D. Dabrowski (2020) “Necessary Condition for Rectifiability Involving Wasserstein Distance Wy,”
International Mathematics Research Notices, Vol. 2020, No. 22, pp. 8936-8972

Advance Access Publication May 25, 2020

do0i:10.1093/imrn/rnaa012

Necessary Condition for Rectifiability Involving Wasserstein
Distance W,

Damian Dabrowskil-%*

'Departament de Matematiques, Universitat Autonoma de Barcelona,
Barcelona, Catalonia, Spain and ?Barcelona Graduate School of
Mathematics (BGSMath), Barcelona, Catalonia, Spain

*Correspondence to be sent to: e-mail: ddabrowski@mat.uab.cat

A Radon measure u is n-rectifiable if it is absolutely continuous with respect to n-
dimensional Hausdorff measure and p-almost all of suppu can be covered by Lipschitz
images of R". In this paper, we give a necessary condition for rectifiability in terms
of the so-called o, numbers — coefficients quantifying flatness using Wasserstein
distance W,. In a recent article, we showed that the same condition is also sufficient

for rectifiability, and so we get a new characterization of rectifiable measures.

1 Introduction

Let 1 < n < d be integers. We say that a Radon measure u on R? is n-rectifiable if there

exist countably many Lipschitz maps f; : R” — R? such that
p@®\JH;R™Y) =0, (1.1)
i

and moreover u is absolutely continuous with respect to n-dimensional Hausdorff
measure J#". A set E C R? is n-rectifiable if the measure A" g is n-rectifiable. We
will often omit n and just write “rectifiable.”

The study of rectifiable sets and measures lies at the very heart of geometric

measure theory. We refer the reader to [19, Chapters 15-18] for some classical charac-
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Necessary Condition for Rectifiability via Wy 8937

terizations of rectifiability involving densities, tangent measures, and projections. The
aim of this paper is to prove a necessary condition for rectifiability involving the so-

called «, coefficients.

1.1 ap numbers

Coefficients a, were introduced by Tolsa in [25]. In order to define them, we recall the
definition of Wasserstein distance.
Let 1 < p < oo, and let 1, v be two probability Borel measures on R¢ satisfying

J %P du < oo, [|x|P dv < oo. The Wasserstein distance W, between p and v is defined as

1/p
T

Rd x R4
where the infimum is taken over all transport plans between p and v, that is, Borel
probability measures 7 on R? x R? satisfying 7(A4 x R%) = u(A) and 7(R% x A) = v(A)
for all measurable A ¢ R%. The same definition makes sense if instead of probability
measures we consider u, v, 7 of the same total mass.

Wasserstein distances are a way to measure the cost of transporting one
measure to another, and they are of fundamental importance to the theory of optimal
transport. For more information see for example [30, Chapter 7] or [31, Chapter 6].

The idea behind &, numbers is to quantify how far a given measure is from being
a flat measure, that is, from being of the form cjf”| ; for some constant ¢ > 0 and some
n-plane L. In order to measure it locally (say, in a ball B), we introduce the following
auxiliary function.

Let ¢ : R¢ — [0,1] be a radial Lipschitz function satisfying ¢ = 1 in B(0, 2),
suppg C B(0, 3), and for all x € B(0, 3)

¢~ ldist(x, 3B(0, 3))? < ¢(x) < cdist(x, 9B(0, 3))?,

IVe(x)| < cdist(x, dB(0, 3)),
for some constant ¢ > 0. For example, one could take ¢(x) = ¢(|x|) where ¢ : [0, 00) —

[0,1] is such that ¢(r) = 1 for 0 < r < 2, ¢(r) = 0 for r > 3, and ¢(r) = (3 — r)? for
2 < r < 3. Given a ball B = B(x,r) C R% we set

(ﬂB(Y)ZQO(Y;X)- (1.2)
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8938 D. Dabrowski

¢p can be seen as a regularized characteristic function of B.
For 1 < p < 0o, a Radon measure 1 on R%, a ball B = B(x,7) ¢ R? with u(B) > 0,

and an n-plane L intersecting B, we define
1 n
a,urp/L(B) = FM(B)I/p Wp((pBl‘L’aB,L(pB% |L)I (13)

where ag; = ([ 95 dw)/([ pg d#™| ). We will usually omit the subscripts and just write

a. We define also

o, p(B) = iII}f o p1B),

where the infimum is taken over all n-planes L intersecting B. For a ball B = B(x,r) we
will sometimes write o, (X, T) instead of a,p(B), and we will do the same with all the
other coefficients introduced below.

Coefficients o), were first defined in [25] with the aim of characterizing uni-
formly rectifiable measures. The notion of uniform rectifiability, which can be seen as
a more quantitative counterpart of rectifiability, was introduced by David and Semmes

in [11, 12]. We say that a measure p is uniformly n-rectifiable if

(i) it is n-AD-regular, that is, there exists a constant C such that for all x €
suppu and 0 < r < diam(suppu) we have C~1r"* < u(B(x,r)) < Cr™,

(ii) it has big pieces of Lipschitz images, that is, there exist constants 6,L > 0
such that for any x € suppu and 0 < r < diam(suppu) we may find an
L-Lipschitz mapping g from the n-dimensional ball B*(0,r) Cc R” into R<
satisfying

w(Bx, ) NgB™(0,r)) > 6r".

A trivial example of a uniformly rectifiable measure is the surface measure on a
Lipschitz graph.
In [25] Tolsa showed the following characterization of uniformly rectifiable

measures:

Theorem 1.1 ([25, Theorem 1.2]). Let 1 < p < 2. Suppose u is an n-AD-regular measure
on R%. Then, 1 is uniformly rectifiable if and only if there exists C > 0 such that for any

ball B = B(z, R) centered at suppu we have

R dr
/ /aﬂp(x, r? du(x)— < CR™.
o JB r
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Necessary Condition for Rectifiability via Wy 8939

In this paper, we prove a necessary condition for rectifiability of measures,

which is of similar spirit.

Theorem 1.2. Let u be an n-rectifiable measure on R%. Then for p-a.e. x € R4

! , dr
o, 0(X, 1) - < 0. (1.4)
0

In [9, Theorem 1.3], we show that (1.4) is also a sufficient condition for
rectifiability (we use a slightly different version of «,, but it does not matter, see

Remark 1.5). Putting the two results together, we get the following characterization.

Corollary 1.3. Let u be a Radon measure on R%. Then y is n-rectifiable if and only if

for u-a.e. x € R% we have
1 dr
/ “u,z(X: r)2 — < o0.
0 r

Remark 1.4. The characterization above is sharp in the following sense. Suppose 1 <
p = g < oo. Then it follows easily by Hélder’s inequality, definition of o, numbers, and
the fact that suppyy C 3B, that

3B)\ }/P-1/q
wr® = (5g)  wa®

Hence, for doubling measures, o, numbers are increasing in p. It is well known that

rectifiable measures are pointwise doubling, that is,

i w(B(x,2r))
imsup ———=

for u —a.e. xe R (1.5)
root (B, 1))

and so the finiteness of o, square function (1.4) implies finiteness of o, square function
for any 1 < p < 2. However, in general, one cannot expect finiteness of «, square

function for p > 2, see Remark 1.7. In other words, Theorem 1.2 cannot be improved.

