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A Radon measure μ is n-rectifiable if it is absolutely continuous with respect to n-

dimensional Hausdorff measure and μ-almost all of suppμ can be covered by Lipschitz

images of R
n. In this paper, we give a necessary condition for rectifiability in terms

of the so-called α2 numbers — coefficients quantifying flatness using Wasserstein

distance W2. In a recent article, we showed that the same condition is also sufficient

for rectifiability, and so we get a new characterization of rectifiable measures.

1 Introduction

Let 1 ≤ n ≤ d be integers. We say that a Radon measure μ on R
d is n-rectifiable if there

exist countably many Lipschitz maps fi : Rn → R
d such that

μ(Rd \
⋃

i

fi(R
n)) = 0, (1.1)

and moreover μ is absolutely continuous with respect to n-dimensional Hausdorff

measure H n. A set E ⊂ R
d is n-rectifiable if the measure H n

∣∣
E is n-rectifiable. We

will often omit n and just write “rectifiable.”

The study of rectifiable sets and measures lies at the very heart of geometric

measure theory. We refer the reader to [19, Chapters 15–18] for some classical charac-
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Necessary Condition for Rectifiability via W2 8937

terizations of rectifiability involving densities, tangent measures, and projections. The

aim of this paper is to prove a necessary condition for rectifiability involving the so-

called α2 coefficients.

1.1 αp numbers

Coefficients αp were introduced by Tolsa in [25]. In order to define them, we recall the

definition of Wasserstein distance.

Let 1 ≤ p < ∞, and let μ, ν be two probability Borel measures on R
d satisfying∫ |x|p dμ < ∞,

∫ |x|p dν < ∞. The Wasserstein distance Wp between μ and ν is defined as

Wp(μ, ν) =
(

inf
π

∫
Rd×Rd

|x − y|p dπ(x, y)

)1/p

,

where the infimum is taken over all transport plans between μ and ν, that is, Borel

probability measures π on R
d × R

d satisfying π(A × R
d) = μ(A) and π(Rd × A) = ν(A)

for all measurable A ⊂ R
d. The same definition makes sense if instead of probability

measures we consider μ, ν, π of the same total mass.

Wasserstein distances are a way to measure the cost of transporting one

measure to another, and they are of fundamental importance to the theory of optimal

transport. For more information see for example [30, Chapter 7] or [31, Chapter 6].

The idea behind αp numbers is to quantify how far a given measure is from being

a flat measure, that is, from being of the form cH n
∣∣

L for some constant c > 0 and some

n-plane L. In order to measure it locally (say, in a ball B), we introduce the following

auxiliary function.

Let ϕ : R
d → [0, 1] be a radial Lipschitz function satisfying ϕ ≡ 1 in B(0, 2),

suppϕ ⊂ B(0, 3), and for all x ∈ B(0, 3)

c−1dist(x, ∂B(0, 3))2 ≤ ϕ(x) ≤ cdist(x, ∂B(0, 3))2,

|∇ϕ(x)| ≤ cdist(x, ∂B(0, 3)),

for some constant c > 0. For example, one could take ϕ(x) = φ(|x|) where φ : [0, ∞) →
[0, 1] is such that φ(r) = 1 for 0 ≤ r ≤ 2, φ(r) = 0 for r ≥ 3, and φ(r) = (3 − r)2 for

2 < r < 3. Given a ball B = B(x, r) ⊂ R
d we set

ϕB(y) = ϕ

(
y − x

r

)
. (1.2)
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8938 D. Dąbrowski

ϕB can be seen as a regularized characteristic function of B.

For 1 ≤ p < ∞, a Radon measure μ on R
d, a ball B = B(x, r) ⊂ R

d with μ(B) > 0,

and an n-plane L intersecting B, we define

αμ,p,L(B) = 1

r μ(B)1/p Wp(ϕBμ, aB,LϕBH n
∣∣

L), (1.3)

where aB,L = (
∫

ϕB dμ)/(
∫

ϕB dH n
∣∣

L). We will usually omit the subscripts and just write

a. We define also

αμ,p(B) = inf
L

αμ,p,L(B),

where the infimum is taken over all n-planes L intersecting B. For a ball B = B(x, r) we

will sometimes write αμ,p(x, r) instead of αμ,p(B), and we will do the same with all the

other coefficients introduced below.

Coefficients αp were first defined in [25] with the aim of characterizing uni-

formly rectifiable measures. The notion of uniform rectifiability, which can be seen as

a more quantitative counterpart of rectifiability, was introduced by David and Semmes

in [11, 12]. We say that a measure μ is uniformly n-rectifiable if

(i) it is n-AD-regular, that is, there exists a constant C such that for all x ∈
suppμ and 0 < r < diam(suppμ) we have C−1rn ≤ μ(B(x, r)) ≤ Crn,

(ii) it has big pieces of Lipschitz images, that is, there exist constants θ , L > 0

such that for any x ∈ suppμ and 0 < r < diam(suppμ) we may find an

L-Lipschitz mapping g from the n-dimensional ball Bn(0, r) ⊂ R
n into R

d

satisfying

μ
(
B(x, r) ∩ g(Bn(0, r))

) ≥ θrn.

A trivial example of a uniformly rectifiable measure is the surface measure on a

Lipschitz graph.

In [25] Tolsa showed the following characterization of uniformly rectifiable

measures:

Theorem 1.1 ([25, Theorem 1.2]). Let 1 ≤ p ≤ 2. Suppose μ is an n-AD-regular measure

on R
d. Then, μ is uniformly rectifiable if and only if there exists C > 0 such that for any

ball B = B(z, R) centered at suppμ we have

∫ R

0

∫
B

αμ,p(x, r)2 dμ(x)
dr

r
≤ CRn.
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Necessary Condition for Rectifiability via W2 8939

In this paper, we prove a necessary condition for rectifiability of measures,

which is of similar spirit.

Theorem 1.2. Let μ be an n-rectifiable measure on R
d. Then for μ-a.e. x ∈ R

d

∫ 1

0
αμ,2(x, r)2 dr

r
< ∞. (1.4)

In [9, Theorem 1.3], we show that (1.4) is also a sufficient condition for

rectifiability (we use a slightly different version of α2, but it does not matter, see

Remark 1.5). Putting the two results together, we get the following characterization.

Corollary 1.3. Let μ be a Radon measure on R
d. Then μ is n-rectifiable if and only if

for μ-a.e. x ∈ R
d we have ∫ 1

0
αμ,2(x, r)2 dr

r
< ∞.

Remark 1.4. The characterization above is sharp in the following sense. Suppose 1 ≤
p ≤ q < ∞. Then it follows easily by Hölder’s inequality, definition of αp numbers, and

the fact that suppϕB ⊂ 3B, that

αμ,p(B) ≤
(

μ(3B)

μ(B)

)1/p−1/q

αμ,q(B).

Hence, for doubling measures, αp numbers are increasing in p. It is well known that

rectifiable measures are pointwise doubling, that is,

lim sup
r→0+

μ(B(x, 2r))

μ(B(x, r))
< ∞ for μ − a.e. x ∈ R

d (1.5)

and so the finiteness of α2 square function (1.4) implies finiteness of αp square function

for any 1 ≤ p ≤ 2. However, in general, one cannot expect finiteness of αp square

function for p > 2, see Remark 1.7. In other words, Theorem 1.2 cannot be improved.

Remark 1.5. For technical reasons, in [9], we define αp numbers normalizing by μ(3B)

(i.e., in (1.3) we replace μ(B) with μ(3B)). Of course, the 3B-normalized coefficients are

smaller than the B-normalized variant used here. Hence, if (1.4) is finite for B-normalized

α2 numbers, then it is finite for 3B-normalized α2 numbers, and so [9,Theorem 1.3] may

be applied to get Corollary 1.3.

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/22/8936/5766436 by guest on 09 April 2024



8940 D. Dąbrowski

It is worthwhile to compare this result with other recent characterizations

of rectifiability, which all involve some sort of scale-invariant quantities measuring

flatness.

1.2 βp numbers

The first flatness-quantifying coefficients to be defined were Jones’ β numbers,

originating in [11, 12, 16]. For 1 ≤ p < ∞ and a Radon measure μ on R
d set

βμ,p(x, r) = inf
L

(
1

rn

∫
B(x,r)

(
dist(y, L)

r

)p

dμ(y)

)1/p

, (1.6)

where the infimum runs over all n-planes L intersecting B(x, r). Let us also define upper

and lower n-dimensional densities of a Radon measure μ at x ∈ R
d as


n,∗(x, μ) = lim sup
r→0+

μ(B(x, r))

rn , 
n∗ (x, μ) = lim inf
r→0+

μ(B(x, r))

rn ,

respectively. If both quantities are equal, we set 
n(x, μ) = 
n,∗(x, μ) = 
n∗ (x, μ) and we

call it n-dimensional density.

In [26] it was shown that for a rectifiable measure μ we have∫ 1

0
βμ,2(x, r)2 dr

r
< ∞ for μ − a.e. x ∈ R

d. (1.7)

On the other hand, Azzam and Tolsa proved in [3] that if a Radon measure μ

satisfies (1.7) and

0 < 
n,∗(x, μ) < ∞ for μ − a.e. x ∈ R
d (1.8)

then μ is n-rectifiable. More recently, Edelen, Naber, and Valtorta [13] managed to

weaken the assumption (1.8) to


n,∗(x, μ) > 0 and 
n∗ (x, μ) < ∞ for μ − a.e. x ∈ R
d. (1.9)

An alternative proof showing that (1.7) and (1.9) are sufficient for rectifiability is given

in [28].

