
X (a pro-algebraic stack, introduced

in [17]). As mentioned in the introduction of [17], the latter is, morally, an “algebraic

version” of the former.

Building on this idea, in the paper [2] by Carchedi, Scherotzke, Sibilla, and the

first author it is shown that there is a canonical morphism �X : Xlog → ∞√
X top from the

Kato–Nakayama space to the topological realization of the infinite root stack of X , that

is moreover a “profinite equivalence”. In that paper, the morphism is constructed locally

on X , in the presence of a Kato chart for the log structure, and then globalized by gluing

[2, Section 4].
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6146 M. Talpo and A. Vistoli

Two natural questions arise from this construction.

(1) Is there a global definition of the morphism �X? For example, one could

hope to use a “functor of points” point of view, describing the objects of the

groupoid
∞√
X top, and then producing an object of

∞√
X top(Xlog).

(2) Over Xlog there is a sheaf of rings Olog
X that makes the projection Xlog → X

into a map of ringed spaces, and over
∞√
X top there is a natural structure

sheaf O∞. Does �X extend to a morphism of ringed topological stacks?

In this article, we answer the first question, and give such a global construction of �X .

Question (2) is addressed in the recent preprint [15] by the first author, where a notion of

“coherent sheaf” on Xlog and the relationship with parabolic sheaves with real weights

are discussed.

In order to answer question (1) we will give a functorial description of
∞√
X top,

and produce an object of the corresponding kind on the topological space Xlog. We will

do so by giving a “root stack” functorial definition of Xlog, that is closely related to

the one given in [5]. From this it will be apparent that an object parameterized by the

Kato–Nakayama space induces compatible n-th roots for each positive integer n.

In some more detail: we use the point of view of [1], according to which a log

structure on X can be seen as a symmetric monoidal functor L : A → [C/C×]X from a

sheaf of monoids to a stack of line bundles with global section on open subsets of X .

Here the monoial structure on [C/C×]X is given by tensor product of line bundles with a

section, and the functor L is compatible with this structure. Recall also that for n ∈ N,

the root stack
n√
X parameterizes liftings of the functor L along the n-th power map

∧n : [C/C×] → [C/C×], induced by z �→ zn on both the space C and the group C× (and

corresponding to raising both the line bundle and the global section to the n-th power).

The Kato–Nakayama space turns out to parameterize similar liftings, in which

instead of extracting n-th roots for a fixed n we are in some sense extracting a “loga-

rithm”, that is, we are lifting the log structure along a sort of “exponential” H→ [C/C×],
where H is the stack constructed as follows.

Let C be the topological monoid ({−∞}∪R)×R, where the operation is addition

on both factors, and we declare that −∞+ x = −∞ for every x ∈ {−∞} ∪ R. Using the

exponential {−∞} ∪ R
∼=−→ R≥0 in the first factor, the monoid C can also be seen as the

“closed right half-plane” H = R≥0 × R ⊆ C, equipped with the operation (x,y) · (x ′,y ′) =
(xx ′,y + y ′). The additive group C+ of complex numbers acts on C by “translation”, that

is, as (a + ib) · (x,y) = (a + x,b + y), compatibly with the monoid structure. We have
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The Kato–Nakayama Space as a Transcendental Root Stack 6147

an exponential map C → C sending (x,y) to ex+iy (which is 0 if x = −∞), that is exp-

equivariant, for exp: C+ → C× the usual exponential. The stack H alluded to above is the

quotient H = [C/C+], that by the preceding observations admits a map exp: H→ [C/C×].
The following theorem, that gives a functorial description of the Kato–Nakayama

space as a sort of “transcendental root stack”, is our main result.

Theorem A (Theorem 3.2). Let X be a fine saturated log analytic space, with DF

structure L : A → [C/C×]X . Then the stack on topological spaces over Xtop that sends

f : T → Xtop to the groupoid of symmetric monoidal functors f −1A → HT lifting the

functor f −1L : f −1A→ [C/C×]T is represented by the Kato–Nakayama space Xlog. �

As a consequence, we obtain, in Section 3.4, a global description of the canon-

ical morphism �X : Xlog → ∞√
X top constructed in [2, Section 4]: for every n there is a

factorization

H→ [C/C×] ∧n−→ [C/C×]

of the map exp: H→ [C/C×], given by the morphisms C→ C sending (x,y) to e(x+iy)/n and

C+ → C× defined as z �→ ez/n. Consequently, because of Theorem A, for every object of

the groupoid Xlog(T) we obtain a compatible system of objects of the groupoids
n√
X top(T),

that is, an object of
∞√
X top over T . This describes the morphism �X in functorial terms.

In the last paragraph,
n√
X top denotes the underlying “topological stack” of the

n-th root stack of X . In order to obtain a functorial description of these stacks, we have

to develop a bit of theory for a kind of “complex-valued” log structures on topological

spaces. It turns out, in fact, that the topological stack
n√
X top coincides with the n-th

root stack (in this theory of “log topological spaces”) of the log topological space Xtop

(Proposition 2.16).

Finally, in proving that the morphism Xlog → ∞√
X top that we obtain coincides

with the one of [2] (which we do in Proposition 4.6), we also point out, in Section 4, that

the Kato–Nakayama construction can be applied to log algebraic (or analytic) stacks, by

mimicking the construction of the analytification functor for stacks (recalled briefly in

Section 2.3).

Outline. Section 2 contains the basics of log structures on analytic and topological

spaces, both in the language of Kato [6] and in the alternative “Deligne–Faltings” lan-

guage introduced in [1]. We describe spaces and stacks of charts, and consider root
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6148 M. Talpo and A. Vistoli

stacks in this general framework, proving in particular that the formation of root stacks

is compatible with the analytification and “underlying topological space” functors.

In Section 3, we describe our functorial interpretation of the Kato–Nakayama

space, that is the translation in the Deligne–Faltings language of the one given in [5,

Section 1] (recalled in this paper as Theorem 3.3). We describe the natural “charts” for

Xlog that correspond to this description, and we produce a globally defined morphism

from the Kato–Nakayama space to the topological infinite root stack.

To conclude, in Section 4 we prove that the Kato–Nakayama construction can

be extended to algebraic (and analytic) stacks, and we check that the morphism to the

infinite root stack produced in the previous section coincides with the one of [2].

Notations and conventions. We assume some familiarity with log geometry. For an

introduction, see for example [6] or [2, Appendix]. We are mostly interested in fine and

saturated log structures.

By the results of [1], for schemes the “Kato language” is equivalent to the

“Deligne–Faltings” language.

All our monoids will be commutative. If P is a monoid and X is a monoid with

some additional structure (for example a topological space), we will denote by X(P) the

object HomMon(P,X) with its naturally induced additional structure. For example we can

take X = R≥0 to be the topological monoid of non-negative real numbers with respect to

multiplication, and then R≥0(P) will denote the topological monoid Hom(P, R≥0). We will

denote by P̂ the diagonalizable group scheme Spec C[Pgp] associated with the abelian

group Pgp. The sheafification of the constant presheaf with sections P will be denoted

by P.

For symmetric monoidal categories, we adopt the language and conventions of

[1] (see in particular Section 2.4).

All our algebraic spaces will be locally separated. If X is a scheme (or algebraic

space) over C, we write Xét for the small étale site of X . If X is an analytic (resp. topo-

logical) space we will denote by AX the small analytic (resp. classical) site of X . If X is

a locally separated algebraic space that is locally of finite type over C, we will denote

by Xan its analytification as an analytic space, and by Xtop the underlying topological

space of Xan. Although Xtop and Xan are the same topological space, we usually prefer to

keep the two symbols distinct, so that it will be clear whether we are in the analytic or

topological world.

We will denote by OX the structure sheaf of either a scheme (or algebraic space)

or of an analytic space.
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The Kato–Nakayama Space as a Transcendental Root Stack 6149

2 Log Structures on Analytic and Topological Spaces

In order to give a functorial interpretation of the topological infinite root stack
∞√
X top =

lim←−n

n√
X top (whose definition is recalled later) of a fine saturated log analytic space X , we

need to introduce a notion of log structures on a topological space. The analytic space

X itself could be of the form Yan for a fine saturated log algebraic space Y locally of

finite type over C, so we also take the intermediate step of discussing log structures on

analytic spaces in the language of [1].