Remark 1.5. For technical reasons, in [9], we define ap, numbers normalizing by ©(3B)
(i.e., in (1.3) we replace u(B) with w(3B)). Of course, the 3B-normalized coefficients are
smaller than the B-normalized variant used here. Hence, if (1.4) is finite for B-normalized
a, numbers, then it is finite for 3B-normalized «, numbers, and so [9,Theorem 1.3] may

be applied to get Corollary 1.3.
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8940 D. Dabrowski

It is worthwhile to compare this result with other recent characterizations
of rectifiability, which all involve some sort of scale-invariant quantities measuring

flatness.
1.2 By numbers

The first flatness-quantifying coefficients to be defined were Jones’ 8 numbers,

originating in [11, 12, 16]. For 1 < p < oo and a Radon measure x on RY set

; p 1/p
B, ,(x,r) =inf i/ w du(y) ' (1.6)
w.p L rn B(x,7) r

where the infimum runs over all n-planes L intersecting B(x, r). Let us also define upper
and lower n-dimensional densities of a Radon measure u at x € R? as

n(B(x, 1)) n(B(x, 1))

nx 14
O"*(x, n) = lim sup mr T

, O (x, u) = liminf
r—0t r—0t

respectively. If both quantities are equal, we set ®"(x, u) = O™*(x, u) = O (x, 1) and we
call it n-dimensional density.

In [26] it was shown that for a rectifiable measure u we have

1 d
/ ,BHIZ(X, r)2 Tr < 0 for u —a.e. xe R, (1.7)
0

On the other hand, Azzam and Tolsa proved in [3] that if a Radon measure u
satisfies (1.7) and

0 < O™ (x,u) <o for u—a.e. x e R% (1.8)

then w is n-rectifiable. More recently, Edelen, Naber, and Valtorta [13] managed to

weaken the assumption (1.8) to

O™ (x,u) >0 and O"(x,u) <oo  foru—a.e xeR% (1.9)

An alternative proof showing that (1.7) and (1.9) are sufficient for rectifiability is given
in [28].

Theorem 1.6 ([3, 13, 26]). Let u be a Radon measure on R4. Then, u is n-rectifiable if
and only if (1.7) and (1.9) hold for p-a.e. x € R%.

Contrary to Corollary 1.3, some sort of assumptions on densities of measure
seem to be unavoidable because B, numbers are “weaker” than «, numbers (see

Lemma 3.1). What we mean by that is the following: coefficients g, measure how close

20z udy 60 U0 3senb Aq 9€+99/6/9€68/22/020Z/3101e/ulwWl/Wod dnoolwapede//:sdiy Wolj papeojumoq



Necessary Condition for Rectifiability via Wy 8941

is suppu to being contained in an n-plane, and so they do not see holes or high
concentrations of measure. Any measure with support contained in an n-plane will have
all 8 numbers equal to 0—even Dirac mass! Moreover, due to the normalizing factor r”
in (1.6), 8 numbers do not charge higher dimensional measures properly (note that the
(n+1)-dimensional Lebesgue measure satisfies (1.7)). Coefficients oy, On the other hand,
penalize such phenomena.

The choice of p = 2 in the above considerations is not arbitrary. Condition (1.7)
with g, ,(x,r) replaced by g, ,(x,r) is necessary for rectifiability only for 1 < p < 2.
On the other hand, (1.7) together with (1.8) imply rectifiability only for p > 2. See [28]
for relevant counterexamples. Still, if instead of (1.8) we assume that ©}(ux,x) > 0 and
O"*(u,x) < oo for u-a.e. x € R%, then the finiteness of Bp square function for certain

p < 2 becomes sufficient for rectifiability, see [7, 22].

Remark 1.7. The example from [28] shows that one cannot expect finiteness of the «,,
square function when p > 2. Indeed, it is easy to see that o, numbers bound from above
B, numbers (see Lemma 3.1, the same proof works with arbitrary 1 < p < oo). Tolsa gave
an example of a rectifiable measure such that for all p > 2 the square function involving
By in infinite almost everywhere. Hence, the o), square function of that measure is also

infinite almost everywhere.

Let us mention that modified versions of 8 numbers are also used to study a
competing notion of rectifiability for measures, the so-called Federer rectifiability. We
say that a measure is n-rectifiable in the sense of Federer if it satisfies (1.1), and no
absolute continuity with respect to " is required. Dropping the absolute continuity
assumption makes such measures very difficult to characterize. A surprising example
of a doubling, Federer 1-rectifiable measure supported on the whole plane was found
by Garnett, Killip, and Schul [14]. Nevertheless, for n = 1, significant progress has been
achieved in [2, 6-8, 17, 18]. See also a recent survey of Badger [5].

Theorem 1.2 yields an easy corollary involving bilateral 8 numbers. Set

o1 dist(y, L)\ ? dist(y, su 2
bﬁﬂlz(x,r)z:mf_n( [ (ED) gy [ (Yt se) W|L(y))_
L r B(x,r) r B(x,r) r

As shown in Lemma 3.1, if a ball B(x,r) satisfies w(B(x,r)) ~ r" (see Subsection 2.1
for the precise meaning of ~ symbol), then coefficients «, ,(x,r) bound from above
bﬁu,Z(X, r). Since for n-rectifiable measure © we have 0 < O©"(u,x) < oo u-almost

everywhere, we immediately get the following.
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8942 D. Dabrowski

Corollary 1.8. Let x be an n-rectifiable measure on R%. Then for p-a.e. x € R% we have

1 dr
2
/0 b,BMVZ(X,r) - < 00.

1.3 « numbers

Another kind of coefficients quantifying flatness that has attracted a lot of interest
is « numbers, first introduced in [24]. Their definition is very similar to that of ap,
coefficients, and in fact they can be seen as a variant of «; numbers, see [25, Section 5].

Like before, we define a distance on the space of Radon measures. Given Radon

measures u, v, and an open ball B we set

FB(M,V)ZSUPH/¢ du—/qj dv

tpe Lipl(B)},

where

Lip;(B) = {¢ : Lip (¢) =1, supp¢ C B}.

The coefficient « of a measure u in a ball B = B(x,r) is defined as

«,(B) = inf Fyp(u,c"| 1),

1
r u(B)
where the infimum is taken over all n-planes L and all ¢ > 0 (we do not demand a priori
that u(B) = c#™| (B)).