Theorem 1.6 ([3, 13, 26]). Let μ be a Radon measure on R
d. Then, μ is n-rectifiable if

and only if (1.7) and (1.9) hold for μ-a.e. x ∈ R
d.

Contrary to Corollary 1.3, some sort of assumptions on densities of measure

seem to be unavoidable because β2 numbers are “weaker” than α2 numbers (see

Lemma 3.1). What we mean by that is the following: coefficients βp measure how close
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Necessary Condition for Rectifiability via W2 8941

is suppμ to being contained in an n-plane, and so they do not see holes or high

concentrations of measure. Any measure with support contained in an n-plane will have

all β numbers equal to 0—even Dirac mass! Moreover, due to the normalizing factor rn

in (1.6), β numbers do not charge higher dimensional measures properly (note that the

(n+1)-dimensional Lebesgue measure satisfies (1.7)). Coefficients αp, on the other hand,

penalize such phenomena.

The choice of p = 2 in the above considerations is not arbitrary. Condition (1.7)

with βμ,2(x, r) replaced by βμ,p(x, r) is necessary for rectifiability only for 1 ≤ p ≤ 2.

On the other hand, (1.7) together with (1.8) imply rectifiability only for p ≥ 2. See [28]

for relevant counterexamples. Still, if instead of (1.8) we assume that 
n∗ (μ, x) > 0 and


n,∗(μ, x) < ∞ for μ-a.e. x ∈ R
d, then the finiteness of βp square function for certain

p < 2 becomes sufficient for rectifiability, see [7, 22].

Remark 1.7. The example from [28] shows that one cannot expect finiteness of the αp

square function when p > 2. Indeed, it is easy to see that αp numbers bound from above

βp numbers (see Lemma 3.1, the same proof works with arbitrary 1 ≤ p < ∞). Tolsa gave

an example of a rectifiable measure such that for all p > 2 the square function involving

βp in infinite almost everywhere. Hence, the αp square function of that measure is also

infinite almost everywhere.

Let us mention that modified versions of β numbers are also used to study a

competing notion of rectifiability for measures, the so-called Federer rectifiability. We

say that a measure is n-rectifiable in the sense of Federer if it satisfies (1.1), and no

absolute continuity with respect to H n is required. Dropping the absolute continuity

assumption makes such measures very difficult to characterize. A surprising example

of a doubling, Federer 1-rectifiable measure supported on the whole plane was found

by Garnett, Killip, and Schul [14]. Nevertheless, for n = 1, significant progress has been

achieved in [2, 6–8, 17, 18]. See also a recent survey of Badger [5].

Theorem 1.2 yields an easy corollary involving bilateral β numbers. Set

bβμ,2(x, r)2 = inf
L

1

rn

(∫
B(x,r)

(
dist(y, L)

r

)2

dμ(y) +
∫

B(x,r)

(
dist(y, suppμ)

r

)2

dH n
∣∣

L(y)

)
.

As shown in Lemma 3.1, if a ball B(x, r) satisfies μ(B(x, r)) ≈ rn (see Subsection 2.1

for the precise meaning of ≈ symbol), then coefficients αμ,2(x, r) bound from above

bβμ,2(x, r). Since for n-rectifiable measure μ we have 0 < 
n(μ, x) < ∞ μ-almost

everywhere, we immediately get the following.
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8942 D. Dąbrowski

Corollary 1.8. Let μ be an n-rectifiable measure on R
d. Then for μ-a.e. x ∈ R

d we have

∫ 1

0
bβμ,2(x, r)2 dr

r
< ∞.

1.3 α numbers

Another kind of coefficients quantifying flatness that has attracted a lot of interest

is α numbers, first introduced in [24]. Their definition is very similar to that of αp

coefficients, and in fact they can be seen as a variant of α1 numbers, see [25, Section 5].

Like before, we define a distance on the space of Radon measures. Given Radon

measures μ, ν, and an open ball B we set

FB(μ, ν) = sup
{∣∣∣∣∫ φ dμ −

∫
φ dν

∣∣∣∣ : φ ∈ Lip1(B)

}
,

where

Lip1(B) = {φ : Lip (φ) ≤ 1, suppφ ⊂ B}.

The coefficient α of a measure μ in a ball B = B(x, r) is defined as

αμ(B) = inf
c,L

1

r μ(B)
FB(μ, cH n

∣∣
L),

where the infimum is taken over all n-planes L and all c ≥ 0 (we do not demand a priori

that μ(B) = cH n
∣∣

L(B)).

Tolsa showed in [26] that given a rectifiable measure μ we have

∫ 1

0
αμ(x, r)2 dr

r
< ∞ for μ − a.e. x ∈ R

d. (1.10)

One might ask if (1.10) is also a sufficient condition for rectifiability. Partial answers

to that question were given in [1] and [21]. Very recently Azzam, Tolsa, and Toro [4]

proved that a measure μ satisfying (1.10), which is also pointwise doubling, that is,

such that (1.5) holds, is rectifiable. Since rectifiable measures satisfy (1.5), the following

characterization holds.

Theorem 1.9 ([4, 26]). Let μ be a Radon measure on R
d. Then μ is n-rectifiable if and

only if (1.10) and (1.5) hold for μ-a.e. x ∈ R
d.
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Necessary Condition for Rectifiability via W2 8943

In the same paper, the authors construct a purely unrectifiable measure satis-

fying (1.10), and so the pointwise doubling assumption (1.5) cannot be omitted. Let us

remark that in the characterization from Corollary 1.3, we do not need to assume any

doubling property.

We mention briefly yet another kind of square functions used to describe

rectifiability. [29] and [27] are devoted to the so-called � numbers, defined as �μ(x, r) =
|μ(B(x,r))

rn − μ(B(x,2r))
(2r)n |. The results from [29] characterize rectifiable measures satisfying

0 < 
n∗ (μ, x) ≤ 
n,∗(μ, x) < ∞ for μ-a.e x ∈ R
d. In [27] it was shown that for n = 1,

analogous results hold under the weaker assumption 0 < 
1,∗(x, μ) < ∞ for μ-a.e.

x ∈ R
d.

1.4 Localizing Theorem 1.2 and organization of the paper

Theorem 1.2 follows easily from the following lemma.

Lemma 1.10. Let μ be an n-rectifiable measure on R
d, and let � ⊂ R

d be an n-

dimensional 1-Lipschitz graph. Suppose R ∈ D� with 
(R) = 1 (see (2.2) for the definition

of D�). Then, for any 0 < ε < 1, there exists a set R′ ⊂ R such that μ(R′) ≥ (1−ε)μ(R) and

∫
R′

∫ 1

0
αμ,2(x, r)2 dr

r
dμ(x) < ∞. (1.11)

Proof of Theorem 1.2 using Lemma 1.10. Let μ be n-rectifiable. It is well known

that if one replaces Lipschitz images in (1.1) by Lipschitz graphs, or C1 manifolds, the

definition of rectifiability remains unchanged (see e.g., [19, Theorem 15.21]). Each C1

manifold is contained in a countable union of (possibly rotated) Lipschitz graphs � with

Lip(�) ≤ 1. Hence, there exists a countable family of n-dimensional 1-Lipschitz graphs

�i such that

μ
(
R

d \
⋃

i

�i

) = 0.

Each �i is a countable union of dyadic �i-cubes Rj
i ∈ D�i

satisfying 
(Rj
i) = 1. Clearly,

μ(Rd \ ⋃
i,j Rj

i) = 0.

Now, denote the set of x where (1.4) does not hold by B, and suppose that μ(B) >

0. Then, there exists Rj
i such that μ(B∩Rj

i) > 0. Let ε > 0 be such that μ(B∩Rj
i) > 2εμ(Rj

i).

Applying Lemma 1.10 to Rj
i and ε as above we reach a contradiction. Thus, μ(B) = 0. �
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8944 D. Dąbrowski

The rest of the article is dedicated to proving Lemma 1.10. Let us give a brief

outline of the proof.

We introduce the necessary tools in Section 2. In Section 3, we show various

estimates of α2 coefficients, usually relying heavily on the results from [25]. In Section 4,

we define a family of measures {νQ}Q∈D�
, where νQ � H n

∣∣
�, and each νQ approximates

μ in some ball around Q. Roughly speaking, νQ is defined by projecting the measure of

Whitney cubes onto the graph �— but only those Whitney cubes whose sidelength is

not much bigger than 
(Q). Then, we construct a tree of good cubes satisfying

∑
Q∈Tree

ανQ,2(̃BQ)2
(Q)n < ∞,

where B̃Q are balls with the same center as the corresponding cube Q. The stopping

region of the tree of good cubes is small. In Section 5, we use the estimate above to

show that actually ∑
Q∈Tree

αμ,2(̃BQ)2
(Q)n < ∞.

Using the inequality above, we prove (1.11) with R′ = R \ ⋃
Q∈Stop(Tree) Q. This finishes

the proof of Lemma 1.10.

2 Preliminaries

2.1 Notation

Throughout the paper we will write A � B whenever A ≤ CB for some constant C, the so-

called “implicit constant.” All such implicit constants may depend on dimensions n, d,

and we will not track this dependence. If the implicit constant depends also on some

other parameter t, we will write A �t B. The notation A ≈ B means A � B � A, and

A ≈t B means A �t B �t A. Moreover, if symbols � or ≈ appear in the assumptions of

a lemma, then the implicit constant of the proven estimate will depend on the implicit

constants from the assumptions (see Lemma 3.1 for example).

We denote by B(z, r) ⊂ R
d an open ball with center at z ∈ R

d and radius r > 0.

Given a ball B, its center and radius are denoted by z(B) and r(B), respectively. If λ > 0,

then λB is defined as a ball centered at z(B) of radius λr(B).