The definitions and facts of this section can be formulated in the language of

topoi with a sheaf of monoids (in the style of [4], that discusses log structures in the

sense of Kato on certain categories of “spaces”). A detailed treatment employing this

language will appear elsewhere.

The proofs in this section will be somewhat terse. The interested reader can look

at the more detailed treatment of [1], in the algebraic case.

In this section X will be either a complex analytic space, or a topological space.

We will denote by AX the classical site ofX (i.e. the site whose objects are open subsets of

X , maps are inclusions and coverings are families of jointly surjective maps), and by OX

the sheaf of rings of complex analytic functions in the analytic case, and of continuous

complex-valued function in the topological case. We will use the term “line bundle” to

indicate holomorphic line bundles and continuous complex line bundles, respectively.

Remark 2.1. Log structures in the analytic context have already been considered in

the literature, see for example [5], and our notion coincides with the usual one. Log

structures in a topological setting were considered, with a different spirit, in [12]. We

do not know what kind of relations there are between Rognes’s definition and ours,

if any. �

2.1 Log and DF structures

The definitions that follow are the immediate generalization to our context of the ones

of [1] and [6].

Definition 2.2. A log structure on X is a sheaf of monoids M on AX together with

a map of sheaves of monoids α : M → OX that induces an isomorphism α|α−1(OX )× :

α−1O×X
∼=−→ O×X . �
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6150 M. Talpo and A. Vistoli

It turns out that, as in the algebraic context, in the presence of the mild

assumption of quasi-integrality, this definition of a log structure is equivalent to the

following.

Note that the quotient stack DivX = [OX/O×X ] on the site AX has a symmetric

monoidal structure, induced by multiplication on OX . It is moreover easy to check that

it parameterizes pairs (L, s) of a holomorphic (or continuous complex) line bundle with

a global section, in analogy with the algebraic case, and the monoidal operation is

identified with tensor product.

Later on, when we want to stress that we are considering things in the topo-

logical setting, we will denote the sheaf of continuous complex-valued functions on the

topological space T by CT , and the stack DivT by [C/C×]T .

Definition 2.3. A DF structure on X is a sheaf of sharp monoids A on AX together with

a symmetric monoidal functor A→ DivX with trivial kernel. �

In this definition and from now on “DF” stands for “Deligne–Faltings”, and “trivial

kernel” means that if a section a maps to an object that is isomorphic to (OX , 1) (the unit

object of DivX ), then a = 0. This is a particular instance of a “Deligne–Faltings object”

as defined in [1, Section 2].

One can define a category of log structures and a category of DF structures. A

morphism will in both cases consist of a homomorphism of sheaves of monoids that is

compatible with the structure map to OX (DivX respectively, in the 2-categorical sense).

Moreover, log structures and DF structures can be pulled back along morphisms of ana-

lytic or topological spaces. We refer the reader to [1, Section 3] for a detailed treatment,

that also adapts to the present case.

Recall that a log structure is quasi-integral if the action of O×X on M is free.

Proposition 2.4. Let X be an analytic (or topological) space. Then there is an

equivalence of categories between quasi-integral log structures and DF structures

on X . �

Proof. The proof is a straightforward adaptation of the one of [1, Theorem 3.6]. �

As in the algebraic case, the proof shows that in comparing these two structures,

the sheaf A is identified with the characteristic sheaf M = M/O×X .
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The Kato–Nakayama Space as a Transcendental Root Stack 6151

Definition 2.5. A log analytic space (respectively log topological space) is an ana-

lytic space (resp. topological space) X with a quasi-integral log structure α : M → OX

(equivalently, with a DF structure L : A→ DivX ). �

For the rest of the paper, all Kato log structures will be quasi-integral, we will

drop the “Kato” and “DF”, and just talk about log structures, and we will switch freely

between the two notions and notations.

One defines morphisms of log analytic (or topological) spaces as in the algebraic

case, by requiring a morphism f : X → Y together with a map f −1MY → MX , which is

compatible with the morphisms to the structure sheaves. A morphism f : X → Y of log

analytic (or topological) spaces is strict if the map f −1MY → MX is an isomorphism.

2.2 Charts

Let us discuss local models for log structures in our context. The arguments of

Sections 3.3 and 3.4 in [1] can be adapted without difficulties, but we will refrain from

giving a fully detailed treatment.

Let P be a finitely generated monoid. The analytic space (Spec C[P])an admits

a “tautological” log structure, induced via sheafification by the map of monoids P →
C[P]. This coincides with the “divisorial” log structure induced by the open embedding

P̂an ⊆ (Spec C[P])an, that is the log structure obtained by considering the subsheaf M

of OX of functions that are invertible on P̂an (we are using the notation P̂ of [1] for the

Cartier dual of Pgp). The log structure is equivariant for the action of P̂an, and hence

induces a log structure on the quotient stack [(Spec C[P])an/P̂an] (see Section 2.3 below

for a brief reminder about analytic and topological stacks). In the topological setting, we

can consider the underlying topological spaces (Spec C[P])top and P̂top, and the analogous

quotient stack [(Spec C[P])top/P̂top]. These objects will also be equipped with tautological

log structures.

Remark 2.6. Strictly speaking, we have not defined log structures on analytic or topo-

logical stacks, but we trust that the reader interested in the subtlety will be able to

fill the gap. For example, they can be seen as systems of compatible log structures on

analytic (or topological) spaces mapping to the given stack, as in [13, Definition 2.10]. �

In order to uniformize the notation, in this section we will generally denote by

A(P) the analytic space (Spec C[P])an (respectively, the topological space (Spec C[P])top),

and by A(P) the quotient stack [(Spec C[P])an/P̂an] (respectively, [(Spec C[P])top/P̂top]).
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6152 M. Talpo and A. Vistoli

These log structures on the stack A(P) have a more natural interpretation in

terms of DF structures. The following is the analogue of [1, Proposition 3.25].

Lemma 2.7. Let P be a fine sharp monoid, and X an analytic (or topological) space.

Then there is an equivalence between the category of maps X → A(P) and the category

of symmetric monoidal functors P → DivX (X). �

Here DivX (X) denotes the symmetric monoidal category of sections of the stack

DivX on the whole space X .

Proof. The case P = N is clear from the fact that [OX/O×X ](X) is the category of line

bundles with a section on X , and the same objects are parameterized by morphisms to

[C/C×]. More generally, since [Ck/(C×)k] ∼= [C/C×] × · · · × [C/C×] where the product has

k factors, the conclusion follows also for P = Nk.

Next we show how to associate a symmetric monoidal functor P → DivX (X) to a

map X → A(P) = [(Spec C[P])an/P̂an] (we will use the notation for the analytic case—the

topological case is analogous). Given p ∈ P, consider the submonoid j : 〈p〉 ⊆ P generated

by p. Since P is fine and sharp, 〈p〉 ∼= N. Consider the composite

X → [(Spec C[P])an/P̂an] → [C/C×],

where the second map is induced by the inclusion j. This corresponds to an object (Lp, sp)

of DivX (X).

Consider now two elements p,q ∈ P. The object (Lp+q, sp+q) is determined by the

morphism

X → [(Spec C[P])an/P̂an] → [(Spec C[〈p+ q〉])an/ ̂〈p+ q〉an] ∼= [C/C×].

Now note that the map [(Spec C[P])an/P̂an] → [(Spec C[〈p + q〉])an/ ̂〈p+ q〉an] is obtained

from the ones corresponding to p and q, by mapping to

[(Spec C[〈p,q〉])an/〈̂p,q〉an] ⊆ [(Spec C[〈p〉])an/〈̂p〉an] × [(Spec C[〈q〉])an/〈̂q〉an]
∼= [C/C×] × [C/C×]

(where 〈p,q〉 denotes the submonoid of P generated by p and q), and then further to the

quotient stack [(Spec C[〈p+ q〉])an/ ̂〈p+ q〉an] ∼= [C/C×], via ⊗ : [C/C×]× [C/C×] → [C/C×].
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The Kato–Nakayama Space as a Transcendental Root Stack 6153

Consequently, we obtain an isomorphism (Lp, sp) ⊗ (Lq, sq) ∼= (Lp+q, sp+q). This

gives a symmetric monoidal structure to the assignment p �→ (Lp, sp), and we obtain a

symmetric monoidal functor P → DivX (X).