Tolsa showed in [26] that given a rectifiable measure u we have
1 d
/ o:M(X,r)2 & < 00 for u —a.e. x e RY, (1.10)
0 r

One might ask if (1.10) is also a sufficient condition for rectifiability. Partial answers
to that question were given in [1] and [21]. Very recently Azzam, Tolsa, and Toro [4]
proved that a measure u satisfying (1.10), which is also pointwise doubling, that is,
such that (1.5) holds, is rectifiable. Since rectifiable measures satisfy (1.5), the following

characterization holds.

Theorem 1.9 ([4, 26]). Let 1 be a Radon measure on R%. Then u is n-rectifiable if and
only if (1.10) and (1.5) hold for u-a.e. x € R%.
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Necessary Condition for Rectifiability via Wy 8943

In the same paper, the authors construct a purely unrectifiable measure satis-
fying (1.10), and so the pointwise doubling assumption (1.5) cannot be omitted. Let us
remark that in the characterization from Corollary 1.3, we do not need to assume any
doubling property.

We mention briefly yet another kind of square functions used to describe

rectifiability. [29] and [27] are devoted to the so-called A numbers, defined as A, x, 1) =

| wBx,r) _ pBx,2r)
rn @nn

0 < OF(u,x) < O™ (u,x) < oo for u-a.e x € R?. In [27] it was shown that for n = 1,

|. The results from [29] characterize rectifiable measures satisfying

analogous results hold under the weaker assumption 0 < ®'*(x,u) < oo for u-a.e.
x € R4,

1.4 Localizing Theorem 1.2 and organization of the paper

Theorem 1.2 follows easily from the following lemma.

Lemma 1.10. Let u be an n-rectifiable measure on R4, and let T ¢ R? be an n-
dimensional 1-Lipschitz graph. Suppose R € D with £(R) = 1 (see (2.2) for the definition
of D). Then, for any 0 < ¢ < 1, there exists a set R” C R such that u(R") > (1—¢)u(R) and

1
/ / ozﬂz(x,r)2 2’ du(x) < oo. (1.11)
’ 0 ! r

Proof of Theorem 1.2 using Lemma 1.10. Let u be n-rectifiable. It is well known
that if one replaces Lipschitz images in (1.1) by Lipschitz graphs, or C! manifolds, the
definition of rectifiability remains unchanged (see e.g., [19, Theorem 15.21]). Each C!
manifold is contained in a countable union of (possibly rotated) Lipschitz graphs I' with
Lip(T") < 1. Hence, there exists a countable family of n-dimensional 1-Lipschitz graphs
I'; such that

(R U r;) =o.

Each I'; is a countable union of dyadic I';-cubes Ri € Dy, satisfying E(R]i') = 1. Clearly,
n(®9\ Uy R) = 0.

Now, denote the set of x where (1.4) does not hold by 5, and suppose that u(B) >
0. Then, there exists RJl such that /L(BQR;) > 0. Let ¢ > 0 be such that /L(BORJL:) > 28/¢L(Ri-.).
Applying Lemma 1.10 to Ri and ¢ as above we reach a contradiction. Thus, u(B8) =0. R
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8944 D. Dabrowski

The rest of the article is dedicated to proving Lemma 1.10. Let us give a brief
outline of the proof.

We introduce the necessary tools in Section 2. In Section 3, we show various
estimates of «, coefficients, usually relying heavily on the results from [25]. In Section 4,
we define a family of measures {vy}qcp,., Where vy < 7|, and each v, approximates
w in some ball around Q. Roughly speaking, v, is defined by projecting the measure of
Whitney cubes onto the graph I'— but only those Whitney cubes whose sidelength is

not much bigger than ¢(Q). Then, we construct a tree of good cubes satisfying

> a,,2BHQ" < oo,

QeTree

where 1~?0 are balls with the same center as the corresponding cube Q. The stopping
region of the tree of good cubes is small. In Section 5, we use the estimate above to
show that actually
> a,,BrHQ)" < o
QeTree
Using the inequality above, we prove (1.11) with R" = R \ Uqgcstop(tree) @- This finishes
the proof of Lemma 1.10.

2 Preliminaries
2.1 Notation

Throughout the paper we will write A < B whenever A < CB for some constant C, the so-
called “implicit constant.” All such implicit constants may depend on dimensions n,d,
and we will not track this dependence. If the implicit constant depends also on some
other parameter t, we will write A <, B. The notation A ~ Bmeans A < B < A, and
A ~, Bmeans A <, B <, A. Moreover, if symbols < or & appear in the assumptions of
a lemma, then the implicit constant of the proven estimate will depend on the implicit
constants from the assumptions (see Lemma 3.1 for example).

We denote by B(z,r) ¢ R? an open ball with center at z € R? and radius r > 0.
Given a ball B, its center and radius are denoted by z(B) and r(B), respectively. If » > 0,
then AB is defined as a ball centered at z(B) of radius Ar(B).

Given two n-planes L, L,, let L| and L/, be the respective parallel n-planes

passing through 0. Then,

£(L,,L,) = distg (L), N B(0,1), L, N B(0, 1)),
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Necessary Condition for Rectifiability via Wy 8945

where disty stands for Hausdorff distance between two sets. Clearly, we always have
£(Ly,Ly) € [0,1], and £(L;,L,) = 0 if and only if L, and L, are parallel. Note that if L,
and L, are lines in the plane, then £(L,, L,) is the sine of the angle between L, and L,.
Given an n-plane L, we will denote the orthogonal projection onto L by IT;.
For a Borel measure v on R? and a Borel map T : R% — R, we denote by T,v the

pushforward of v, that is, a measure on R4 such that for all Borel A ¢ R4
T, v(A) = v(T~1(A)).

In expressions of the form W, (u;, an,), the letter a will always mean the unique

constant for which the total mass of au, is equal to that of x;. In other words,

_ M (Rd)
a= .
1z (RY)

It may happen that a appears in the same line several times, and every time refers to a
different quantity. We hope that this will not cause too much confusion.

Let us once and for all fix measure u, an n-dimensional 1-Lipschitz graph T,
and a constant 0 < ¢ < 1 for which we are proving Lemma 1.10. We fix also a coordinate
system such that ' = {(x,A(x)) : x € R"} C R4, where A : R — R4 jg a 1-Lipschitz
map.

We will denote by L, the subspace of R? formed by the points whose last d — n
coordinates are zeros, so that I' is a graph over L;,. We will write I and I to denote
projections onto L, and I', respectively, orthogonal to L,. For the sake of convenience,

instead of dealing with the usual surface measure on I' we will work with
o = (Tp), 2" 1.,

which is comparable to jf”} r (note that for x € I we have o (B(x, 7)) = r").

Given a ball B ¢ R? centered at I' denote by Ly an n-plane minimizing o, o(B)
(note that for an open ball B, it could happen that Lz N B = @). Concerning the existence
of minimizers, it follows easily from the fact that W, metrizes weak convergence
of measures (see e.g., [31, Theorem 6.9]), from good compactness properties of weak
convergence, and from the fact that the minimizing sequence is of the special form
¢BaByijf"| 1,- There may be more than one minimizing plane; if that happens, we simply

choose one of them.
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8946 D. Dabrowski

For any Radon measure v such that v(B) > 0 we set

&\Uyz (B) = avrzyLB (B).