Given two n-planes L1, L2, let L′
1 and L′

2 be the respective parallel n-planes

passing through 0. Then,

�(L1, L2) = distH(L′
1 ∩ B(0, 1), L′

2 ∩ B(0, 1)),
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Necessary Condition for Rectifiability via W2 8945

where distH stands for Hausdorff distance between two sets. Clearly, we always have

�(L1, L2) ∈ [0, 1], and �(L1, L2) = 0 if and only if L1 and L2 are parallel. Note that if L1

and L2 are lines in the plane, then �(L1, L2) is the sine of the angle between L1 and L2.

Given an n-plane L, we will denote the orthogonal projection onto L by �L.

For a Borel measure ν on R
d and a Borel map T : Rd → R

d, we denote by T∗ν the

pushforward of ν, that is, a measure on R
d such that for all Borel A ⊂ R

d

T∗ν(A) = ν(T−1(A)).

In expressions of the form Wp(μ1, aμ2), the letter a will always mean the unique

constant for which the total mass of aμ2 is equal to that of μ1. In other words,

a = μ1(Rd)

μ2(Rd)
.

It may happen that a appears in the same line several times, and every time refers to a

different quantity. We hope that this will not cause too much confusion.

Let us once and for all fix measure μ, an n-dimensional 1-Lipschitz graph �,

and a constant 0 < ε < 1 for which we are proving Lemma 1.10. We fix also a coordinate

system such that � = {(x, A(x)) : x ∈ R
n} ⊂ R

d, where A : Rn → R
d−n is a 1-Lipschitz

map.

We will denote by L0 the subspace of Rd formed by the points whose last d − n

coordinates are zeros, so that � is a graph over L0. We will write �0 and �� to denote

projections onto L0 and �, respectively, orthogonal to L0. For the sake of convenience,

instead of dealing with the usual surface measure on � we will work with

σ = (��)∗H n
∣∣

L0
,

which is comparable to H n
∣∣
� (note that for x ∈ � we have σ(B(x, r)) ≈ rn).

Given a ball B ⊂ R
d centered at � denote by LB an n-plane minimizing ασ ,2(B)

(note that for an open ball B, it could happen that LB ∩ B = ∅). Concerning the existence

of minimizers, it follows easily from the fact that W2 metrizes weak convergence

of measures (see e.g., [31, Theorem 6.9]), from good compactness properties of weak

convergence, and from the fact that the minimizing sequence is of the special form

ϕBaB,Lk
H n

∣∣
Lk

. There may be more than one minimizing plane; if that happens, we simply

choose one of them.
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8946 D. Dąbrowski

For any Radon measure ν such that ν(B) > 0 we set

α̂ν,2(B) = αν,2,LB
(B).

Clearly, α̂ν,2(B) ≥ αν,2(B). We will show that

∫
R′

∫ 1

0
α̂μ,2(x, r)2 dr

r
dμ(x) < ∞, (2.1)

which implies (1.11).

2.2 �-cubes

We denote by D
Rn ,D

Rd the dyadic lattices on L0 and R
d, respectively. We assume the

cubes to be half open-closed, that is, of the form

Q =
[

k1

2j
,

k1 + 1

2j

)
× · · · ×

[
ki

2j
,

ki + 1

2j

)
,

where i = n for D
Rn , i = d for D

Rd , and k1, . . . , ki, j, are arbitrary integers. The

sidelength of Q as above will be denoted by 
(Q) = 2−j.

The dyadic lattice on � is defined as

D� = {��(Q0) : Q0 ∈ D
Rn}. (2.2)

The elements of D� will be called �-cubes, or just cubes. For every Q ∈ D� and the

corresponding Q0 ∈ D
Rn we define the sidelength of Q as 
(Q) = 
(Q0), and the center of

Q as zQ = ��(zQ0
), where zQ0

is the center of Q0. We set

BQ = B(zQ, 3diam(Q)),

B̃Q = �BQ,

where � = �(n) > 1 is a constant fixed during the proof. We define also

ϕQ = ϕBQ
,

LQ = LBQ
,

V(Q) = {x ∈ R
d : ��(x) ∈ Q}.
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Necessary Condition for Rectifiability via W2 8947

Recall that LBQ
is the n-plane minimizing ασ ,2(BQ) and that ϕBQ

was defined in (1.2). The

“V” in V(Q) stands for “vertical,” since V(Q) is a sort of vertical cube. Note also that

Q ⊂ BQ ⊂ B̃Q and r(BQ) ≈ 
(Q).

Given P ∈ D�, we will write D�(P) to denote the family of Q ∈ D� such that Q ⊂ P.

Remark 2.1. Let us fix R ∈ D� with 
(R) = 1 for which we are proving Lemma 1.10.

Note that for x ∈ R and 0 < r < 1 computing αμ,2(x, r) involves only μ| B, where B is some

ball containing R. Thus, when proving (2.1), we may and will assume that μ is a finite,

compactly supported measure.

For every e ∈ {0, 1}n consider the translated dyadic grid on L0

De
Rn = 1

3
(e, 0 . . . , 0) + D

Rn ,

and the corresponding translated dyadic grid on �

De
� = {��(Q) : Q ∈ De

Rn}.

Let us also define the translated dyadic lattice on R
d

De
Rd = 1

3
(e, 0, . . . , 0) + D

Rd .

The union of all translated dyadic grids on � will be called an extended grid on �:

D̃� =
⋃

e∈{0,1}n

De
�.

For each Q ∈ D̃� we define BQ, ϕQ etc. in the same way as for Q ∈ D�.

The main reason for introducing the extended grid is to use a variant of the

well-known one-third trick, which was already used in this context by Okikiolu [20].

Lemma 2.2. There exists k0 = k0(n, �) > 0 such that for every Q ∈ D� with 
(Q) ≤ 2−k0

there exists PQ ∈ D̃� satisfying 
(PQ) = 2k0
(Q) and 3B̃Q ⊂ V(PQ).

Proof. First, we remark that for every j ≥ 0 and for every x ∈ L0 there exists e ∈ {0, 1}n

and P ∈ De
Rn with 
(P) = 2−j and x ∈ 2

3P. For a nice proof of this fact see [17, Section 3].
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8948 D. Dąbrowski

Now, consider the point �0(zQ). If we take P ∈ De
Rn with 
(P) = 2k0
(Q) such that

�0(zQ) ∈ 2
3P, we see that the n-dimensional ball Bn(�0(zQ), 9�diam(Q)) is contained in

P as soon as 2k0

3 
(Q) ≥ 9�diam(Q).

It follows that for PQ ∈ De
� such that �0(PQ) = P we have 3B̃Q ⊂ V(PQ). �

It may happen that the cube PQ ∈ D̃� from the lemma above is not unique, so

let us just fix one for each Q ∈ D�. The direction e ∈ {0, 1}n such that PQ ∈ De
� will be

denoted by e(Q), and the integer k such that 
(PQ) = 2k0
(Q) = 2−k will be denoted by

k(Q).

We will use later on the fact that

9diam(Q) ≤ 2k0
(Q) = 2−k(Q). (2.3)

2.3 Whitney cubes

A very useful tool for approximating the measure μ close to � is Whitney cubes. For

each e ∈ {0, 1}n we consider the decomposition of R
d \ � into a family We of Whitney

dyadic cubes from De
Rd . That is, the elements of We ⊂ De

Rd are pairwise disjoint, their

union equals R
d \ �, and there exist dimensional constants K > 20, D0 ≥ 1 such that for

every Q ∈ We

a) 10Q ⊂ R
d \ �,

b) KQ ∩ � �= ∅,

c) there are at most D0 cubes Q′ ∈ We such that 10Q ∩ 10Q′ �= ∅. Furthermore,

for such cubes Q′ we have 
(Q′) ≈ 
(Q).

For the proof see [23, Chapter VI, §1] or [15, Appendix J]. Moreover, it is not difficult to

construct Whitney cubes in such a way that if y ∈ �, Q ∈ We and B(y, r) ∩ Q �= ∅, then

diam(Q) ≤ r,

Q ⊂ B(y, 3r),
(2.4)

see [26, Section 2.3] for details. We set

We
k = {Q ∈ We : 
(Q) ≤ 2−k},
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Necessary Condition for Rectifiability via W2 8949

and also, for every Q ∈ D� satisfying 
(Q) ≤ 2−k0 ,

WQ = We(Q)

k(Q)
.

Remark 2.3. It follows immediately from the definition of k(Q) that if P ∈ WQ, then


(P) ≤ 2−k(Q) = 2k0
(Q).

2.4 Constants and parameters

For the reader’s convenience, we collect here all the constants that appear in the proof.

We indicate what depends on what, and when each constant gets fixed. As usually, the

notation “C1 = C1(C2)” means that C1 is a constant whose precise value depends on

some parameter C2. An absolute constant is a constant that does not depend on any

other parameter.

Recall that the measure μ, the Lipschitz graph �, and the constant 0 < ε < 1

were fixed at the very beginning, in Subsection 2.1, and also that Lip(�) ≤ 1. Moreover,

in Remark 2.1, we fixed R ∈ D� with 
(R) = 1, and without loss of generality we assumed

that μ is finite and compactly supported.

• � is an absolute constant from the definition of B̃Q = �BQ, it is fixed in (5.2)

(actually, one can take � = 9
√

2);

• k0 = k0(n, �) is an integer from Lemma 2.2;

• ε0 = ε0(n) is the constant from Lemma 3.2;

• K and D0 are dimensional constants from the definition of Whitney cubes;

• λ = λ(k0, K, n, d) > 3 is fixed in Lemma 5.1, more precisely in equation (5.1)

(one can choose e.g., λ = C(n, d) K 2k0 );

• M = M(ε, λ, �, n, d, μ) > 100 is chosen in Lemma 4.2.