To go in the opposite direction, let us take a presentation f : Nr → P with a finite

number of relations si = ti, where si, ti ∈ Nr for i = 1, . . . ,N (a finitely generated monoid

is also finitely presented - this is Rédei’s theorem [11, Theorem 72]). In other words P is

the coequalizer NN ⇒ Nr → P in the category of commutative monoids.

The given functor P → DivX (X) induces a functor Nr → DivX (X) such that the

two composites NN → DivX (X) are isomorphic. The case P = Nk gives us a morphism

X → [Cr/(C×)r], with an isomorphism between the two composites X → [CN/(C×)N ].
Now we point out that the diagram

[(Spec C[P])an/P̂an] → [Cr/(C×)r]⇒ [CN/(C×)N ]

is an equalizer in analytic stacks. This follows from the algebraic analogue of what

we are proving (which is Proposition 3.25 of [1]) and the fact that the analytifica-

tion functor (on algebraic stacks) preserves finite limits. This gives a morphism X →
[(Spec C[P])an/P̂an]. One easily checks that the resulting functor is a quasi-inverse to the

previous construction. �

The previous lemma gives the quotient stack A(P) a universal DF structure (in

both the analytic and topological cases).

Definition 2.8. A Kato chart for X is a strict morphism X → A(P). A DF chart for X is

a strict morphism X → A(P). �

A Kato chart gives a DF chart by composing with the projection A(P) → A(P)

(which is strict).

As in the algebraic case, one can check that a symmetric monoidal functor P →
DivX (X), induces by sheafification a DF structure AP → DivX . The sheaf AP is obtained

from the constant sheaf P on X by killing the local sections that become invertible in

DivX , so the map P → AP is a cokernel in the category of sheaves of monoids on AX . This

is, in fact, the definition of a chart in [1, Section 3.3].

Analogously, a Kato chart corresponds to a homomorphism of monoids P →
OX (X) that induces the given log structure M → OX by sheafifying to α : P → OX , and

taking the associated log structure P ⊕α−1O×X O×X → OX .
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6154 M. Talpo and A. Vistoli

Definition 2.9. A log analytic (or topological) space is coherent if it locally admits Kato

charts for finitely generated monoids. �

We will assume that all our log structures are coherent, and add adjectives such

as “fine” and “saturated” with the usual meaning, that is that one can find charts with

monoids P that have the corresponding property. This will be equivalent to ask for the

stalks of the characteristic monoidM to have the corresponding property (see [1, Section

3.3] for details).

Remark 2.10. One can check that for fine saturated log structures (in a quite general

setting), locally admitting Kato charts is equivalent to locally admitting DF charts. �

2.3 Analytic and topological stacks

Let us briefly pause to recall the notions of analytic and topological stacks, and the

extension of the analytification functor on schemes over C. We refer the reader to [8] for

details, especially about the latter case.

As algebraic stacks over schemes on some base S are defined as categories fibered

in groupoids over (Sch/S) that satisfy a gluing condition and are presented by a groupoid

R ⇒ U with “nice” structure maps (typically étale or smooth), analytic and topological

stacks are defined in the same way by switching schemes with the appropriate kind of

object.

For analytic stacks, we consider the site of analytic spaces with the classical

topology, and consider stacks that are presented by groupoids R ⇒ U where the struc-

ture maps are holomorphic submersions. We will use the term “Deligne–Mumford” to

indicate stacks that can be presented with a groupoid where the structure maps are

étale.

For the topological case, a topological stack will be a stack on the site of topo-

logical spaces with the classical topology, and admitting a presentation by a groupoid

R ⇒ U with structure maps that are “locally Cartesian maps with Euclidean fibers”—the

analogue in this context of smooth maps (see [8]). We will say that a topological stack is

“Deligne–Mumford” if it can be presented by a groupoid with étale structure maps (i.e.

local homeomorphisms).

There is an analytification functor that produces an analytic stack from an alge-

braic stack (locally of finite type over C), and an “underlying topological stack” functor
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The Kato–Nakayama Space as a Transcendental Root Stack 6155

that produces a topological stack from an analytic stack. They both extend the natu-

ral analytification functor on schemes of finite type over C and “underlying topological

space” functor on analytic spaces, respectively.

Remark 2.11. Let us briefly sketch the construction of the analytification functor (the

other case is analogous), and refer the reader to [8, Section 20] for more details. We will

apply the same process to the “Kato–Nakayama functor” in Section 4 in order to extend

it to log algebraic stacks, and give a slightly more detailed proof (see Theorem 4.1).

Given an algebraic stack X locally of finite type over C, we want to produce an

analytic stack (X )an. Let us choose a presenting groupoid R ⇒ U for X , and consider

the induced groupoid Ran ⇒ Uan. This is a groupoid in analytic spaces, whose structure

maps are holomorphic submersions. Hence the quotient [Ran/Uan] is an analytic stack,

that we take to be the analytification (X )an. One can check that the construction does not

depend on the presenting groupoid (up to unique isomorphism), and that this extends

to a functor from algebraic stacks to analytic stacks.

A more conceptual proof can be given along the lines of [2, Theorem 3.1], by

constructing (X )an via the left Kan extension of (−)an along the Yoneda embedding. This

gives for (X )an the “explicit” formula

(X )an = lim−→
SpecR→X

(SpecR)an,

where the colimit is a lax colimit in the 2-category of analytic stacks. �

2.4 Root stacks

Let us briefly discuss root stacks ([1, Section 4]) in the two settings analyzed in the

previous sections.

Given a sheaf of fine saturated monoids A on X and n ∈ N, consider the inclusion

in : A→ 1
nA. This can be also be seen as the map A→ A that multiplies sections by n.

Definition 2.12. Let X be a log analytic (or topological) space, and n ∈ N a positive

natural number.

The n-th root stack of X is defined by assigning to an analytic (or topologi-

cal) space Y the groupoid
n√
X(Y) of triples (φ,N ,a), where φ : Y → X is a morphism,

N : φ−1 1
nA→ DivY is a symmetric monoidal functor with trivial kernel and a is a natural

equivalence from φ−1L to the composite N ◦ in. The arrows are the obvious ones. �
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6156 M. Talpo and A. Vistoli

One easily checks that the formation of root stacks is compatible with strict base

change. Note also that If n | m there is a natural projection
m√
X → n√

X , induced by the

factorization 1
nA ⊆ 1

mA of im : A→ 1
mA.

Definition 2.13. The infinite root stack
∞√
X of X is the inverse limit lim←−n

n√
X . �

This object can be seen either as a pro-object, or as a stack over the category of

analytic (or topological) spaces, although in the analytic case it is better to see it as a

pro-object (see Remark 2.15).

As a stack,
∞√
X can also be seen as functorially parameterizing symmetric

monoidal functors AQ → DivX that extend the given L : A → DivX , where AQ is the

union
⋃

n∈N

1
nA of all the Kummer extensions of A. See [17, Section 3] for details.

Proposition 2.14. Let X be a fine saturated log analytic (or topological) space. Then for

everyn then-th root stack
n√
X is an analytic (or topological) Deligne–Mumford stack. �

Proof. The same proof given in [1, Section 4] applies. We briefly sketch it below.

We can assume that there is a global Kato chart X → A(P). Because this map is

strict, the diagram

n√
X ��

��

n√
A(P)

��
X �� A(P)

is Cartesian, so it suffices to show that n√
A(P) is an analytic DM stack.

From the functorial definition and Lemma 2.7 it is clear that the root stack of

the stack A(P) is the stack A( 1
nP), with the natural map A( 1

nP)→ A(P). Note that since
1
nP
∼= P as monoids, we actually have A( 1

nP) ∼= A(P) as stacks with a log structure, but

the map mentioned above is not the identity.

Moreover, the diagram

n√
A(P) ��

��

A( 1
nP)

��
A(P) �� A(P)
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The Kato–Nakayama Space as a Transcendental Root Stack 6157

is Cartesian, and shows that, as in the algebraic case, we have an isomorphism

n√
A(P) = [A( 1

nP)/μn(P)
]
,

where μn(P) is the Cartier dual (i.e. the group of characters) of the cokernel of Pgp →
1
nP

gp. �

Note that this also gives a quotient stack presentation

n√
X ∼= [Xn/(μn(P))an]

in the presence of a Kato chart X → A(P), where Xn = X ×A(P) A( 1
nP). The infinite root

stack, as in the algebraic case, is only pro-Deligne–Mumford.