Clearly, @, ,(B) > @, ,(B). We will show that

1 dr
/ / @, ,(x,1)? — du(x) < oo, (2.1)
R JO

which implies (1.11).

2.2 TI'-cubes

We denote by Dyn, Dpa the dyadic lattices on L, and R?, respectively. We assume the

cubes to be half open-closed, that is, of the form

Q:[h M)X._.X[E u)

where i = n for Dgn, i = d for Dra, and ky, ..., k;, j, are arbitrary integers. The
sidelength of Q as above will be denoted by ¢(Q) = 277,
The dyadic lattice on I'" is defined as

DF = {HF(OO) . OO (S DRn} (22)

The elements of D, will be called I'-cubes, or just cubes. For every Q € D and the
corresponding Q, € Dy» we define the sidelength of Q as £(Q) = €(Q,), and the center of

Q as zy = I (2q,), where z, is the center of Q,. We set

B, = B(z,, 3diam(Q)),

B, = ABg,
where A = A(n) > 1 is a constant fixed during the proof. We define also

Pa = @Bal
La = LBQ’

V(Q) = {x e R¢ : I (x) € Q).
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Necessary Condition for Rectifiability via Wy 8947

Recall that Lp | is the n-plane minimizing &, ,(B,) and that ¢p, was defined in (1.2). The
“V" in V(Q) stands for “vertical,” since V(Q) is a sort of vertical cube. Note also that
Q C B, C By and r(By) ~ £(Q).

Given P € Dy, we will write D (P) to denote the family of Q € Dr- such that Q C P.

Remark 2.1. Let us fix R € D with ¢(R) = 1 for which we are proving Lemma 1.10.
Note that forx € Rand 0 < r < 1 computing o, (X, 1) involves only | 5, where B is some
ball containing R. Thus, when proving (2.1), we may and will assume that u is a finite,

compactly supported measure.

For every e € {0, 1} consider the translated dyadic grid on L,

1
~(e,0...,0) + Dgn,

De, =
R® ™3

and the corresponding translated dyadic grid on I'

Df ={II-(Q) : Q € Din}.
Let us also define the translated dyadic lattice on R¢

e 1

Rd = g(e,O,...,O) +DRd

The union of all translated dyadic grids on I" will be called an extended grid on I':

ee{0,1}"

For each Q € Dy we define B,, ¢, etc. in the same way as for Q € Dy.
The main reason for introducing the extended grid is to use a variant of the

well-known one-third trick, which was already used in this context by Okikiolu [20].

Lemma 2.2. There exists kj = ky(n, A) > 0 such that for every Q € D with £(Q) < 2o
there exists P, € Dy satisfying ¢(P,) = 2¥0¢(Q) and 3B, C V(P).

Proof. First, we remark that for every j > 0 and for every x € L, there exists e € {0, 1}"
and P € D, with £(P) = 27 andx e %P. For a nice proof of this fact see [17, Section 3].
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8948 D. Dabrowski

Now, consider the point I1y(z,). If we take P € D, with £(P) = 2ko¢(Q) such that
[y(zg) € %P, we see that the n-dimensional ball B"*(I1y(z,), 9Adiam(Q)) is contained in
P as soon as %Z(O) > 9Adiam(Q).

It follows that for P, € DE such that I1,(P,) = P we have 3B, C V(Py). |

It may happen that the cube P, € 51“ from the lemma above is not unique, so
let us just fix one for each Q € Dy.. The direction e € {0,1}" such that P, € D will be
denoted by e(Q), and the integer k such that £(P,) = 2kog(Q) = 2% will be denoted by
k(Q).

We will use later on the fact that

9diam(Q) < 2%0¢(Q) = 27 K@, (2.3)

2.3 Whitney cubes

A very useful tool for approximating the measure p close to I' is Whitney cubes. For
each e € {0,1}" we consider the decomposition of R% \ T" into a family W¢ of Whitney
dyadic cubes from Dp;. That is, the elements of W® C Df, are pairwise disjoint, their
union equals R4 \ I, and there exist dimensional constants K > 20,D, > 1 such that for

every Q € W¢

a) 10Q c R4\ T,

b) KQNT # 2,

c) there are at most D cubes Q' € W¥¢ such that 10Q N 10Q’ # @. Furthermore,
for such cubes Q" we have £(Q") =~ £(Q).

For the proof see [23, Chapter VI, §1] or [15, Appendix J]. Moreover, it is not difficult to
construct Whitney cubes in such a way thatif y e I', Q € W€ and B(y,r) N Q # &, then

diam(Q) <r,
(2.4)
Q C B(y, 3n),

see [26, Section 2.3] for details. We set

WE={QeW®: Q) <275,
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Necessary Condition for Rectifiability via Wy 8949

and also, for every Q € Dy satisfying £(Q) < 2 ko,
—_e@
Wa =Wk
Remark 2.3. It follows immediately from the definition of k(Q) that if P € W,, then
0(P) < 27KQ@ — ko).

2.4 Constants and parameters

For the reader’s convenience, we collect here all the constants that appear in the proof.
We indicate what depends on what, and when each constant gets fixed. As usually, the
notation “C; = C;(C,)” means that C, is a constant whose precise value depends on
some parameter C,. An absolute constant is a constant that does not depend on any
other parameter.

Recall that the measure u, the Lipschitz graph I', and the constant 0 < ¢ < 1
were fixed at the very beginning, in Subsection 2.1, and also that Lip(I") < 1. Moreover,
in Remark 2.1, we fixed R € D with £(R) = 1, and without loss of generality we assumed

that u is finite and compactly supported.

e A is an absolute constant from the definition of B, = AB,, it is fixed in (5.2)
(actually, one can take A = 9./2);

e ky=ky(n, A)is an integer from Lemma 2.2;

e &y = &y(n) is the constant from Lemma 3.2;

e K and D, are dimensional constants from the definition of Whitney cubes;

e X =A(ky,K,n,d) > 3is fixed in Lemma 5.1, more precisely in equation (5.1)
(one can choose e.g., A = C(n, d)KZkO);

e M=M(,\ A, n,d, u) > 100 is chosen in Lemma 4.2.