3 Estimates of α2 Coefficients

We begin by showing the relationship between bβ2 and α2 coefficients.

Lemma 3.1. Suppose that ν is a Radon measure, B is a ball satisfying ν(B) ≈ r(B)n,

and L is a plane minimizing αν,2(B). Then

bβν,2(B)2 � r(B)−n−2
∫

B
dist(x, L)2 dν � αν,2(B).
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8950 D. Dąbrowski

Proof. Let π be a minimizing transport plan between ϕBν and aB,LϕBH n
∣∣

L (where aB,L

is as in the definition of αν,2(B); note that aB,L � 1 since ν(B) ≈ r(B)n). Then, by the

definition of a transport plan, and the fact that ϕB ≡ 1 on B,

αν,2(B)2r(B)2ν(B) =
∫

|x − y|2 dπ(x, y)

≥ 1

2

∫
B

dist(x, L)2 dν + aB,L

2

∫
B

dist(y, suppν)2 dH n
∣∣

L � bβν,2(B)2r(B)n+2.

�

Recall that � is an n-dimensional 1-Lipschitz graph that was fixed in

Subsection 2.1, σ = (��)∗H n
∣∣

L0
, and that LQ is the plane minimizing ασ ,2(BQ). The

next lemma states that �-cubes Q whose best approximating planes LQ form big angle

with L0 have large α2 numbers. In consequence, there are very few cubes of this kind (in

fact, they form a Carleson family).

Lemma 3.2. There exists ε0 = ε0(n) > 0 such that for every Q ∈ D̃� with �(LQ, L0) >

1 − ε0 we have

ασ ,2(BQ) � 1.

Proof. Suppose Q ∈ D̃�. Take xk ∈ 0.5BQ ∩�, k = 1, . . . , n, such that |xk −zQ| = 0.5r(BQ),

and the vectors {�0(xk−zQ)}k form an orthogonal basis of L0. Set B0 = B(zQ, ηr(BQ)), Bk =
B(xk, ηr(BQ)), where η = η(n) < 0.01 is a small dimensional constant that will be chosen

later. Clearly, for all k = 0, . . . , n we have Bk ⊂ BQ.

If LQ does not intersect one of the balls, say Bk, then by Lemma 3.1

ασ ,2(BQ)2r(BQ)n+2 �
∫

BQ

dist(x, LQ)2 dσ ≥
∫

1
2 Bk

dist(x, LQ)2 dσ � ηn+2r(BQ)n+2.

Now suppose that LQ intersects all Bk. Then, since Bk are all centered at �, � is

1-Lipschitz, and xk were chosen appropriately, it is easy to see that for η = η(n) and

ε0 = ε0(n) small enough we have �(LQ, L0) ≤ 1 − ε0. �

The following two lemmas will let us compare α2 coefficients at similar scales,

so that we can pass from the integral form of α2 square function (1.4) to its dyadic

variant.
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Necessary Condition for Rectifiability via W2 8951

Lemma 3.3 ([25, Lemma 5.3]). Let ν be a finite measure supported inside the ball B′ ⊂
R

d. Let B ⊂ R
d be another ball such that 3B ⊂ B′, with r(B) ≈ r(B′) and ν(B) ≈ ν(B′) ≈

r(B)n. Let L be an n-plane that intersects B and let f : L → [0, 1] be a function such that

f ≡ 1 on 3B, f ≡ 0 on L \ B′. Then

W2(ϕBν, aϕBH n
∣∣

L) � W2(ν, af H n
∣∣

L).

Recall that α̂μ,2(B) = αμ,2,LB
(B).

Lemma 3.4. Let ν be a Radon measure on R
d, B1, B2 ⊂ R

d be balls centered at � with

3B1 ⊂ B2, r(B1) ≈ r(B2), ν(B1) ≈ ν(3B2) ≈ r(B2)n. Then we have

α̂ν,2(B1) � α̂ν,2(B2) + ασ ,2(B2). (3.1)

Proof. We begin by noting that since ν(3B1) � ν(B1), we have α̂ν,2(B1) � 1. As a result, it

suffices to prove the lemma under the assumption ασ ,2(B2) ≤ δ for some small constant

δ > 0, which will be fixed later on.

For brevity of notation set ϕi = ϕBi
, Li = LBi

for i = 1, 2. We want to apply

Lemma 3.3 with B = B1, B′ = 3B2, ν = ϕ2ν, L = L2, f = ϕ2

∣∣
L. What needs to be checked is

that B1 ∩ L2 �= ∅. If this intersection were empty, we would have by Lemma 3.1

ασ ,2(B2)2r(B2)n+2 �
∫

B2

dist(x, L2)2 dσ ≥
∫

B1

dist(x, L2)2 dσ

≥
∫

1
2 B1

1

2
r(B1)2 dσ ≈ r(B1)n+2 ≈ r(B2)n+2.

Thus, if B1 ∩ L2 = ∅, then ασ ,2(B2) � 1 and we arrive at a contradiction with ασ ,2(B2) ≤ δ

for δ small enough.

So the assumptions of Lemma 3.3 are met and we get

W2(ϕ1ν, aϕ1H n
∣∣

L2
) � W2(ϕ2ν, aϕ2H n

∣∣
L2

). (3.2)

Similarly, taking ν = ϕ2σ and B = B1, B′ = 3B2, L = L2, f = ϕ2

∣∣
L it follows that

W2(ϕ1σ , aϕ1H n
∣∣

L2
) � W2(ϕ2σ , aϕ2H n

∣∣
L2

). (3.3)
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8952 D. Dąbrowski

Using the triangle inequality, the scaling of W2, the fact that L1 minimizes

ασ ,2(B1), and the inequalities above, we arrive at

W2(ϕ1ν, aϕ1H n
∣∣

L1
) ≤ W2(ϕ1ν, aϕ1H n

∣∣
L2

)

+
( ∫

ϕ1 dν∫
ϕ1 dσ

)1/2 (
W2(ϕ1σ , aϕ1H n

∣∣
L1

) + W2(ϕ1σ , aϕ1H n
∣∣

L2
)
)

L1 minimizer
� W2(ϕ1ν, aϕ1H n

∣∣
L2

) +
(

ν(3B1)

r(B1)n

)1/2

W2(ϕ1σ , aϕ1H n
∣∣

L2
)

� W2(ϕ1ν, aϕ1H n
∣∣

L2
) + W2(ϕ1σ , aϕ1H n

∣∣
L2

)

(3.2),(3.3)

� W2(ϕ2ν, aϕ2H n
∣∣

L2
) + W2(ϕ2σ , aϕ2H n

∣∣
L2

). (3.4)

Dividing both sides by r(B1)1+n/2 yields

α̂ν,2(B1) � α̂ν,2(B2) + ασ ,2(B2).

�

For technical reasons we define a modified version of α2 coefficients. For any

Q ∈ D̃� set

α̃ν,2(Q) =
⎧⎨⎩1 if �(LQ, L0) > 1 − ε0,


(Q)−(1+ n
2 )W2(ψQν, aψQH n

∣∣
LQ

) otherwise,

where ε0 is as in Lemma 3.2, and

ψQ = 1V(Q),

a =
∫

ψQ dν∫
ψQ dH n| LQ

.

Recall that σ = (��)∗H n
∣∣

L0
≈ H n

∣∣
�.

Lemma 3.5. Let ν � σ , B ⊂ R
d be a ball, Q ∈ D̃�. Suppose they satisfy 3B ⊂ V(Q) ∩

BQ, r(B) ≈ 
(Q), ν(B) ≈ ν(Q) ≈ 
(Q)n. Then

α̂ν,2(B) �ε0
α̃ν,2(Q) + ασ ,2(BQ).
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Necessary Condition for Rectifiability via W2 8953

Proof. Since ν(B) > 0 and suppν ⊂ �, we certainly have σ(3B) ≈ r(B)n. Moreover, our

assumptions imply that ν(3B) ≈ ν(B), and so α̂ν,2(B) � 1. Thus, we may argue in the

same way as in the beginning of the proof of Lemma 3.4 to conclude that, without loss

of generality, LQ ∩ B �= ∅. Similarly, we may assume that �(LQ, L0) ≤ 1 − ε0, because

otherwise it would follow from Lemma 3.2 that ασ ,2(BQ) is big.

Now, since �(LQ, L0) ≤ 1 − ε0, we get that V(Q) ∩ LQ ⊂ κBQ for some constant κ

depending on ε0; we may assume κ > 10.

We use Lemma 3.3 twice, first with B = B, B′ = κBQ, ν = ψQν, L = LQ, f = ψQ

∣∣
L,

and then with B = B, B′ = κBQ, ν = ϕQσ , L = LQ, f = ϕQ

∣∣
L, to obtain

W2(ϕBν, aϕBH n
∣∣

LQ
) �κ W2(ψQν, aψQH n

∣∣
LQ

),

W2(ϕBσ , aϕBH n
∣∣

LQ
) �κ W2(ϕQσ , aϕQH n

∣∣
LQ

).

By the triangle inequality, the scaling of W2, the fact that LB minimizes ασ ,2(B), and the

estimates above we get

W2(ϕBν, aϕBH n
∣∣

LB
) ≤ W2(ϕBν, aϕBH n

∣∣
LQ

)

+
( ∫

ϕB dν∫
ϕB dσ

)1/2 (
W2(ϕBσ , aϕBH n

∣∣
LB

) + W2(ϕBσ , aϕBH n
∣∣

LQ
)
)

� W2(ϕBν, aϕBH n
∣∣

LQ
) +

(
ν(3B)

r(B)n

)1/2

W2(ϕBσ , aϕBH n
∣∣

LQ
)

�κ W2(ψQν, aψQH n
∣∣

LQ
) + W2(ϕQσ , aϕQH n

∣∣
LQ

).