Remark 2.15. There is a difference in the analytic case, regarding the infinite root stack
∞√
X , that is worth a few words. In the analytic case, this stack has very few objects. This

is due to the fact that analytic spaces are by definition locally of finite type, and thus

they cannot have roots of every order of a non-zero non-constant holomorphic function.

Let us consider for example X = C, with coordinate z, as a log analytic space

with the log structure given by the origin, and its infinite root stack
∞√
X . If f : Y → C is

a non-constant map from an analytic space Y that hits the origin, then the pullback to Y

of the function z is a non-constant analytic function, and there cannot exist a sequence

of analytic functions zn on Y such that znn = f ∗z for all n: the local ring OY ,y in a point

y ∈ Y that maps to the origin is local Noetherian, and if there existed roots as above,

then f ∗z ∈ mn
y for every n, hence we would have f ∗z = 0, as

⋂
n mn

y = {0}.
In this case

∞√
X is isomorphic to the disjoint union C×

⊔ ∞√
0, where the origin

0 ∈ C is given the induced log structure. Because of this, in the analytic setting it is best

to see the infinite root stack as a pro-object instead than an actual stack. �

2.5 Comparison of root stacks

Let us compare the different notions of log structures and root stacks that we just

defined, using the analytification and “underlying topological space” functors.

If X is a fine saturated log algebraic space locally of finite type over C, then by

applying the analytification functor we obtain an analytic space Xan, and an induced

analytic log structure. This is obtained by pulling back via the natural morphism of

ringed topoi φ : Xan → Xét, where Xét is the small étale topos of X .
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6158 M. Talpo and A. Vistoli

Concretely, given α : M → OX on Xét, we obtain a sheaf φ−1M on the analytic

site of Xan, and an induced symmetric monoidal functor φ−1α : φ−1M → OXan . This is not

a log structure because O×Xan is bigger than φ−1O×X , but we can take the associated log

structure

αan : Man = φ−1M ⊕(φ−1α)−1O×Xan
O×Xan

→ OXan

(note that the sheaf M does not change, i.e. Man = φ−1M ). Hence we can analytify a fine

saturated log scheme locally of finite type to obtain a fine saturated log analytic space.

In the same way, starting from a fine saturated log analytic space and applying

the “underlying topological space” functor, we obtain a fine saturated log topological

space. It is clear that both of these operations preserve the existence of local charts,

and the sheaf M . Consequently, properties of the log structure such as being finitely

generated, integral, saturated, or coherent are also preserved.

We prove now that the three versions of the root stack construction (alge-

braic, analytic, and topological) are compatible with the analytification and “underlying

topological space” functors.

Proposition 2.16. Let X be a fine saturated log algebraic space locally of finite type

over C (respectively, analytic space), and n ∈ N be a positive integer.

Then the analytic (respectively, topological) stack
n√
Xan (respectively,

n√
X top)

associated with the n-th root stack of X is canonically isomorphic to the n-th root

stack n√Xan (respectively, n
√
Xtop) of the associated log analytic space (respectively, log

topological space) of X . �

In short,
n√
Xan
∼= n√Xan and

n√
X top
∼= n
√
Xtop. This will be used to describe functori-

ally the topological infinite root stack
∞√
X top = lim←−n

n√
X top of a log analytic space (or log

algebraic space) X .

Proof. The proof will be entirely analogous in the two cases, so we will carry it out

only in the analytic case.

The general construction of (X )an, if X is any stack over schemes, is as a left Kan

extension of (−)an along the Yoneda embedding, as recalled at the end of Remark 2.11.
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The Kato–Nakayama Space as a Transcendental Root Stack 6159

In other words, we have the formula

(X )an = lim−→
SpecR→X

(SpecR)an,

where the colimit is a lax colimit in the 2-category of analytic stacks.

Now assume we are given a map f : SpecR → n√
X , and let us explain how to

produce a map g : (SpecR)an → n√Xan. By the functorial description of the stack
n√
X , the

map f corresponds to a morphism φ : SpecR→ X and a lifting of φ−1L : φ−1A→ DivR to

N : φ−1 1
nA→ DivR, and analogously for n√Xan and the map g on the analytic side. Hence,

to obtain a map g as above we need to produce a lifting Nan : φ−1 1
nAan → Div(SpecR)an of

the functor φ−1Lan : φ−1Aan → Div(SpecR)an .

Let a be a section of φ−1 1
nAan over some analytic open U ⊆ (SpecR)an. Then we

can find an étale V → SpecR with a section σ : U → Van that is a homeomorphism

onto the image, and a section b of φ−1 1
nA(V) that corresponds to a. The section b gives

N(b) = (Lb, sb), a line bundle over V with a global section s. By analytifying, we get a

complex line bundle (Lb)an with a global holomorphic section (sb)an. By restricting to U ,

this defines the image of a in Div(SpecR)an(U). This process extends in the obvious way to

a symmetric monoidal functor of monoidal stacks over the analytic site A(SpecR)an that

lifts φ−1Lan, that is a morphism (SpecR)an → n√Xan.

From this procedure, we obtain a morphism of analytic stacks

lim−→
SpecR→n√

X

(SpecR)an = n√
Xan → n

√
Xan

as follows. For every C-algebra R of finite type, every morphism SpecR→ n√
X induces

a morphism (SpecR)an → n√Xan as explained above. Moreover, this assignment is

compatible with commuting triangles

SpecR ��

��

n√
X

SpecR′

�����������

and therefore, by the universal property of the colimit, we obtain the desired morphism
n√
Xan → n√Xan.

To check that this map is an isomorphism, we can do so locally on X , where there

is a Kato chart X → Spec C[P] for a fine torsion-free monoid P. In that case we have a
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6160 M. Talpo and A. Vistoli

quotient stack description of
n√
X as

n√
X = [Xn/μn(P)]

where Xn = X ×Spec C[P] Spec C[ 1nP] and μn(P) is the Cartier dual of the cokernel of Pgp →
1
nP

gp, that acts on Xn by acting on the second factor. From the construction of (−)an

via presenting groupoids of [8, Theorem 20.1], recalled in Remark 2.11, it follows that
n√
Xan = [(Xn)an/μn(P)an].

From the analytic stack description of n√Xan as a quotient in the presence of a

global chart given in Section 2.4, we see that it coincides with the one just described.

The map
n√
Xan → n√Xan in this local case is an isomorphism, and this concludes the

proof. �

3 The Kato–Nakayama Space as a “Root Stack”

Let X be a fine saturated log analytic space. In this section, we give a functorial descrip-

tion of the Kato–Nakayama space Xlog (see [7] or the Appendix of [2]) of X in the language

of DF structures, and that bears a close similarity to the description of root stacks. It

presents the Kato–Nakayama space as a sort of “transcendental” root stack.

As a byproduct of this alternative description, we obtain a global construction

of the canonical morphism �X : Xlog → (
∞√
X)top of [2] (Section 3.4 and Proposition 4.6

below).

Let us start by briefly recalling howXlog is constructed [7, Section 1]. Let us denote

by p† the log analytic space whose underlying space is Spec C, and the log structure is

defined by the monoid R≥0×S1 and the map α : R≥0×S1 → C = OSpec C given by (r,a) �→ r·a.

One defines Xlog as the set of morphisms of log analytic spaces Hom(p†,X). Equivalently,

elements of Xlog are pairs (x, φ) consisting of a point x ∈ X and a homomorphism of

groups φ : Mgp
x → S1 such that φ(f ) = f (x)

|f (x)| for every f ∈ O×X ,x ⊆ Mgp
x .

If X = C(P) = (Spec C[P])an, then Xlog can be naturally identified with

Hom(P, R≥0 × S1). More generally, if X has a Kato chart X → C(P), then Xlog can be

identified with a closed subset of the space X ×Hom(Pgp,S1) (where Hom(Pgp,S1) has its

natural topology), and we can equip it with the induced topology. This turns out to be

independent of the particular Kato chart that we choose, so we get a topology on the

space Xlog for a general X .

The resulting map τ : Xlog → X that sends (x, φ) to x is continuous and proper.

The fiber τ−1(x) over a point x ∈ X can be identified with the space Hom(M
gp
x ,S1), which

is non-canonically isomorphic to a real torus (S1)r , where r is the rank of the (finitely
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The Kato–Nakayama Space as a Transcendental Root Stack 6161

generated) free abelian group M
gp
x . If the log structure of X is determined by a normal

crossings divisor D ⊆ X , then the space Xlog coincides with the “real oriented blowup”

of X along D.