3 Estimates of o, Coefficients
We begin by showing the relationship between bg, and «, coefficients.

Lemma 3.1. Suppose that v is a Radon measure, B is a ball satisfying v(B) =~ r(B)",

and L is a plane minimizing «, ,(B). Then

bp, ,(B)? < r(B) "2 / dist(x,L)* dv < @, 5(B).
B
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8950 D. Dabrowski

Proof. Letr be a minimizing transport plan between ggv and ag ;¢5.7#"| | (where agr,
is as in the definition of «,,(B); note that ag; 2 1 since v(B) ~ r(B)"). Then, by the

~

definition of a transport plan, and the fact that ¢y =1 on B,

@, 2(B)*r(B)*v(B) = / Ix — y|? dn(x, y)

1 a
> 2 / dist(x,L)? dv + % / dist(y, suppv)® d#™"| 2 bp, ,(B)*r(B)" 2.
B B
[

Recall that ' is an n-dimensional 1-Lipschitz graph that was fixed in
Subsection 2.1, ¢ = (Il}), ™|, and that L, is the plane minimizing a, ,(By). The
next lemma states that I'-cubes Q whose best approximating planes L, form big angle
with L, have large o, numbers. In consequence, there are very few cubes of this kind (in

fact, they form a Carleson family).

Lemma 3.2. There exists ¢, = g,(n) > 0 such that for every Q € Dy with £(Ly,Lg) >

1 — gy, we have
o, 2(Bg) 2 1.

Proof. Suppose Q € Dy. Take x;, € 0.56B,NT, k=1,...,n, such that |x, —z,| = 0.57(B,),
and the vectors {I1,(x; —z,)}; form an orthogonal basis of L. Set By, = B(z, n7(Bg)), By, =
B(xy, nr(Bg)), where n = n(n) < 0.01 is a small dimensional constant that will be chosen
later. Clearly, for all k =0, ..., n we have B, C B,.

If L, does not intersect one of the balls, say By, then by Lemma 3.1

@, 2(Bo)*r(Bo)"t?* 2 / dist(x, L)% do > 1 dist(x, L)% do > n"2r(By)" .
Bg 7Bk

Now suppose that L, intersects all B;. Then, since B, are all centered at I', I is
1-Lipschitz, and x; were chosen appropriately, it is easy to see that for = n(n) and

gy = £p(n) small enough we have £(L, L) <1 — &. |

The following two lemmas will let us compare «, coefficients at similar scales,
so that we can pass from the integral form of «, square function (1.4) to its dyadic

variant.
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Necessary Condition for Rectifiability via Wy 8951

Lemma 3.3 ([25, Lemma 5.3]). Let v be a finite measure supported inside the ball B’ C
R%. Let B ¢ R% be another ball such that 3B c B/, with r(B) ~ r(B') and v(B) ~ v(B) ~
r(B)". Let L be an n-plane that intersects B and let f : L — [0, 1] be a function such that
f=10on3B,f=0o0nL\B.Then

Wy (gpv, appt™| ) S Wo(v, af 7| 1).

Recall that @, ,(B) =, 5 1. (B).

Lemma 3.4. Let v be a Radon measure on R?, By,B, C R? be balls centered at I’ with
3B, C B,, r(By) = r(B,), v(By) ~ v(3B,) ~ r(B,)". Then we have

a,,(B)) S @, 5(By) +a, 5(By). (3.1)

Proof. We begin by noting that since v(3B;) < v(B;), we have @, ,(B;) < 1. As aresult, it
suffices to prove the lemma under the assumption «, ,(B,) < § for some small constant
§ > 0, which will be fixed later on.

For brevity of notation set ¢; = ¢p, L;

Lemma 3.3 with B =B, B’ =3B,, v = ¢,v, L = L,, f = ¢,| ;. What needs to be checked is

that B; N L, # @. If this intersection were empty, we would have by Lemma 3.1

= Lg for i = 1,2. We want to apply

2 (By)*T(By)" % > /B dist(x,L,)? do > A dist(x, L,)? do
2 1

1
> ﬁ 5r(Bl)2 do ~ r(B;)"*? ~ r(B,)" 2.
2B1

Thus, if B; N L, = @, then «, ,(B,) 2 1 and we arrive at a contradiction with o, ,(B;) <4
for § small enough.

So the assumptions of Lemma 3.3 are met and we get
Wy (g v, a7 1) S Wolpyv, apy 7| 1), (3.2)
Similarly, taking v = ¢,0 and B = B, B' = 3B,, L = L,, f = ¢, | it follows that

Wz((pla,awljfnhz) < Wz(wza,awzji”nhz). (3.3)
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8952 D. Dabrowski

Using the triangle inequality, the scaling of W,, the fact that L, minimizes

@, 5(By), and the inequalities above, we arrive at

W, (v, ap; A 1) < Wy(eyv,ao 27| 1)

—f(pl dv) n n
+ [, do (W2(§010,a€01% |L1)+W2((plo,a<pljf |L2))

L; minimizer

v(3B
< W2(¢1v,a¢1%"|L2)+( (3B,)

1/2
Rn) el
1

S Wylpyv, ap A7 1) + Wy(e0, a9, 27 1)
3.2),(3.3)

~

Wz(ﬁozvraf/’zt%ﬂnhz) + Wz(ﬁ"z“:“‘/’z«%ﬁnhz)- (3.4)
Dividing both sides by r(B;)!7"/2 yields

o, 2(B)) S, 2(By) +, 2(By).
||

For technical reasons we define a modified version of «, coefficients. For any
Q € Dy set

" if £(Lg,Ly) > 1 — g,
&, 2\8) = n
! (Q) D W, (v, avig A7 1,)  otherwise,

where ¢, is as in Lemma 3.2, and

Vo= ]lV(O)'

g JYadv
f‘wa dﬂn'LQ‘

Recall that o = (Ip), 7" [, ~ A" .

Lemma 3.5. Letv < o, B C R®beaball, Q¢ 51‘- Suppose they satisfy 3B € V(Q) N
B,, r(B) ~ £(Q), v(B) ~ v(Q) ~ £(Q)". Then

&V,Z(B) Sso a1),2(0) + ao,Z(BO)'
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Necessary Condition for Rectifiability via Wy 8953

Proof. Since v(B) > 0 and suppv C I', we certainly have o (3B) ~ r(B)". Moreover, our
assumptions imply that v(3B) ~ v(B), and so @, ,(B) < 1. Thus, we may argue in the
same way as in the beginning of the proof of Lemma 3.4 to conclude that, without loss
of generality, L, N B # @. Similarly, we may assume that £(L,,Ly) < 1 — ¢,, because
otherwise it would follow from Lemma 3.2 that o, ,(By) is big.

Now, since £(Ly,Ly) < 1 — gy, we get that V(Q) N L, C «B, for some constant «
depending on ¢,; we may assume « > 10.