Dividing both sides by r(B)1+n/2 yields the desired result. �

We will need an estimate that is a slight modification of [25, Lemma 6.2]. In

order to formulate it, let us introduce the usual martingale difference operator. Recall

that if P ∈ De
� for some e ∈ {0, 1}n, then P′ ∈ De

� is a child of P if P′ ⊂ P and 
(P′) = 1
2
(P).

Children of P ∈ De
Rn are defined analogously.

Given g ∈ L1
loc(σ ) and P ∈ De

� we set

�σ
P g(x) =

⎧⎨⎩
∫

P′ g dσ

σ(P′) −
∫

P g dσ

σ(P)
: x ∈ P′, P′ a child of P,

0 : x �∈ P.
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Given h ∈ L1
loc(H

n
∣∣

L0
) and P ∈ De

Rn we define analogously �Ph(x):

�Ph(x) =
⎧⎨⎩

∫
P′ h dH n


(P′)n −
∫

P h dH n


(P)n : x ∈ P′, P′ a child of P,

0 : x �∈ P.

Recall that for g ∈ L2(σ ) we have

g =
∑

P∈De
�

�σ
P g,

in the sense of L2(σ ), and

‖g‖2
L2(σ )

=
∑

P∈De
�

‖�σ
P g‖2

L2(σ )
,

for details see for example [10, Part I] or [15, Section 5.4.2].

Let us introduce also some additional vocabulary. We will say that a family of

cubes Tree ⊂ De
� is a tree with root R0 if it satisfies:

(T1) R0 ∈ Tree, and for every Q ∈ Tree we have Q ⊂ R0,

(T2) for every Q ∈ Tree such that Q �= R0, the parent of Q also belongs to Tree.

By iterating (T2), we can actually see that if Q ∈ Tree, then all the intermediate cubes

Q ⊂ P ⊂ R0 also belong to Tree.

The stopping region of Tree, denoted by Stop(Tree), is the family of all the cubes

P ∈ De
�(R0) satisfying:

(S) P �∈ Tree, but the parent of P belongs to Tree.

It is easy to see that the cubes from Stop(Tree) are pairwise disjoint, and that they are

maximal descendants of R0 not belonging to Tree. Moreover, for every x ∈ R0, we have

either x ∈ P for some P ∈ Stop(Tree) or x ∈ Qk for a sequence of cubes {Qk}k ⊂ Tree

satisfying 
(Qk)
k→∞−−−→ 0.

The following lemma is a modified version of [25, Lemma 6.2].

Lemma 3.6. Let ν be a Radon measure on � of the form ν = gσ , with g ∈ L1(σ ), 0 ≤ g ≤
C for some C > 1. Consider a cube Q ∈ D̃� and a tree Tree with root Q. Suppose that for

all P ∈ Tree we have C−1
(P)n ≤ ν(P) ≤ C
(P)n. Then, we have

α̃ν,2(Q)2 �ε0,C ασ ,2(BQ)2 +
∑

P∈Tree
‖�σ

P g‖2
L2(σ )


(P)


(Q)n+1 +
∑

S∈Stop(Tree)


(S)2


(Q)n+2 ν(S), (3.5)
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Necessary Condition for Rectifiability via W2 8955

and ∑
P∈Tree

‖�σ
P g‖2

L2(σ )
≤ C‖g‖L1(σ ) = Cν(�). (3.6)

In the proof we will use [25, Remark 3.14]. It can be thought of as a flat

counterpart of Lemma 3.6 — it is valid for more general measures ν (even more general

than what we state below), but at the price of assuming � = L0 � R
n.

Lemma 3.7 (simplified [25, Remark 3.14]). Suppose Q ∈ D
Rn is a dyadic cube in R

n and

Tree is a tree with root Q. Consider a measure ν = gH n
∣∣

Q such that ν(P) ≈ 
(P)n for

P ∈ Tree. Then,

W2(ν, aH n
∣∣

Q) �
∑

P∈Tree
‖�Pg‖2

L2(H n)

(P)
(Q) +

∑
S∈Stop(Tree)


(S)2ν(S).

Remark 3.8. The definition of a tree of dyadic cubes in [25, p. 492] is slightly more

restrictive than the one we adopted. Apart from conditions (T1) and (T2), they also

satisfy

(T3) if Q ∈ Tree, then either all the children of Q belong to Tree, or none of them.

Equivalently, if Q ∈ Tree, and Q is not the root, then all the brothers of Q also belong to

Tree. To underline the difference between the two notions, sometimes the terms coherent

and semicoherent family of cubes are used. The former refers to trees satisfying (T1–T3),

the latter to those satisfying (T1–T2).

Nevertheless, [25, Remark 3.14] cited above is true for both coherent and

semicoherent families of cubes. That is, property (T3) is never used in the proof of either

[25, Remark 3.14] or the preceding “key lemma” [25, Lemma 3.13].

We are finally ready to prove Lemma 3.6.

Proof of Lemma 3.6. Let L = LQ. If �(L, L0) > 1 − ε0, then by Lemma 3.2 and the

definition of α̃ν,2(Q)

α̃ν,2(Q)2 = 1 � ασ ,2(BQ)2,

and we are done. Now assume that �(L, L0) ≤ 1 − ε0.

Let �̃L be the projection from R
d onto L, orthogonal to L0. We also consider

the flat measure σL = (�̃L)∗σ = (�̃L)∗H n
∣∣

L0
= cLH n

∣∣
L (recall that �� is a projection

orthogonal to L0, so that �̃L ◦ �� = �̃L). Define g0 : L0 → R as g0 = g ◦ ��.
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By triangle inequality

W2(ψQν, aψQH n
∣∣

L) = W2(ψQν, aψQσL) ≤ W2(ψQν, ψQ(�̃L)∗ν) + W2(ψQ(�̃L)∗ν, aψQσL).

(3.7)

The first term from the right hand side is estimated by ασ ,2(BQ):

W2(ψQν, ψQ(�̃L)∗ν)2 ≤
∫

Q
|x − �̃L(x)|2 dν(x) ≈ε0

∫
Q

dist(x, L)2 dν(x)

�C

∫
Q

dist(x, L)2 dσ(x) � ασ ,2(BQ)2
(Q)n+2.

We estimate the second term from the right hand side of (3.7) using the fact that

�0

∣∣
L∩V(Q) : L∩V(Q) → L0 ∩V(Q) is bilipschitz, with a constant depending on ε0 (because

�(L, L0) ≤ 1 − ε0):

W2(ψQ(�̃L)∗ν, aψQσL)≈ε0
W2(ψQ(�0)∗((�̃L)∗ν), aψQ(�0)∗σL)=W2(ψQg0H n

∣∣
L0

, aψQH n
∣∣
L0

).

By Lemma 3.7 we have

W2(ψQg0H n
∣∣

L0
, aψQH n

∣∣
L0

)2 �
∑

P′∈TreeRn

‖�P′g0‖2
L2(L0)


(P′)
(Q) +
∑

S∈Stop(Tree)

(S)2ν(S),

where Tree
Rn ⊂ D

Rn is the tree formed by cubes P′ = �0(P), P ∈ Tree, and L2(L0) =
L2(H n

∣∣
L0

).

Using (3.7) and the estimates above we get

W2(ψQν, aψQH n
∣∣
L)2 �ε0

ασ ,2(BQ)2
(Q)n+2 +
∑

P′∈TreeRn

‖�P′g0‖2
L2(L0)


(P′)
(Q)

+
∑

S∈Stop(Tree)

(S)2ν(S).

We conclude the proof of (3.5) by noting that for each P ∈ Tree

‖�σ
P g‖L2(σ ) = ‖��0(P)g0‖L2(L0).
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Necessary Condition for Rectifiability via W2 8957

The estimate (3.6) follows trivially from the fact that if e ∈ {0, 1}n is such that Q ∈ De
�,

then ∑
P∈Tree

‖�σ
P g‖2

L2(σ )
≤

∑
P∈De

�

‖�σ
P g‖2

L2(σ )
= ‖g‖2

L2(σ )
≤ C‖g‖L1(σ ).

�

We would like to use Lemma 3.6 also on measures with unbounded density. An

approximation argument allows us to get rid of the boundedness assumption, at least

if we assume additionally that ν(BP) ≤ C
(P)n for P ∈ Tree.

Lemma 3.9. Let ν = gσ with g ∈ L1(σ ), g ≥ 0. Consider a cube Q ∈ D̃� and a tree Tree

with root Q. Suppose there exists C > 1 such that for all P ∈ Tree we have C−1
(P)n ≤
ν(P) ≤ ν(BP) ≤ C
(P)n. Then, we have

α̃ν,2(Q)2 �ε0,C ασ ,2(BQ)2 +
∑

P∈Tree
‖�σ

P g‖2
L2(σ )


(P)


(Q)n+1 +
∑

S∈Stop(Tree)


(S)2


(Q)n+2 ν(S), (3.8)

and ∑
P∈Tree

‖�σ
P g‖2

L2(σ )
≤ C‖g‖L1(σ ) = Cν(�). (3.9)

We divide the proof into smaller pieces. Let Stop = Stop(Tree). First, we define

the set of good points as

G = Q \
⋃

P∈Stop
P.