The space Xlog should be thought of as an “underlying topological space” of the

log analytic space X , where the log structure is replaced by the non-trivial topology of

the fibers of the map τ : Xlog → X . For example, in [7, Theorem 0.2] it is proven that

log étale and log de Rham cohomology on X can be identified with “Betti” (or singular)

cohomology on the space Xlog.

3.1 The case of a single divisor

Let us first look at a motivating example.

Assume that X is a smooth analytic space with a log structure given by a single

smooth divisor. In this case there is a global chart X → [C/C×] for the log struc-

ture, corresponding to the map N → [C/C×](X) that sends 1 to (OX (D), 1D). Here we

are considering C and C× as analytic spaces.

The various root stacks of X can be obtained as fibered products in the following

manner (see Section 2.4): if ∧n : [C/C×] → [C/C×] is the map induced by “raising to the

n-th power” on both the space and the group, we have a Cartesian diagram

n√
X ��

��

[C/C×]
∧n

��
X �� [C/C×].

The basic insight is that the Kato–Nakayama space can be obtained in a similar way as

well. The idea for what follows is due to Kai Behrend.

Let us consider the “extended complex plane”

C = ({−∞} × R) ∪ C = ({−∞} ∪ R)× R

with its operation given by addition (where −∞ + x = −∞ for every x ∈ {−∞} ∪ R),

that makes it a commutative topological monoid. There is an action of the group C+ of

complex numbers with addition (we use this notation to distinguish it from the analytic

space C) on C given by translation, that is (a + ib) · (x,y) = (a + x,b + y), and we will

consider the quotient stack [C/C+] as a topological stack.
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6162 M. Talpo and A. Vistoli

The action of C+ on C has two orbits: points (x,y) with x ∈ R have trivial stabi-

lizer and the action is transitive among them, so they give a single open point of [C/C+].
The other orbit is the line {−∞} × R, with stabilizer R+ ⊆ C+. So we can loosely write

[C/C+] = ∗ ∪ BR+.

We have a morphism of stacks exp: [C/C+] → [C/C×] given by the exponential

exp: C+ → C× at the level of groups, and by the exp-equivariant map C→ C that sends

(x,y) to ex+iy (with the convention that e−∞+iy = 0), at the level of spaces. This coincides

with the universal cover of C× if we restrict it to the complement of the line {−∞} × R,

which in turn gets contracted to the origin in C. Now note that [C/C×] also has two

points, namely [C/C×] = ∗ ∪ BC×, and the morphism [C/C+] → [C/C×] “maps” ∗ to ∗
and BR+ → BC×, via exp: R+ → C×. This last homomorphism is injective with cokernel

isomorphic to S1.

Because of this description, the morphism [C/C+] → [C/C×] is an isomorphism

over the open point and an S1-bundle over the closed point. Since the map X → [C/C×]
sends X \ D to the open point and D to the closed point, it is apparent that by pulling

back we will find precisely the Kato–Nakayama space (i.e. the real oriented blow up,

in this case), so that there should be (see Section 3.3 below for the proof) a Cartesian

diagram

Xlog ��

τ

��

[C/C+]
exp

��
X �� [C/C×].

Moreover note that [C/C+] → [C/C×] factors as [C/C+] → [C/C×] ∧n−→ [C/C×] for every n

by sending (x,y) ∈ C to e(x+iy)/n ∈ C and using exp
( ·
n

)
: C+ → C× on the groups.

This will give a morphismXlog → n√
X top for everyn (here we are using Proposition

2.16), that all together will give a morphism Xlog → lim←−n
(
n√
X)top = ∞√

X top of topological

stacks, in this special case.

3.2 The general case

Let us use the language of DF structures to generalize the above construction.

The log structure of X is given by a morphism A→ DivX of symmetric monoidal

stacks on the analytic site AX . The n-th root stack
n√
X parameterizes liftings of the log
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The Kato–Nakayama Space as a Transcendental Root Stack 6163

structure to the sheaf of formal fractions 1
nA, that is diagrams

A ��

��

DivX

1
nA

���
�

�
�

(over some analytic space over X ) or, alternatively, liftings

A ��

���
�

�
� DivX

DivX

∧n
��

where ∧n : DivX → DivX sends (L, s) into (L⊗n, s⊗n).

There is a description of the Kato–Nakayama space in this spirit, that uses the

symmetric monoidal stack [C/C+] introduced in the previous section (which turns out

to “dominate” every such root morphism ∧n, as we already explained above and will

discuss in more detail in Section 3.4).

Definition 3.1. Let us consider the stack XC over the category of topological spaces over

Xtop that sends a space φ : T → Xtop to the groupoid of liftings

φ−1A ��

���
�

�
�

�
[C/C×]T

[C/C+]T

exp

��

where φ−1A→ [C/C+]T is a symmetric monoidal functor. The arrows between the objects

are given by the obvious natural transformations. �

Here the map φ−1A→ [C/C×]T is the pullback to T of the topological DF structure

on Xtop induced by the given analytic DF structure on X .

The stack XC parameterizes liftings of the C×-torsors (φ−1L)(a) to C+-torsors

along exp: C+ → C×, equipped with a C+-equivariant map to C that covers the given

C×-equivariant map (φ−1L)(a)→ C.
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Theorem 3.2. Let X be a fine saturated log analytic space. The stack XC is represented

by the Kato–Nakayama spaceXlog, that is there is a canonical isomorphism of topological

stacks XC
∼= Xlog over Xtop. �

The starting point of the proof is the following functorial characterization of

Xlog.

Theorem 3.3 ([5, (1.2)]). Consider the functor Flog that sends a topological space φ : T →
Xtop to the set of morphisms of sheaves of abelian groups c : φ−1Mgp → S1

T such that

c(φ−1f ) = f /|f | for f ∈ O×X , and that acts in the obvious way on the arrows.

Then Flog is represented by the Kato–Nakayama space Xlog. �

Proof of Theorem 3.2. Let us describe concretely how the analytic log structure

α : M → OX on X induces a topological log structure on Xtop. We take the composite

β : M → CXtop of α and the natural map OX → CXtop (here we are denoting by CT the sheaf

of continuous complex-valued functions on the topological space T ), and then form the

amalgamated sumMtop = M⊕β−1(C×Xtop
)C
×
Xtop

. The induced map αtop : Mtop → CXtop gives the

topological log structure. Note that we have an isomorphism between the characteristic

shaves M ∼= Mtop, induced by M → Mtop.

We will rephrase the functorial interpretation of Theorem 3.3 in the language

of DF structures. First note that since S1 is a group, we have Hom(φ−1Mgp,S1
T ) =

Hom(φ−1M ,S1
T ) and this is compatible with the condition on sections of O×X .

We claim that the set of homomorphisms{
c ∈ Hom(φ−1M ,S1

T )

∣∣∣ c(φ−1f ) = f

|f | for f ∈ O×X
}

is the same as the set of morphisms of sheaves of monoids d : φ−1M → (R≥0 × S1)T such

that d(φ−1f ) = (|f |, f /|f |) for f ∈ O×X and the composite φ−1M → (R≥0 × S1)T → (R≥0)T

is the homomorphism sending a section m ∈ φ−1M to the continuous function |αtop(m)|
with values in R≥0 (where | · | denotes the usual Euclidean absolute value on C).

Given such a d, we can compose with the second projection (R≥0×S1)T → S1
T and

obtain a c ∈ Hom(φ−1M ,S1
T ) satisfying the condition above. In the other direction, given

c : φ−1M → S1
T , one can define the corresponding d via d(m) = (|αtop(m)|, c(m)

)
.

Now we claim that morphisms d : φ−1M → (R≥0 × S1)T as above correspond to

symmetric monoidal functors

d : φ−1M → [R≥0 × S1/C×]T
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The Kato–Nakayama Space as a Transcendental Root Stack 6165

that lift the DF structure Ltop : φ−1M → [C/C×]T associated with αtop. Here the action

of C× ∼= R>0 × S1 on R≥0 × S1 is given by multiplication on the two factors and [R≥0 ×
S1/C×]T → [C/C×]T is induced by the C×-equivariant function R≥0 × S1 → C sending

(r,a) to r · a ∈ C.