We use Lemma 3.3 twice, first with B=B, B'=«Bg, v=¥qv, L=Lg, f = ¥q| 1,
and then with B=B, B'=«Bg, v =¢n0, L =Ly, f = ¢g| 1, to obtain

Wy (pgv, a¢3%n| Lg) e Wz(‘ﬂav,al//a%n| Lo)

W, (ppo, app ™| 1) S Wolpo, apg ™| 1)

By the triangle inequality, the scaling of W,, the fact that Ly minimizes «, ,(B), and the

estimates above we get

W, (pgv, a("B%n’ LB) =< Wz(vara(PB%nhQ)
f(p dV 1/2
+ (fga;:;do (Wo(ppo, app ™| 1,) + Wy(ppo, app ™| 1))

V(3B)
r(B)"

1/2
< Wy(pgy, apg ™| L) T ( ) W, (¢po, app ™| Lg)

Se Wo(Wqv, avo " 1) + Wylego, apg ™| 1)

Dividing both sides by r(B)!*™/? yields the desired result. [ |

We will need an estimate that is a slight modification of [25, Lemma 6.2]. In
order to formulate it, let us introduce the usual martingale difference operator. Recall
that if P € D}, for some e € {0, 1}", then P’ € D} is a child of Pif P' C P and ¢(P) = %E(P).
Children of P € Dy, are defined analogously.

Given g € L}, (0) and P € D{ we set

lpgdo _[p9° . xep, P achildofP,

Apg(x) =
0 X ¢ P.
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8954 D. Dabrowski

: 1
Given h € L,

(%”"| 1,) and P € D%, we define analogously Aph(x):
JphdA™ R dA™

Aph(x) = | @7 @y
0 :x ¢ P.

:x e P, P achild of P,

Recall that for g € L?(0) we have

in the sense of L2(0), and

191720y = D, 18391122,
PeDy.
for details see for example [10, Part I] or [15, Section 5.4.2].
Let us introduce also some additional vocabulary. We will say that a family of

cubes Tree C Df. is a tree with root Ry if it satisfies:

(T1) R, € Tree, and for every Q € Tree we have Q C Ry,
(T2) for every Q € Tree such that Q # R, the parent of Q also belongs to Tree.

By iterating (T2), we can actually see that if Q € Tree, then all the intermediate cubes
Q C P C R, also belong to Tree.

The stopping region of Tree, denoted by Stop(Tree), is the family of all the cubes
P € D(R,) satisfying:

(S) P ¢ Tree, but the parent of P belongs to Tree.

It is easy to see that the cubes from Stop(Tree) are pairwise disjoint, and that they are
maximal descendants of R, not belonging to Tree. Moreover, for every x € Ry, we have
either x € P for some P € Stop(Tree) or x € Q; for a sequence of cubes {Q;};, C Tree
satisfying £(Qy) koo 0.

The following lemma is a modified version of [25, Lemma 6.2].

Lemma 3.6. Let v be a Radon measure on I' of the form v = go, withg e L(0), 0 < g <
C for some C > 1. Consider a cube Q € ZSF and a tree Tree with root Q. Suppose that for
all P € Tree we have C~1¢(P)"* < v(P) < C¢(P)". Then, we have

2
459 Z £(S) v(S), (3.5)

~ 2 2 2
%,2(Q)° Seo.c % 2B + 2 I1889Uz2 o) ey (ant?
PcTree SeStop(Tree)
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Necessary Condition for Rectifiability via Wy 8955

and

> 182912, < Clglli () = Cv(D). (3.6)

PcTree

In the proof we will use [25, Remark 3.14]. It can be thought of as a flat
counterpart of Lemma 3.6 — it is valid for more general measures v (even more general

than what we state below), but at the price of assuming I' = Ly >~ R".

Lemma 3.7 (simplified [25, Remark 3.14]). Suppose Q € Dy» is a dyadic cube in R” and
Tree is a tree with root Q. Consider a measure v = g%”| o such that v(P) ~ £(P)" for
P e Tree. Then,

Wo0, a2 ) S D 18pgl 22 pm tPEQ + D LS u(S).
PcTree SeStop(Tree)

Remark 3.8. The definition of a tree of dyadic cubes in [25, p. 492] is slightly more
restrictive than the one we adopted. Apart from conditions (T1) and (T2), they also

satisfy
(T3) if Q € Tree, then either all the children of Q belong to Tree, or none of them.

Equivalently, if Q € Tree, and Q is not the root, then all the brothers of Q also belong to
Tree. To underline the difference between the two notions, sometimes the terms coherent
and semicoherent family of cubes are used. The former refers to trees satisfying (T1-T3),
the latter to those satisfying (T1-T2).

Nevertheless, [25, Remark 3.14] cited above is true for both coherent and
semicoherent families of cubes. That is, property (T3) is never used in the proof of either

[25, Remark 3.14] or the preceding “key lemma” [25, Lemma 3.13].
We are finally ready to prove Lemma 3.6.

Proof of Lemma 3.6. Let L = L,. If L(L,Ly) > 1 — ¢, then by Lemma 3.2 and the

definition of , ,(Q)

&V,Z(O)z =1 s aJIZ(BQ)zl

and we are done. Now assume that £(L,Lj) <1 — ¢.
Let I1; be the projection from R? onto L, orthogonal to Ly. We also consider
the flat measure oy, = (M),0 = (11}),#"| = ¢, #"| (recall that IT}. is a projection

orthogonal to L, so that I, o I1j. = I1;). Define g, : Ly — R as gy = g o I
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8956 D. Dabrowski

By triangle inequality

Wy,(Wov, aVo " 1) = Wy(Yav, avqor) < Wo(Yav, v (Tlp),v) + Wy (W (T1),v, aygor).
(3.7)
The first term from the right hand side is estimated by «,, ,(B():

W, (Yov, Yo (TT}),v)? 5/ Ix — M, (0% dv(x) =, / dist(x,L)? dv(x)
Q Q

<c /O dist(x, L)% do (x) < &, 5(Bg)*(Q)™ 2.

We estimate the second term from the right hand side of (3.7) using the fact that
l'I0| v LNV(@) — LyNV(Q) is bilipschitz, with a constant depending on ¢, (because
A(L,Ly) <1 —sgp):

W, (Yo (M) v, a¥qor) Xy Wa (Yo (M) ((117),0), avrg(Tg),.07) = Wy (hggo ™" | a2 1, )-

By Lemma 3.7 we have

Wy (G0 1 V0" 1)* S D 1ApGollesg L@+ D USHW(S),
P'eTreegn SeStop(Tree)

where Treegn C Dgn is the tree formed by cubes P = I(P), P € Tree, and L%(L,) =
L2 1)

Using (3.7) and the estimates above we get

W, (U, aviq "] )7 Sep @ 2B Q™2+ > [ApgoliZz g, LEPHLQ)

P'eTreegn
+ Z 2S)%v(S).

SeStop(Tree)

We conclude the proof of (3.5) by noting that for each P € Tree

l A%QIILZ(U) = [|Any@9oll2zg)-
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Necessary Condition for Rectifiability via Wy 8957

The estimate (3.6) follows trivially from the fact that if e € {0, 1}" is such that Q € Dﬁ,
then

D IARgIE = D 18RI, = 191122, < Clglli(o)-
PeTree PeD; [}

We would like to use Lemma 3.6 also on measures with unbounded density. An
approximation argument allows us to get rid of the boundedness assumption, at least
if we assume additionally that v(Bp) < C¢(P)" for P € Tree.