Note that the points from x ∈ G are not contained in any stopping cube, and so there are

arbitrarily small cubes P ∈ Tree containing x. We introduce the following approximating

measure:

ν̃ = ν| G +
∑

S∈Stop

ν(S)

σ (S)
σ | S.

It is clear that for Q ∈ Tree ∪ Stop we have ν̃(Q) = ν(Q). Moreover, for Q ∈ Tree

C−1
(Q)n ≤ ν̃(Q) = ν(Q) ≤ C
(Q)n. (3.10)

On the other hand, each S ∈ Stop is a child of some Q ∈ Tree, so that

ν̃(S) = ν(S) ≤ ν(Q) ≤ C
(Q)n = 2nC
(S)n. (3.11)
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8958 D. Dąbrowski

Lemma 3.10. We have ∥∥∥∥ dν̃

dσ

∥∥∥∥
L∞(σ )

� C.

Proof. It is trivial that for x ∈ S ∈ Stop the density is constant and

dν̃

dσ
(x) = ν(S)

σ (S)
= ν(S)


(S)n

(3.11)≤ 2n C.

On the other hand, by the definition of ν̃, for σ -a.e. x ∈ G we have dν̃
dσ

(x) = dν
dσ

(x) = g(x).

Moreover, for σ -a.e. x ∈ G we have a sequence of cubes Qj ∈ Tree such that 
(Qj) = 2−j

and x ∈ Qj. Note that there exists some integer j0 > 0 (depending on dimension) such

that

Qj+j0 ⊂ B(x, 2−j) ⊂ BQj
.

It follows that

dν̃

dσ
(x) = dν

dσ
(x) = lim

j→∞
ν(B(x, 2−j))

σ (B(x, 2−j))
≤ lim

j→∞
ν(BQj

)

σ (Qj+j0)
≤ lim

j→∞
C
(Qj)

n


(Qj+j0)
n = C 2nj0 .

Thus, ∥∥∥∥ dν̃

dσ

∥∥∥∥
L∞(σ )

� C.

�

Let g̃ ∈ L1(σ ) ∩ L∞(σ ) be such that ν̃ = g̃σ . Applying Lemma 3.6 to ν̃ yields

α̃ν̃,2(Q)2 �ε0,C ασ ,2(BQ)2 +
∑

P∈Tree
‖�σ

P g̃‖2
L2(σ )


(P)


(Q)n+1 +
∑

S∈Stop


(S)2


(Q)n+2 ν̃(S), (3.12)

and ∑
P∈Tree

‖�σ
P g̃‖2

L2(σ )
≤ C‖g̃‖L1(σ ) = Cν̃(�) = Cν(�). (3.13)

Observe that for P ∈ Tree we have

�σ
P g̃ = �σ

P g. (3.14)
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Necessary Condition for Rectifiability via W2 8959

Indeed, for x /∈ P, both quantities are equal to zero. For x ∈ P′ ⊂ P, where P′ is a child of

P, we have P′ ∈ Tree ∪ Stop, and so

�σ
P g̃(x) =

∫
P′ g̃ dσ

σ(P′)
−

∫
P g̃ dσ

σ(P)
= ν̃(P′)

σ (P′)
− ν̃(P)

σ (P)
= ν(P′)

σ (P′)
− ν(P)

σ (P)
= �σ

P g.

Hence, (3.9) follows immediately from (3.13).

Since for S ∈ Stop we have ν̃(S) = ν(S), we can use (3.14) to transform (3.12) into

α̃ν̃,2(Q)2 �ε0,C ασ ,2(BQ)2 +
∑

P∈Tree
‖�σ

P g‖2
L2(σ )


(P)


(Q)n+1 +
∑

S∈Stop


(S)2


(Q)n+2 ν(S). (3.15)

In order to reach (3.8) and finish the proof of Lemma 3.9, we only need to show how to

pass from the estimate on α̃ν̃,2(Q) (3.15) to one on α̃ν,2(Q).

Proof of Lemma 3.9. Recall that if �(LQ, L0) > 1 − ε0, then α̃ν,2(Q) = 1, but at the same

time ασ ,2(BQ) � 1 by Lemma 3.2, so this case is trivial. Suppose �(LQ, L0) ≤ 1 − ε0. We

define a transport plan between ψQν̃ and ψQν:

dπ(x, y) = 1Q∩G(x)dν(x)dδx(y) +
∑

S∈Stop

1S(x)1S(y)

σ (S)
dν(x)dσ(y),

and we estimate

W2(ψQν̃, ψQν)2 ≤
∫

|x − y|2 dπ(x, y) �
∑

S∈Stop

(S)2ν(S).

From the triangle inequality, the bound above, and (3.15), we get that

α̃ν,2(Q)2 ≈ 
(Q)−(n+2)W2(ψQν, aψQH n
∣∣

LQ
)2

� 
(Q)−(n+2)
(
W2(ψQν̃, ψQν)2 + W2(ψQν̃, aψQH n

∣∣
LQ

)2)
�ε0,C ασ ,2(BQ)2 +

∑
P∈Tree

‖�σ
P g‖2

L2(σ )


(P)


(Q)n+1 +
∑

S∈Stop


(S)2


(Q)n+2 ν(S).

�
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8960 D. Dąbrowski

4 Approximating Measures

We will construct a family of measures on � that will approximate μ. For every Whitney

cube P ∈ We we define gP : � → R as

gP(x) = μ(P)


(P)n1��(P)(x).

Note that
∫

gP dσ = μ(P).

Given e ∈ {0, 1}n, k ∈ Z, we define the following measures supported on �:

νe = μ|� +
( ∑

P∈We

gP

)
σ ,

νe
k = μ|� +

⎛⎝ ∑
P∈We

k

gP

⎞⎠ σ .

Moreover, for every Q ∈ D� with 
(Q) ≤ 2−k0 we set

νQ = ν
e(Q)

k(Q)
= μ|� +

⎛⎝ ∑
P∈WQ

gP

⎞⎠ σ .

Note that, since we assume μ is finite and compactly supported (see Remark 2.1), all the

measures νe, νe
k, are also finite and compactly supported.

We defined νQ in such a way that, for “good” Q ∈ D�, the measures μ| BQ
and

νQ

∣∣
BQ

are close in the W2 distance. This will be shown in Section 5. The rest of this

section is dedicated to the construction of a tree of “good cubes.”

Recall that R ∈ D� is a �-cube fixed in Remark 2.1, and 0 < ε � 1 is a small

constant fixed in Subsection 2.1.

Lemma 4.1. Let λ > 3. Then, there exist a big constant M = M(ε, λ, �, n, d, μ) � 1

and a tree of good cubes Tree = Tree(λ, ε, M) ⊂ D�(R) with root R, such that for every

Q ∈ Tree we have

μ(λB̃Q) ≤ M
(Q)n,

μ(Q) ≥ M−1
(Q)n,
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Necessary Condition for Rectifiability via W2 8961

the stopping region Stop = Stop(Tree) is small:

μ

( ⋃
Q∈Stop

Q
)

< ε,

and α̂νQ,2(̃BQ)2 satisfy the packing condition:

∑
Q∈Tree

α̂νQ,2(̃BQ)2
(Q)n < ∞. (4.1)

We split the proof into several small lemmas. First, we define auxiliary families

of good cubes in De
� using a standard stopping time argument.

For each e ∈ {0, 1}n there exists a finite collection of cubes {Re
i } ⊂ De

� such that


(Re
i ) = 1, Re

i ∩ R �= ∅. Set Re = ⋃
i Re

i . Let M � 1 be constant to be fixed later on, and

set

HDe
ν,0 = {Q ∈ De

� : Q ⊂ Re, νe(λB̃Q) > M
(Q)n},
HDe

μ,0 = {Q ∈ De
� : Q ⊂ Re, μ(λB̃Q) > M
(Q)n},

LDe
0 = {Q ∈ De

� : Q ⊂ Re, μ(Q) < M−1
(Q)n}.

HD and LD stand for “high density” and “low density.” Let Stope ⊂ De
� be the family

of maximal with respect to inclusion cubes from HDe
ν,0 ∪ HDe

μ,0 ∪ LDe
0, and set HDe

ν =
HDe

ν,0 ∩ Stope, HDe
μ = HDe

μ,0 ∩ Stope, LDe = LDe
0 ∩ Stope. Note that cubes from Stope are

pairwise disjoint. We define Treee as the family of those cubes from
⋃

i De
�(Re

i ), which

are not contained in any cube from Stope. Actually, this might not be a tree, but it is a

finite collection of trees with roots Re
i .

Lemma 4.2. For M = M(ε, λ, �, n, d, μ) big enough, we have for all e ∈ {0, 1}n

μ

( ⋃
Q∈Stope

Q
)

<
ε

2n . (4.2)

Proof. Let e ∈ {0, 1}n. It is easy to see that the measure of LDe is small: for every

Q ∈ LDe we have μ(Q) ≤ M−1σ(Q), so

μ

( ⋃
Q∈LDe

Q
)

≤ M−1σ(Re) ≈ M−1. (4.3)
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8962 D. Dąbrowski

To estimate the measure of HDe
μ, define for some big N � 1

HN = {x ∈ R
d : μ(B(x, r)) > Nrn for some r ∈ (0, 1)}.

Since μ is n-rectifiable, the density 
n(x, μ) exists and is positive and finite μ-a.e.

Moreover, recall that μ(Rd) is finite. This implies that for N = N(μ, ε, n) big enough

μ(HN) ≤ ε

2n+2 .