First observe that, by construction of the sheaf Mtop and the log structure αtop,

there is a bijection between maps d : φ−1M → (R≥0 × S1)T such that d(φ−1f ) = (|f |, f /|f |)
for every f ∈ O×X and maps d̃ : φ−1Mtop → (R≥0×S1)T such that d̃(f ) = (|f |, f /|f |) for every

f ∈ C×T .

Now note that the group C×T acts on both φ−1Mtop and (R≥0 × S1)T , and moreover

the action on φ−1Mtop is free, with quotient φ−1M . By taking the stacky quotient of d̃ by

this action we get a symmetric monoidal functor

d : φ−1M → [R≥0 × S1/C×]T .

Observe also that the composite φ−1M
d−→ [R≥0 × S1/C×]T → [C/C×]T is naturally

identified with φ−1Ltop, where Ltop is the DF structure associated with αtop.

The inverse construction is obtained by taking the base change of such a d along

the projection (R≥0 × S1)T → [R≥0 × S1/C×]T , which is a C×T -torsor.

Finally we note that there is an isomorphism of symmetric monoidal stacks

[C/C+] ∼= [R≥0 × S1/C×],

where the action on the left is the same as in Section 3.1. The subgroup j : Z ⊆ C+ given

by k �→ 2kπ i acts without stabilizers on C, and the quotient is C/Z = R≥0 × S1 (the map

C→ R≥0 × S1 is (x,y) �→ (ex , eiy)). Moreover the cokernel of j is C× (and the map is given

by the exponential), and therefore

[C/C+] ∼= [(C/Z)/(C+/Z)] ∼= [R≥0 × S1/C×]

as symmetric monoidal stacks.

This also gives an isomorphism of symmetric monoidal stacks [R≥0 × S1/C×]T ∼=
[C/C+]T over the site AT , which is compatible with the natural maps to [C/C×]T . This

shows that the functorial description of Theorem 3.3 coincides with the one of the stack

XC that we introduced above, and concludes the proof. �
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Remark 3.4. With the same reasoning as in the proof, we also have

[R≥0 × S1/C×] ∼= [R≥0/R>0]

(by writing C× = R>0 × S1 and cancelling the S1 factor). �

3.3 Charts

In the spirit of the functorial interpretation of Theorem 3.2, we can obtain “charts” for

the Kato–Nakayama space Xlog out of charts for the log structure of X .

Specifically, when X has a DF chart X → [(Spec C[P])an/P̂an] with P fine and

torsion-free, the Cartesian diagram described in Section 3.1 can be replaced by the more

general

Xlog ��

��

[C(P)/C+(P)]

��
Xtop �� [C(P)/C×(P)]

(1)

where C(P) = Hom(P, C) and C+(P) = Hom(P, C+) have their natural topologies and

monoid or group structures. The vertical map is given by composition with the expo-

nential maps C→ C and C+ → C× that were discussed in Section 3.1, and for P = N the

diagram reduces to the one showing up at the end of the discussion.

Remark 3.5. For every finitely generated monoid P there is an isomorphism

[C(P)/C+(P)] ∼= [(R≥0 × S1)(P)/C×(P)]

induced by the projection C(P)→ (R≥0 × S1)(P) and the exponential C+(P)→ C×(P), as

in the proof of Theorem 3.2. In an analogous way, we also have an isomorphism

[(R≥0 × S1)(P)/C×(P)] ∼= [R≥0(P)/R>0(P)] .

We can use any one of these models to describe charts forXlog, and we will switch

back and forth without further mention. �

Proposition 3.6. Let X be a fine saturated log analytic space equipped with a DF chart

X → [(Spec C[P])an/P̂an], with P fine and torsion-free. Then there is a natural diagram (1)

as above, and it is Cartesian. �
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Proof. The point is to show that [C(P)/C+(P)] → [C(P)/C×(P)] is the stack of charts for

the objects parameterized by the Kato–Nakayama space, as in Theorem 3.2.

Given the isomorphisms

[C/C+] ∼= [R≥0 × S1/C×]

and

[C(P)/C+(P)] ∼= [(R≥0 × S1)(P)/C×(P)] ,

this claim follows from the following two facts.

• For a fine torsion-free monoid P and a topological space T , symmetric

monoidal functors P → [R≥0 × S1/C×](T) correspond to morphisms T →
[(R≥0 × S1)(P)/C×(P)] (the analogue of Lemma 2.7 - see also [16, Proposition

3.10]).

• A symmetric monoidal functor P → [R≥0 × S1/C×](T) can be sheafified to

a morphism of symmetric monoidal stacks A → [R≥0 × S1/C×]T with trivial

kernel (see Propositions 2.4 and 2.10 of [1]), compatibly with the sheafification

of the induced functor P → [R≥0 × S1/C×](T)→ [C/C×](T).

We leave the details to the reader. �

These kinds of charts are related to the local models for Xlog given by the topo-

logical space Hom(P, R≥0×S1) (see [7, Section 1]) in the same way as DF charts are related

to Kato charts for log spaces.

In fact for every fine monoid P the natural diagram

(R≥0 × S1)(P) ��

��

[(R≥0 × S1)(P)/C×(P)]

��
C(P) �� [C(P)/C×(P)]

is Cartesian.
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Note however that by using the presentation [C(P)/C+(P)] to compute the fibered

product above, we would “spontaneously” end up with the diagram

[C(P)/Z(P)] ��

��

[C(P)/C+(P)]

��
C(P) �� [C(P)/C×(P)]

where the group Z(P) = Hom(P, Z) is the kernel of the surjective map exp(P) : C+(P) →
C×(P). Note that to be precise this should be denoted by 2π iZ(P), and thought of as

Hom(P, 2π iZ), but we prefer to keep the notation lighter, and have the coefficient 2π i in

the inclusion Z→ C+, as k �→ 2π ik.

Note that of course there is an isomorphism (R≥0×S1)(P) ∼= [C(P)/Z(P)], but this

quotient stack presentation gives some insight into the fact that the space C(P), that is

used by Ogus in [9] in the form of H(P) = Hom(P, H) = Hom(P, R≥0) × Hom(P, R) (see in

particular Section 3.1), is like an “atlas” for the Kato–Nakayama space in this language.

This is further explored in [15], in relation to a correspondence between certain sheaves

of modules on Xlog and parabolic sheaves with real weights.

We can see an analogy with root stacks by looking at the presentations
n√
X ∼=

[Xn/μn(P)] given by a Kato chart X → Spec C[P]. Here the atlas is Xn = X ×Spec C[P]
Spec C[ 1nP], and the group μn(P), which is the kernel of C×(P)→ C×(P) induced by z �→ zn,

is the analogue of the group Z(P) (kernel of the exponential) above.

Remark 3.7 (Differentiable structure). The space Xlog has more structure than just that

of a topological space, as may be apparent by staring at the charts we just described. The

space C has a smooth (even real analytic) structure (with a boundary), that is respected

by the action of C+.

In fact, as proven in [4, Section 6.8], the Kato–Nakayama space is naturally a

differentiable space [3], and on top of that it carries a sort of “log structure” of its

own. Precisely, it is has a positive log differentiable structure [4, Section 6.1], meaning

a log structure on the space Xlog equipped with the sheaf of monoids R≥0
Xlog

, where for

a differentiable space Y the sheaf R≥0
Y on Y is the sheaf of functions of differentiable

spaces to R≥0.

In analogy with the other cases (i.e. of log structures on algebraic, analytic and

topological spaces), the stack of DF charts for this category of log structures would be

the quotient [R≥0(P)/R>0(P)] (see [16, Proposition 3.10] for a precise statement, in a more

general setting), and in fact the charts for Xlog described in this section are of this form.
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The resulting structure on Xlog coincides with the one of [4, Section 6.8], since the maps

Xlog → [C(P)/C+(P)] factor through the “Kato chart” given by Xlog → (R≥0 × S1)(P) →
R≥0(P), in presence of a Kato chart X → (Spec C[P])an for X . �

3.4 The map to the infinite root stack

Let us show how the functorial interpretation of Theorem 3.2 gives a globally defined

morphism of topological stacks Xlog → n√
X top for every n, and these assemble into a mor-

phism of pro-topological stacks Xlog → ∞√
X top. We will check later (see Proposition 4.6)

that this morphism coincides with the one constructed in [2, Proposition 4.1].