Lemma 3.9. Letv = go with g € L'(¢), g > 0. Consider a cube Q € 5r and a tree Tree
with root Q. Suppose there exists C > 1 such that for all P € Tree we have C~1¢(P)"* <

v(P) < v(Bp) < CL(P)". Then, we have
~ L(P) £(S)2
“u,2(0)2 Sgo,c “0,2(30)2 + Z ||A%g||§2(U)W + Z W‘)(S), (3.8)
PcTree SeStop(Tree)
and
D IARglE,, < Cligligy = Cu(D). (3.9)

PeTree

We divide the proof into smaller pieces. Let Stop = Stop(Tree). First, we define

the set of good points as
G=a\ (J P.
PeStop

Note that the points from x € G are not contained in any stopping cube, and so there are
arbitrarily small cubes P € Tree containing x. We introduce the following approximating

measure:

v

v(S)
vlg+ Z olg.
SeStop o (S)
It is clear that for Q € Tree U Stop we have v(Q) = v(Q). Moreover, for Q € Tree
c @)™ < v(Q) = v(Q) < cLQ)". (3.10)

On the other hand, each S € Stop is a child of some Q € Tree, so that

7(S) = v(S) < v(Q) < CL@™ =2"CL(S)". (3.11)
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8958 D. Dabrowski

Lemma 3.10. We have

H do

L (cr)

Proof. It is trivial that for x € S € Stop the density is constant and

D 11
dv ) = v(S)  w(S) (3< )

do oS s = 4C

On the other hand, by the definition of v, for o-a.e. x € G we have d:; (x) = da (%) = g(x).
Moreover, for o-a.e. x € G we have a sequence of cubes Qj € Tree such that @(Qj) =27
and x € Q;. Note that there exists some integer j, > O (depending on dimension) such
that

Qj+j0 C B(X, 2_‘]) C BO]"
It follows that
dv d B(x,277 v(Bg.) ce@)" .
B = Py = 1im PEE 2D gy PG T oo,
do do jooo o(B(x,277)) T joooo( ]+Jo) j—o0 £( J+JO)
Thus,
H do LOO(a) ]
Let g € L'(0) N L% (o) be such that 7 = go. Applying Lemma 3.6 to ¥ yields
L(P) £(S)?
2
o 2(0) Seo,¢ %o ,2Bo)” + Z A g”LZ(U)W + Z Qe v(S), (3.12)
PeTree SeStop
and
> 131122, < Clgll ) = CH(D) = Cu(D). (3.13)

PcTree

Observe that for P € Tree we have

A%G = A%g. (3.14)
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Necessary Condition for Rectifiability via Wy 8959

Indeed, for x ¢ P, both quantities are equal to zero. For x € P' C P, where P’ is a child of
P, we have P’ € Tree U Stop, and so

Jpgdo  [pgdo @) @) v@) vP@) _ AC
o(P) o®) o) o® o@®) o@ 7

AZG(x) =

Hence, (3.9) follows immediately from (3.13).

Since for S € Stop we have v(S) = v(S), we can use (3.14) to transform (3.12) into

. (P £(S)?
5207 Supc 00 2B+ 3 18591 po T+ D gt (315)

n+2
PeTree SeStop tQ@

In order to reach (3.8) and finish the proof of Lemma 3.9, we only need to show how to

pass from the estimate on «; ,(Q) (3.15) to one on @, ,(Q).

Proof of Lemma 3.9. Recall that if £(Lg,Ly) > 1 — &y, then @, ,(Q) = 1, but at the same
time «, ,(Bg) 2 1 by Lemma 3.2, so this case is trivial. Suppose £(Lg,Lg) < 1 — &5. We

define a transport plan between y,v and y,v:

1,(x)1g(y)

dn(x,y) = Long®dv(0)ds, () + D S

SeStop

dv(x)do (y),

and we estimate

Wgh, va? < [ e-yP drxp £ 3 4Ss)

SeStop

From the triangle inequality, the bound above, and (3.15), we get that

@, (@)% ~ Q)" "Wy (Yov, a1 )?
S UQ ™D (W, (YD, Yv)? + Wy (Yo, avg 7| 1))

3 “) (8)?

2 2

580,0 (XU,Z(BQ) + ”Agg”Lz(g)W + WU(S).
PeTree SeStop
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8960 D. Dabrowski
4 Approximating Measures

We will construct a family of measures on I' that will approximate u. For every Whitney

cube P € W° we define gp : I' - R as

n(P)
ey e

gp(x) =
Note that [ gp do = u(P).

Given e € {0, 1}"*, k € Z, we define the following measures supported on I':

Ve=M|r +( Z gp)G,

Pe)Ve

vi=nulr+ | D gp)o-
PeWy

Moreover, for every Q € D with £(Q) < 2-ko we set

— 8@ _
va = Vi) = mlp + E gp|o.
PeWq

Note that, since we assume u is finite and compactly supported (see Remark 2.1), all the
measures v¢, v/, are also finite and compactly supported.

We defined v, in such a way that, for “good” Q € Dr, the measures wlp, and
Va|Ba are close in the W, distance. This will be shown in Section 5. The rest of this
section is dedicated to the construction of a tree of “good cubes.”

Recall that R € D is a I'-cube fixed in Remark 2.1, and 0 < ¢ <« 1 is a small

constant fixed in Subsection 2.1.

Lemma 4.1. Let A > 3. Then, there exist a big constant M = M(e, A, A,n,d,u) > 1
and a tree of good cubes Tree = Tree(i, e, M) C Dp(R) with root R, such that for every
Q € Tree we have

1n(.Bg) < ML(Q)",

w(Q) > M teaQ)r,
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Necessary Condition for Rectifiability via Wy 8961

the stopping region Stop = Stop(Tree) is small:

M( U O)<£,

QeStop

and @, , (Bg)? satisfy the packing condition:

D 8y 2(BeQ" < oo (4.1)

Qe€Tree

We split the proof into several small lemmas. First, we define auxiliary families
of good cubes in Df. using a standard stopping time argument.

For each e € {0, 1}" there exists a finite collection of cubes {R}} C Df. such that
Z(Rf) =1, Rl? NR # &. Set R® = Uin. Let M > 1 be constant to be fixed later on, and

set

HD?, = {Q € D{: Q C R%, v*(ABy) > ME(Q)™},
HD¢ o ={Q € D{: Q C R®, n(ABy) > ML(Q)™),

LD§{ ={Q e DE: Q C R®, u(Q) <M '@,

HD and LD stand for “high density” and “low density.” Let Stop® C D& be the family
of maximal with respect to inclusion cubes from HDﬁy0 U HDZ'0 U LDg, and set HD; =
HD¢ , N Stop®, HD¢, = HDY o N Stop®, LD® = LD§ N Stop®. Note that cubes from Stop® are
pairwise disjoint. We define Tree® as the family of those cubes from (J; DE(RY), which
are not contained in any cube from Stop®. Actually, this might not be a tree, but it is a

finite collection of trees with roots Rf.