We will show that, if M is chosen big enough, then for all Q ∈ HDe
μ we have

Q ⊂ HN . Indeed, let x ∈ Q ∈ HDe
μ. Then B(x, 2λr(̃BQ)) ⊃ λB̃Q, and so

μ(B(x, 2λr(̃BQ))) ≥ μ(λB̃Q) > M
(Q)n > N(6λ�diam(Q))n = N(2λr(̃BQ))n,

for M big enough with respect to N, λ, �, n. Moreover, note that for Q ∈ HDe
μ we have

μ(Rd)

M
> 
(Q)n ≈� r(̃BQ)n,

and so taking M big enough (depending on μ(Rd), λ, �, n) we can ensure that all Q ∈ HDe
μ

satisfy 2λr(̃BQ) < 1. Thus, x ∈ HN , and we conclude that

μ

( ⋃
Q∈HDe

μ

Q
)

≤ μ(HN) ≤ ε

2n+2 . (4.4)

Since νe is a finite n-rectifiable measure, we can argue in the same way as above to get

νe
( ⋃

Q∈HDe
ν

Q
)

≤ ε

2n+2 .

Smallness of μ(
⋃

Q∈HDe
ν

Q) follows from the fact that μ| � ≤ νe. Putting this together with

(4.3) and (4.4) we get

μ

( ⋃
Q∈Stope

Q
)

<
ε

2n .

We take M so big that the above holds for all e ∈ {0, 1}n, and the proof is finished. �
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Necessary Condition for Rectifiability via W2 8963

For each e ∈ {0, 1}n, k = 0, 1, 2, . . . , let ge
k be the density of νe

k with respect to σ .

Note that, due to the definition of Treee, for any Q ∈ Treee we have

M−1 
(Q)n ≤ νe
k(Q) ≤ νe

k(BQ) ≤ M 
(Q)n.

Hence, given a cube Q ∈ Treee with 
(Q) = 2−k, we can estimate α̃νe
k,2(Q)2 using

Lemma 3.9 (applied to νe
k and Tree = {P ∈ Treee P ⊂ Q}) to get

α̃νe
k,2(Q)2 �ε0,M ασ ,2(BQ)2 +

∑
P∈Treee

P⊂Q

‖�σ
P ge

k‖2
L2(σ )


(P)


(Q)n+1 +
∑

S∈Stope

S⊂Q


(S)2


(Q)n+2 νe
k(S). (4.5)

The following lemma states that the right hand side of this estimate can be made

independent of k.

Lemma 4.3. For all Q ∈ Treee with 
(Q) = 2−k, k ≥ 0, we have

α̃νe
k,2(Q)2 �ε0,M ασ ,2(BQ)2 +

∑
P∈Treee

P⊂Q

‖�σ
P ge

0‖2
L2(σ )


(P)


(Q)n+1 +
∑

S∈Stope

S⊂Q


(S)2


(Q)n+2 νe(S). (4.6)

Moreover, ∑
P∈Treee

‖�σ
P ge

0‖2
L2(σ )

� M‖ge
0‖L1(σ ) = Mνe

0(�) ≤ Mμ(Rd). (4.7)

Proof. We claim that for P ∈ Treee with 
(P) ≤ 2−k (in particular, for P ∈ Treee such

that P ⊂ Q) we have

�σ
P ge

k = �σ
P ge

0. (4.8)

Indeed, for x �∈ P both sides of (4.8) are zero. For x ∈ P′ ⊂ P, where P′ ∈ Treee ∪ Stope is a

child of P, we have

�σ
P ge

0(x) − �σ
P ge

k(x) = νe
0(P′) − νe

k(P′)

(P′)n − νe

0(P) − νe
k(P)


(P)n

= 
(P′)−n

⎛⎝ ∑
S∈We

0\We
k

μ(S)


(S)n σ(P′ ∩ ��(S))

⎞⎠ − 
(P)−n

⎛⎝ ∑
S∈We

0\We
k

μ(S)


(S)n σ(P ∩ ��(S))

⎞⎠ .

The Whitney cubes S in the sums above satisfy 
(S) > 2−k ≥ 
(P), and moreover we have

��(S) ∈ De
�. Hence, we either have P ∩ ��(S) = P or P ∩ ��(S) = ∅. The same is true for
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8964 D. Dąbrowski

P′. Moreover, we have P ∩ ��(S) �= ∅ if and only if P′ ∩ ��(S) �= ∅. It follows that the

right hand side above is equal to∑
S∈We

0\We
k

P′∩��(S) �=∅

μ(S)


(S)n −
∑

S∈We
0\We

k
P∩��(S) �=∅

μ(S)


(S)n = 0.

Thus �σ
P ge

k = �σ
P ge

0. Using this equality, and also the fact that νe
k ≤ νe, we transform (4.5)

into

α̃νe
k,2(Q)2 �ε0,M ασ ,2(BQ)2 +

∑
P∈Treee

P⊂Q

‖�σ
P ge

0‖2
L2(σ )


(P)


(Q)n+1 +
∑

P∈Stope

P⊂Q


(P)2


(Q)n+2 νe(P). (4.9)

Concerning (4.7), it is an immediate consequence of (3.9) when we apply Lemma 3.9 to

νe
0 and the trees {Q ∈ Treee Q ⊂ Re

i } (recall that the union of such trees gives the entire

Treee). �

We finally define Tree as the collection of cubes Q ∈ D� such that for every

e ∈ {0, 1}n there exists P ∈ Treee satisfying 
(P) = 
(Q) and P ∩ Q �= ∅. It is easy to

check that Tree is indeed a tree, and that the stopping cubes Stop = Stop(Tree) satisfy⋃
Q∈Stop Q ⊂ ⋃

e
⋃

Q∈Stope Q. Thus,

μ

( ⋃
Q∈Stop

Q
)

≤
∑

e∈{0,1}n

μ

( ⋃
Q∈Stope

Q
)

(4.2)≤ ε.

Moreover, Tree ⊂ Tree(0,...,0), so for all Q ∈ Tree

μ(λB̃Q) ≤ M
(Q)n,

μ(Q) ≥ M−1
(Q)n.

The only thing that remains to be shown is the packing condition (4.1).

Lemma 4.4. We have ∑
Q∈Tree

α̂νQ,2(̃BQ)2
(Q)n < ∞.

Proof. Recall that in Lemma 2.2 we defined a constant k0 > 0 such that for any Q ∈
D�, 
(Q) ≤ 2−k0 , there exists a cube PQ ∈ D̃� satisfying 3B̃Q ⊂ V(PQ), 
(PQ) = 2k0
(Q).
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Necessary Condition for Rectifiability via W2 8965

Since there are only finitely many Q ∈ Tree with 
(Q) > 2−k0 , we may ignore them in the

estimates that follow.

Suppose Q ∈ Tree and 
(Q) ≤ 2−k0 , let PQ be as above. Recall that νQ = ν
e(Q)

k(Q)
,

where e = e(Q), k = k(Q) are such that PQ ∈ De
� and 
(PQ) = 2−k.

We defined Tree in such a way that necessarily PQ ∈ Treee. It follows from

Lemma 3.5 applied with ν = νQ, B = B̃Q, Q = PQ, that

α̂νQ,2(̃BQ) �ε0,M,k0
α̃νQ,2(PQ) + ασ ,2(BPQ

).

We use (4.6) and the inequality above to obtain

α̂νQ,2(̃BQ)2 �ε0,M,k0
ασ ,2(BPQ

)2 +
∑

P∈Treee

P⊂PQ

‖�σ
P ge

0‖2
L2(σ )


(P)


(PQ)n+1 +
∑

S∈Stope

S⊂PQ


(S)2


(PQ)n+2 νe(S).

Taking into account that each PQ ∈ Treee may correspond to only a bounded number of

Q ∈ Tree, and that 
(Q) ≈k0

(PQ), we get

∑
Q∈Tree:PQ∈Treee

α̂νQ,2(̃BQ)2
(Q)n �ε0,M,k0

∑
Q′∈Treee

ασ ,2(BQ′)2
(Q′)n

+
∑

Q′∈Treee

∑
P∈Treee

P⊂Q′

‖�σ
P ge

0‖2
L2(σ )


(P)


(Q′)
+

∑
Q′∈Treee

∑
S∈Stope

S⊂Q′


(S)2


(Q′)2 νe(S).

The first sum from the right hand side is finite because σ is uniformly rectifiable, see

Theorem 1.1. We estimate the second sum by changing the order of summation:

∑
Q′∈Treee

∑
P∈Treee

P⊂Q′

‖�σ
P ge

0‖2
L2(σ )


(P)


(Q′)
=

∑
P∈Treee

‖�σ
P ge

0‖2
L2(σ )

∑
Q′∈Treee

Q′⊃P


(P)


(Q′)

�
∑

P∈Treee

‖�σ
P ge

0‖2
L2(σ )

(4.7)

� Mμ(Rd) < ∞.

The third sum is treated similarly:

∑
Q′∈Treee

∑
S∈Stope

S⊂Q′


(S)2


(Q′)2 νe(S) =
∑

S∈Stope

νe(S)
∑

Q′∈Treee

Q′⊃S


(S)2


(Q′)2 �
∑

S∈Stope

νe(S) < ∞.
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8966 D. Dąbrowski

Thus, ∑
Q∈Tree

α̂νQ,2(̃BQ)2
(Q)n =
∑

e∈{0,1}n

∑
Q∈Tree:PQ∈Treee

α̂νQ,2(̃BQ)2
(Q)n < ∞.

�

5 From Approximating Measures to μ

To prove Lemma 1.10 we need to pass from the estimates on α̂νQ,2(̃BQ) shown in

Lemma 4.1 to estimates on α̂μ,2(BQ).