The point here is that the description of Xlog as a root stack allows us to

canonically extract n-th roots, as follows: for a topological space φ : T → Xtop let us

define

�n(T) : Xlog(T)→ n√
X top(T)

by sending a morphism of symmetric monoidal categories φ−1A→ [C/C+]T to the com-

posite with the map fn : [C/C+]T → [C/C×]T , induced by C→ C that sends (x,y) to e(x+iy)/n

and C+ → C× that sends z to ez/n.

This gives an object of
n√
X top. In fact we have a commutative diagram

[C/C+]T
fn

��

exp 		����������
[C/C×]T

∧n
��

[C/C×]T

that shows that φ−1A → [C/C+]T fn−→ [C/C×]T lifts the functor φ−1L : φ−1A → [C/C×]T
along the n-th power map ∧n : [C/C×]T → [C/C×]T . Here we are using the description of

the functor of points of
n√
X top given by Proposition 2.16.

The resulting morphisms are compatible with respect to the projections
m√
X top →

n√
X top where n |m, and they give a morphism of pro-objects Xlog → ∞√

X top.

Remark 3.8. As in the previous discussions, we can exchange [C/C+]with [R≥0×S1/C×].
Note however that the above maps cannot be defined as equivariant maps R≥0× S1 → C

(there is no section of the maps zn : S1 → S1 or C× → C×). �
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Remark 3.9 (Real roots). The point of the above construction is to make use of the mor-

phism φ 1
n

: [C/C+] → [C/C+] induced by the maps C → C acting as (x,y) �→ (x/n,y/n)

and C+ → C+ given by z �→ z/n. This corresponds to extracting n-th roots, in that the

diagram

[C/C+]
exp

��

[C/C+]
exp

��

φ 1
n



[C/C×] ∧n �� [C/C×]

commutes.

More generally one can consider φr : [C/C+] → [C/C+] for any r ∈ R>0, given in

the same way by the maps C → C, defined as (x,y) �→ (rx, ry), and C+ → C+ given by

z �→ rz. Note that φr is an isomorphism for every r, with inverse φ 1
r
.

Using these morphisms one can show that a lifting parameterized by the Kato–

Nakayama space

φ−1A
L ��

L
C �����������
[C/C×]T

[C/C+]T

��

will induce a 2-commutative diagram

φ−1A

��

L �� [C/C×]T

φ−1AR≥0

LR

�����������

(where AR≥0 is the subsheaf of monoids of Agp ⊗Z R generated by sections of the form

a ⊗ r with a ∈ A and r ∈ R≥0) that can be seen as a “real root” of the log structure, by

setting

LR

(∑
i

ri · ai
)
= exp(φr1(LC(a1)))⊗ · · · ⊗ exp(φrk (LC(ak)).

where ri ∈ R≥0 and ai are sections of φ−1A.
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It is not clear whether these two kinds of lifting can be identified com-

pletely, especially without imposing any “continuity” conditions on the second type of

diagrams. �

4 The Kato–Nakayama “Space” of a Log Algebraic Stack

In this final section, we observe that the Kato–Nakayama construction applies also to

log algebraic stacks that are locally of finite type over the complex numbers (and to

log analytic stacks) and produces a topological stack, and we relate this to the “charts”

for the Kato–Nakayama space described in Section 3.3. We also check that the mor-

phism Xlog → ∞√
X top that was described in Section 3.4 coincides with the one of [2,

Proposition 4.1].

Denote by Logst the 2-category of locally of finite type fine log algebraic stacks

over C, and by Topst the 2-category of topological stacks.

Theorem 4.1. There is a morphism of 2-categories (−)log : Logst→ Topst that preserves

colimits, and extends the usual Kato–Nakayama functor on log algebraic spaces. This

functor is uniquely determined (in the 2-categorical sense) by these properties. �

Remark 4.2. The preceding theorem is valid also if we replace the 2-category Logst

by the 2-category of fine log analytic stacks. Let us note that the analytification LOGan

of Olsson’s stack LOG (see [10]) is the stack that parameterizes fine log structures on

analytic spaces, that we denote temporarily by LOGC.

In fact, the discussion in [10, Section 5] describes the stack LOG as the colimit in

the category of stacks of the diagram, indexed by finitely generated integral monoids,

of the toric stacks [Spec C[P]/P̂], with the natural maps between them. Since the local

toric models are “the same”, that discussion applies also to the analytic stack LOGC that

parameterizes fine log structures on analytic spaces, which is then the colimit, indexed

by the same category, of the stacks [(Spec C[P])an/P̂an].
Finally the analytification functor preserves colimits, and there is a natural iso-

morphism [Spec C[P]/P̂]an
∼= [(Spec C[P])an/P̂an] for any fine monoid P, so we obtain an

induced canonical isomorphism LOGan
∼= LOGC.

The functor (−)log can be applied to the analytic stack LOGan to obtain a “univer-

sal” Kato–Nakayama space, in the sense that for every fine log analytic space (or stack)
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X there is a Cartesian square of topological stacks

Xlog ��

��

LOGlog

��
Xtop �� LOGtop. �

Remark 4.3. As it happens for the Kato–Nakayama space (see Remark 3.7), for every

log algebraic (or analytic) stack X the topological stack Xlog should have a structure

of a “(positive log) differentiable stack” over the real numbers (the terminology is a bit

awkward, since “differentiable stack” already has a meaning in the smooth differentiable

world). �

Proof of Theorem 4.1. We mimic the proof in [8, Section 20].

Assume that R ⇒ U is a presentation of a log algebraic stack X . Then both U and

R have induced log structures, and the structure maps of the groupoid presentation are

strict. Since the Kato–Nakayama functor preserves finite limits, we see that the resulting

Rlog ⇒ Ulog is a groupoid in topological spaces.

Since the structure maps of R ⇒ U are smooth and strict, the structure maps of

Rlog ⇒ Ulog are “locally Cartesian maps with Euclidean fibers” in Noohi’s terminology

(see [8]). We define Xlog to be the quotient stack [Ulog/Rlog]. We sketch an argument to

justify that this is independent of the groupoid presentation and extends to a functor,

leaving most of the 2-categorical details to the reader.

Given another presenting groupoid R′ ⇒ U ′ of X , we can find a third one

R
′′ ⇒ U

′′
that has a map to both of these, inducing isomorphisms between the asso-

ciated stacks. We will check that the induced morphisms [U ′′log/R
′′
log] → [U ′log/R

′
log]

and [U ′′log/R
′′
log] → [Ulog/Rlog] are isomorphisms. In this way we get an isomorphism

[U ′log/R
′
log] → [Ulog/Rlog] that depends on the choice of the third groupoid, but is unique

up to a unique isomorphism. This defines the functor on objects.

Let us check that a map of groupoids (R ⇒ U)→ (R′ ⇒ U ′) in algebraic spaces

that induces an isomorphism of quotient stacks gives an isomorphism [Ulog/Rlog] ∼=
[U ′log/R

′
log]. We use the following fact (see [14, Tag 046R]): a morphism of groupoids as

above in an arbitrary site induces an isomorphism between the quotient stacks if and

only if

(i) the composite t ◦ π1 : R′ ×U ′ U → U ′ locally admits sections, and

(ii) the natural map R→ (U × U)×U ′×U ′ R′ is an isomorphism.
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In our situation, since (R ⇒ U) → (R′ ⇒ U ′) induces an isomorphism on the quotient

stacks, we infer that (i) and (ii) hold. Using the fact that all maps are strict and by

applying the functor (−)log to all diagrams, we can conclude that (i) and (ii) also hold

for the map of groupoids (Rlog ⇒ Ulog) → (R′log ⇒ U ′log) in topological spaces. Thus, the

induced [Ulog/Rlog] → [U ′log/R
′
log] is an isomorphism.

On 1-arrows, given a morphism f : X → Y we can find presenting groupoids of

X and Y and a map between those, that induces f . We use the above construction to

obtain a morphism flog : Xlog → Ylog, and this again turns out to be unique up to a unique

isomorphism.

The effect on natural transformation is uniquely determined by the above. �

Note that by construction for any log algebraic (or analytic) stack X there is a

projection τ : Xlog → Xtop.

Remark 4.4. A more general statement could be proved along the lines of Theorem 3.1

(and the discussion that follows) of [2], using more sophisticated machinery. �

Example 4.5. The Kato–Nakayama space of [A1/Gm] is the topological stack [R≥0 ×
S1/C×], for the usual action. More generally, for a fine saturated monoid P the Kato–

Nakayama space of the quotient [(Spec C[P])an/P̂an] is the stack [(R≥0×S1)(P)/C×(P)] that

appears in the discussion of Section 3.3. �

Let us show that the morphism constructed in Section 3.4 coincides with the

morphism �X of [2, Section 4].