Recall that K > 20 is the constant such that for all Whitney cubes Q ∈ We we

have KQ ∩ � �= ∅, and k0 = k0(n, �) is an integer from Lemma 2.2.

Lemma 5.1. There exists λ = λ(k0, K, n, d) > 3 such that if M = M(ε, λ, �, n, d, μ) and

Tree = Tree(λ, M, ε) are as in Lemma 4.1, then for all Q ∈ Tree with 
(Q) ≤ 2−k0

α̂μ,2(BQ)2 �M,λ,� α̂νQ,2(̃BQ)2 + ασ ,2(̃BQ)2 + 1


(Q)n+2

∑
P∈WQ
P⊂λB̃Q

μ(P)
(P)2.

Proof. Let Q ∈ Tree with 
(Q) ≤ 2−k0 . We will define an auxiliary measure μQ. Set

IQ = {P ∈ WQ : ��(P) ∩ 3B̃Q �= ∅}.

It is easy to check that ⋃
P∈IQ

P ⊂ λB̃Q, (5.1)

for λ = λ(k0, K, n, d) big enough (e.g., λ = C(n, d)K2k0 works). It is crucial that all cubes

in IQ have sidelength bounded by 2k0
(Q), otherwise no such λ would exist.

Recall that the functions gP(x) = μ(P)

(P)n 1��(P)(x), P ∈ WQ, were used to define νQ

at the beginning of Section 4. Let

aP =
∫

ϕB̃Q
gP dσ

μ(P)
.

Note that for P ∈ WQ \ IQ we have aP = 0. The measure μQ is defined as

μQ = ϕB̃Q
μ|� +

∑
P∈IQ

aPμ|P.
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First, let us show that if � (the constant from the definition of B̃Q = �BQ) is big

enough, then μ| 3BQ
= μQ

∣∣
3BQ

. We need to check the following: if P ∈ We(Q) is such that

P ∩ 3BQ �= ∅, then P ∈ IQ and aP = 1.

Note that for all such P we have


(P) ≤ diam(P)
(2.4)≤ r(3BQ) = 9diam(Q)

(2.3)≤ 2−k(Q),

and so P ∈ WQ. Furthermore, the fact that P∩3BQ �= ∅ and (2.4) imply that P ⊂ 9BQ. Since

�� is
√

2-Lipschitz continuous, and BQ is centered at �, we get that for � big enough

(e.g., � = 9
√

2)

��(P) ⊂ �BQ = B̃Q. (5.2)

We conclude that P ∈ IQ and aP = 1, and so,

μ|3BQ
= μQ

∣∣
3BQ

. (5.3)

Set L = LB̃Q
. We will apply Lemma 3.3 with ν = μQ, B1 = BQ, B2 = λB̃Q, L = L,

and f = ϕB̃Q
. Notice that suppμQ ⊂ λB̃Q by (5.1). Moreover, using the same trick as

in the beginning of the proof of Lemma 3.4, we may assume that L ∩ BQ �= ∅. Since

μQ(BQ) ≈M μQ(λB̃Q) ≈M 
(Q)n by Lemma 4.1, and r(λB̃Q) = λ�r(BQ), the assumptions of

Lemma 3.3 are met, and we get that

W2(ϕQμQ, aϕQH n
∣∣
L) �M,λ,� W2(μQ, aϕB̃Q

H n
∣∣
L). (5.4)

Applying the triangle inequality yields

W2(μQ, aϕB̃Q
H n

∣∣
L)2 � W2(μQ, ϕB̃Q

νQ)2 + W2(ϕB̃Q
νQ, aϕB̃Q

H n
∣∣
L)2

≈M W2(μQ, ϕB̃Q
νQ)2 + α̂νQ,2(̃BQ)2
(Q)n+2. (5.5)

To estimate W2(μQ, ϕB̃Q
νQ) we define the following transport plan:

dπ(x, y) = ϕB̃Q
(x)dμ|�(x)dδx(y) +

∑
P∈IQ

1

μQ(P)
dμQ

∣∣
P(x)ϕB̃Q

(y)gP(y)dσ(y).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2020/22/8936/5766436 by guest on 09 April 2024



8968 D. Dąbrowski

Then,

W2(μQ, ϕB̃Q
νQ)2 ≤

∫
|x − y|2 dπ(x, y) �

∑
P∈IQ


(P)2
∫

ϕB̃Q
(y)gP(y)dσ(y).

≤
∑
P∈IQ

μ(P)
(P)2 (5.1)≤
∑

P∈WQ
P⊂λB̃Q

μ(P)
(P)2.

Putting together (5.3), (5.4), (5.5), and the estimate above, we get

W2(ϕQμ, aϕQH n
∣∣
L) �M,λ,� α̂νQ,2(̃BQ)2
(Q)n+2 +

∑
P∈WQ
P⊂λB̃Q

μ(P)
(P)2.

Finally, we use the triangle inequality, the estimate μ(3BQ) ≈M σ(BQ) ≈ r(BQ)n, and the

fact that LQ minimizes ασ ,2(BQ), to get

α̂μ,2(BQ)2
(Q)n+2 ≈M W2(ϕQμ, aϕQH n
∣∣
LQ

) ≤ W2(ϕQμ, aϕQH n
∣∣
L)

+
(∫

ϕQ dμ∫
ϕQ dσ

)1/2 (
W2(ϕQσ , aϕQH n

∣∣
LQ

) + W2(ϕQσ , aϕQH n
∣∣
L)

)
�M W2(ϕQμ, aϕQH n

∣∣
L) + W2(ϕQσ , aϕQH n

∣∣
L)

� W2(ϕQμ, aϕQH n
∣∣
L) + ασ ,2(̃BQ)2
(Q)n+2,

and so the proof is complete. �

We are ready to finish the proof of Lemma 1.10.

Proof of Lemma 1.10. Recall that R is a �-cube with 
(R) = 1, and ε > 0 is an arbitrary

small constant, and that they were both fixed in Subsection 2.1. Let λ, M, Tree, and Stop

be as in Lemma 5.1 and Lemma 4.1. Set

R′ = R \
⋃

P∈Stop
P.

By Lemma 4.1, we have μ(R′) ≥ (1 − ε)μ(R). Our aim is to show that

∫
R′

∫ 1

0
αμ,2(x, r)2 dr

r
dμ(x) < ∞.
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For any x ∈ R′ we have arbitrarily small cubes from Tree containing x. Hence, for

any k ≥ k0 + 3, r ∈ (2−k, 2−k+1], we have 3B(x, r) ⊂ BQ for the cube Q ∈ Tree containing x

and satisfying 
(Q) = 2−k+3. Thus, by Lemma 3.4,

α̂μ,2(B(x, r))2 �M α̂μ,2(BQ)2 + ασ ,2(BQ)2.

Integrating both sides with respect to r yields

∫ 2−k+1

2−k
α̂μ,2(B(x, r))2 dr

r
�M

∫ 2−k+1

2−k
(̂αμ,2(BQ)2 + ασ ,2(BQ)2)

dr

r
≈ α̂μ,2(BQ)2 + ασ ,2(BQ)2.

The inequality above holds for all x ∈ Q ∩ R′, so

∫
Q∩R′

∫ 2−k+1

2−k
α̂μ,2(B(x, r))2 dr

r
dμ(x) �M (̂αμ,2(BQ)2 + ασ ,2(BQ)2)μ(Q)

≈M (̂αμ,2(BQ)2 + ασ ,2(BQ)2)
(Q)n.

Summing over all Q ∈ Tree with 
(Q) = 2−k+3, and then over all k ≥ k0 + 3, we get

∫
R′

∫ 2−k0−2

0
α̂μ,2(B(x, r))2 dr

r
dμ(x) �M

∑
Q∈Tree


(Q)≤2−k0

α̂μ,2(BQ)2
(Q)n +
∑

Q∈Tree

(Q)≤2−k0

ασ ,2(BQ)2
(Q)n.

(5.6)

On the other hand, for any r > 0 we have

α̂μ,2(B(x, r))2 � μ(Rd)

rn ,

so ∫
R′

∫ 1

2−k0−2
α̂μ,2(B(x, r))2 dr

r
dμ(x) < ∞.

Thus, in order to prove Lemma 1.10, it suffices to show that the sums on the right hand

side of (5.6) are finite.

The finiteness of ∑
Q∈D� , Q⊂R

ασ ,2(BQ)2
(Q)n
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follows by Theorem 1.1. To estimate the other sum we apply Lemma 5.1:

∑
Q∈Tree


(Q)≤2−k0

α̂μ,2(BQ)2
(Q)n �
∑

Q∈Tree

(Q)≤2−k0

α̂νQ,2(̃BQ)2
(Q)n +
∑

Q∈Tree

(Q)≤2−k0

ασ ,2(̃BQ)2
(Q)n

+
∑

Q∈Tree

(Q)≤2−k0

∑
P∈WQ
P⊂λB̃Q

μ(P)

(P)2


(Q)2 .

The first sum is finite by Lemma 4.1, the second by Theorem 1.1. Concerning the last

sum, we may estimate it in the following way:

∑
Q∈Tree


(Q)≤2−k0

∑
P∈WQ
P⊂λB̃Q

μ(P)

(P)2


(Q)2 �
∑

e∈{0,1}n

∑
P∈We

P⊂λB̃R

μ(P)
∑

Q∈Tree
λB̃Q⊃P


(P)2


(Q)2

�
∑

e∈{0,1}n

∑
P∈We

P⊂λB̃R

μ(P) ≤
∑

e∈{0,1}n

μ(λB̃R) = 2nμ(λB̃R) < ∞.

Thus, ∑
Q∈Tree

α̂μ,2(BQ)2
(Q)n < ∞.

�
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