Proposition 4.6. The morphism Xlog → ∞√
X top of Section 3.4 coincides with the

morphism �X constructed in [2, Proposition 4.1]. �

Proof. First, in light of the construction of Theorem 4.1 we can reinterpret Proposition

4.4 of [2] as follows: if X is a fine saturated log algebraic space locally of finite type over

C (or a fine saturated log analytic space), then for every positive integer n the canonical

morphism (
n√
X)log → Xlog is an isomorphism.

Indeed, it is proven there that, locally where X has a Kato chart, and thus the

root stack has a presentation
n√
X = [Xn/μn(P)], the map (Xn)log → Xlog is a μn(P)an-torsor.

On the other hand the stack (
n√
X)log is identified with the quotient stack [(Xn)log/μn(P)an]

(note μn(P)log = μn(P)an since the log structure is trivial), and hence turns out to be

isomorphic to Xlog via the natural map.
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Note that since for every n there is a projection (
n√
X)log → n√

X top, this produces

a canonical morphism Xlog
∼= (

n√
X)log → n√

X top, that manifestly coincides with the �n

constructed in [2, Section 4].

Now let us check that it also agrees with the natural transformation described

in Section 3.4.

The point is the following commutative diagram:

(
n√
X)log

∼=

����
��

��
��

�

��

�� [C( 1
nP)/C+( 1

nP)]

��

φn(P)

∼=



												

Xlog

��

��

��











[C(P)/C+(P)]

��

φ 1
n

(P)

��

n√
X top

��

����������
[C( 1

nP)/C×( 1
nP)]



������������

Xtop �� [C(P)/C×(P)]

where the bottom, front and back side of the cube (and hence also the top) are Cartesian,

and φn(P), φ 1
n
(P) are defined in the same way as the analogous maps of Remark 3.9.

The morphism Xlog → n√
X top described in Section 3.4 is determined (using the

functorial interpretation of Xlog) by the composite

Xlog → [C(P)/C+(P)]
φ 1
n

(P)

−−−→ [C( 1
nP)/C+( 1

nP)] → [C( 1
nP)/C×( 1

nP)]

as the induced map

Xlog → Xtop ×[C(P)/C×(P)] [C( 1
nP)/C×( 1

nP)] = n√
X top.

On the other hand, the morphism of [2, Proposition 4.1], as per the discussion at the

beginning of the proof, is determined by the composite

Xlog → (
n√
X)log → n√

X top

where the first arrow is the inverse of the isomorphism in the diagram above.

This implies that the two maps Xlog → n√
X top that we just described coincide (in

the 2-categorical sense). In fact, it is equivalent to check that the two maps (
n√
X)log →

n√
X top given by the vertical arrow and by the composite (

n√
X)log → Xlog → n√

X top coincide.
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The vertical arrow is determined as the map (
n√
X)log → Xtop×[C(P)/C×(P)] [C( 1

nP)/C×( 1
nP)] =

n√
X top induced by the two maps

(
n√
X)log → [C( 1

nP)/C+( 1
nP)] → [C( 1

nP)/C×( 1
nP)] (2)

and

(
n√
X)log → Xlog → Xtop

and the second one is determined likewise, by the two maps

(
n√
X)log → Xlog → [C(P)/C+(P)]

φ 1
n

(P)

−−−→ [C( 1
nP)/C+( 1

nP)] → [C( 1
nP)/C×( 1

nP)] (3)

and

(
n√
X)log → Xlog → Xtop.

The claim now follows from the fact that the two maps (
n√
X)log → [C( 1

nP)/C+( 1
nP)] in

(2) and (3) coincide, since the morphism φ 1
n
(P) : [C(P)/C+(P)] → [C( 1

nP)/C+( 1
nP)] is the

inverse of φn(P) : [C( 1
nP)/C+( 1

nP)] → [C(P)/C+(P)]. �

Remark 4.7. To conclude, let us point out that if we equip every Kato–Nakayama

space (or stack) Xlog with its sheaf of rings Olog
X defined in [7], then the isomorphism

Xlog
∼= (

n√
X)log is not an isomorphism of ringed topological stacks. This is further

explored in [15] (see Section 5.1 in particular), in relation to question (2) mentioned

in the introduction. �

Funding

A.V. is partially supported by research funds from the Scuola Normale Superiore and M. T. was

supported by the University of British Columbia.

Acknowledgments

We are happy to thank Kai Behrend for a key idea, and David Carchedi, Nicolò Sibilla, and Jonathan

Wise for useful conversations. We are also grateful to the anonymous referee for useful comments

and suggestions.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2018/19/6145/3770480 by guest on 20 April 2024



6176 M. Talpo and A. Vistoli

References
[1] Borne, N. and A. Vistoli. “Parabolic sheaves on logarithmic schemes.” Advances in Mathe-

matics 231, no. 3–4 (2012): 1327–63.

[2] Carchedi, D., S. Scherotzke, N. Sibilla, and M. Talpo. “Kato-Nakayama spaces, infinite root

stacks, and the profinite homotopy type of log schemes.” To appear in Geometry & Topology.

Preprint, arXiv:1511.00037.

[3] William D. Gillam. “On differentiable and analytic spaces.” In preparation.

[4] Gillam, W. D. and S. Molcho. “Log differentiable spaces and manifolds with corners.”

Preprint, arXiv:1507.06752.

[5] Illusie, L., K. Kato, and C. Nakayama. “Quasi-unipotent logarithmic Riemann-Hilbert cor-

respondences.” Journal of Mathematical Sciences, the University of Tokyo, 12 (2005):

1–66.

[6] Kazuya K. “Logarithmic structures of Fontaine-Illusie.” In Algebraic Analysis, Geometry,

and Number Theory (Baltimore, MD, 1988), edited by J.-I. Igusa, 191–224. Baltimore, MD:

Johns Hopkins University Press, 1989.

[7] Kato, K. and C. Nakayama. “Log Betti cohomology, log étale cohomology, and log de Rham

cohomology of log schemes over C.” Kodai Mathematical Journal 22, no. 2 (1999): 161–86.

[8] Noohi, B. “Foundations of topological stacks I.” arXiv:math/0503247, 2005.

[9] Ogus, A. “On the logarithmic Riemann-Hilbert correspondence.” Kazuya Kato’s fiftieth

birthday. Documenta Mathematica 2003 (2003): 655–724.

[10] Olsson, M. C. “Logarithmic geometry and algebraic stacks.” Annales scientifiques de l’École

normale supérieure (4) 36, no. 5 (2003): 747–91.

[11] Rédei, L. The Theory of Finitely Generated Commutative Semigroups. International Series

in Pure and Applied Mathematics, edited by I. N. Sneddon, M. Stark and K. A. H. Gravett, 82,

London, New York, Elsevier, 2014. 368 pages.

[12] Rognes, J. “Topological logarithmic structures.” New topological contexts for Galois theory

and algebraic geometry (BIRS 2008), 16 (2009): 401–544.

[13] Scherotzke, S., N. Sibilla, and M. Talpo. “On a logarithmic version of the derived McKay

correspondence.” Preprint, arXiv:1612.08961.

[14] The Stacks Project Authors. Stacks Project. http://stacks.math.columbia.edu, 2016.

[15] Talpo, M. “Parabolic sheaves with real weights as sheaves on the Kato-Nakayama space.”

Preprint, arXiv:1703.04777.

[16] Talpo, M. and A. Vistoli. “A general formalism for logarithmic structures.” Preprint,

arXiv:1703.02663.

[17] Talpo, M. and A. Vistoli. “Infinite root stacks and quasi-coherent sheaves on logarithmic

schemes.” Preprint, arXiv:1410.1164.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2018/19/6145/3770480 by guest on 20 April 2024

http://arxiv.org/abs:math/0503247
http://stacks.math.columbia.edu


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Error
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.1000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2003
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError false
  /PDFXTrimBoxToMediaBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXSetBleedBoxToMediaBox false
  /PDFXBleedBoxToTrimBoxOffset [
    9.00000
    9.00000
    9.00000
    9.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /Unknown

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create Adobe PDF documents suitable for reliable viewing and printing of business documents.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [535.500 697.000]
>> setpagedevice