Lemma 4.2. For M = M(¢, A, A, n,d, n) big enough, we have for all e € {0, 1}"
3
nw U Q) < on (4.2)

Proof. Let e € {0,1}". It is easy to see that the measure of LD? is small: for every
Q € LD? we have 1(Q) < M~ 'o(Q), so

y,( U O)fM_lo(Re)%M_l. (4.3)

QelDe
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8962 D. Dabrowski

To estimate the measure of HDZ, define for some big N > 1
Hy=({x¢ R? : u(B(x,r)) > Nr'* for some r € (0, 1)}.

Since u is n-rectifiable, the density ®"(x,u) exists and is positive and finite u-a.e.

Moreover, recall that u(R%) is finite. This implies that for N = N(u, ¢, n) big enough

I
u(Hy) < ont2”

We will show that, if M is chosen big enough, then for all Q € HDZ we have
Q C Hy.Indeed, letx e Q € HD,‘i. Then B(x, 2Ar(§a)) D AEQ, and so

w(B(x,2)r(Bp))) = n(ABg) > ME(Q)™ > N(6AAdiam(Q))"™ = N(2Ar(By))",
for M big enough with respect to N, A, A, n. Moreover, note that for Q € HDZ we have

R4 _
KED v ~, r@By)n,

and so taking M big enough (depending on 1 (R%), 1, A, n) we can ensure that all Q € HD?,
satisfy 2kr(1~30) < 1. Thus, x € Hy, and we conclude that

€
u( U O) < wHy) = g (4.4)
QeHDg,
Since v€ is a finite n-rectifiable measure, we can argue in the same way as above to get

&
e
v ( U Q) = on+2°
QeHD?

Smallness of u(lJgeppe @) follows from the fact that x| . < v®. Putting this together with
(4.3) and (4.4) we get

We take M so big that the above holds for all e € {0, 1}"*, and the proof is finished. [ |
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For each e € {0,1}", k=0,1,2,..., let gz be the density of v,i with respect to o.
Note that, due to the definition of Tree®, for any Q < Tree® we have

M1 @)™ < vE(Q) < vE(Bg) < MLQ)™.

Hence, given a cube Q € Tree® with ¢(Q) = 2%, we can estimate &Uilz(a)z using
Lemma 3.9 (applied to v; and Tree = {P € Tree® P C Q}) to get

- 2(P) £(S)2
2 2 2
e 2@ Seom %0 2B)* + D IIAj'agille<(,)—g(a)n+1 + > —Z(O)szg(sy (4.5)
P%'geaee SeStop®
Sca

The following lemma states that the right hand side of this estimate can be made

independent of k.

Lemma 4.3. For all Q € Tree® with £(Q) = 2%, k > 0, we have

~ 2 2 o e2 £(P) Ls?
G 2(@D? S % 2B)> + D 18566122, wa > wo2® @e
PcTree® SeStop®
PCQ Sca
Moreover,
D IARGE 72 ) S MGGl = MG(D) < Mu(®R?). (4.7)

PcTree®

Proof. We claim that for P € Tree® with ¢(P) < 27k (in particular, for P € Tree® such
that P C Q) we have

ASgS = ASgE. (4.8)

Indeed, for x ¢ P both sides of (4.8) are zero. For x € P’ C P, where P’ € Tree® U Stop® is a
child of P, we have

vg(P") —vi(P')  v§(P) — vi(P)

ABgo(x) — Apgr(x) =

¢(PH P
Jpp— wes) P w(s)
=((P) > Z(S)na(P NTIL(S) | — €(P) > E(S)na(P NTIR(S))

SEWE\WE SEWE\WE

The Whitney cubes S in the sums above satisfy £(S) > 27k > £(P), and moreover we have
I1-(S) € Df. Hence, we either have P N I1-(S) = P or PN I1-(S) = @. The same is true for
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8964 D. Dabrowski

P'. Moreover, we have PN I1(S) # @ if and only if P N I1(S) # @. It follows that the
right hand side above is equal to
u(S) u(S)
_ -0
Z 2S)" Z 2S)"

SeW§\WE SeWS\We
PAIr(S)#Q PN (S)#D

Thus A%g;, = A%gg. Using this equality, and also the fact that v < v®, we transform (4.5)

into

2
£ > £(P) Ve(P). (4.9)

~ 2 2 2
%;2(0) SeoM Y% ,2Ba)” + z ||A§98||L2(0)W wan?

PcTree® PeStop®
PcQ PcaQ

Concerning (4.7), it is an immediate consequence of (3.9) when we apply Lemma 3.9 to
v§ and the trees {Q € Tree® Q C R?} (recall that the union of such trees gives the entire
Tree®). [ |

We finally define Tree as the collection of cubes Q € D such that for every
e € {0,1}" there exists P € Tree® satisfying ¢(P) = ¢(Q) and PN Q # @. It is easy to
check that Tree is indeed a tree, and that the stopping cubes Stop = Stop(Tree) satisfy

Uaestop @ € Ue Ugestope Q- Thus,

(U9 509

QeStop e€{0,1}" QeStop®

,,,,,

1(ABg) < ME(Q)",

n@ =M H@".
The only thing that remains to be shown is the packing condition (4.1).

Lemma 4.4. We have

> 8,,2Br*Q)" < 0.

QeTree

Proof. Recall that in Lemma 2.2 we defined a constant k; > 0 such that for any Q €
Dr, £(Q) < 27ko, there exists a cube P, € 75r satisfying 3§O C V(Py), £(Py) = 2kog(Q).
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Since there are only finitely many Q € Tree with £(Q) > 2~%0, we may ignore them in the
estimates that follow.

Suppose Q € Tree and ¢(Q) < 27k, let P, be as above. Recall that v, = Vliig;'
where e = e(Q), k = k(Q) are such that P, € Df and £(Py) = 27k,

We defined Tree in such a way that necessarily P, € Tree®. It follows from
Lemma 3.5 applied with v = v,, B=B,, Q = P,, that

ava,z (BO) Sso,M,kO aVQ,Z (Pa) + ad,z (BPQ)‘

We use (4.6) and the inequality above to obtain

(P us?*
uaz(Ba) SeoM ko az(BPO) + Z ||Ap90||Lz(J)W Z WV (S).
PcTree® SeStop® a
PCPq SCcPq

Taking into account that each P, € Tree® may correspond to only a bounded number of
Q € Tree, and that £(Q) Ao {(Pg), we get

> @B Somke D, Y aBg)le@)"

QeTree:PoeTree® Q’eTree®
£(P) K(S) Ve (
+ Z Z PgO”LZ(a)g(Q/) Z Z Z(Q/)z (S)-
Q’cTree® PcTree® Q’cTree® SeStop®
PcQ’ sca’

The first sum from the right hand side is finite because o is uniformly rectifiable, see

Theorem 1.1. We estimate the second sum by changing the order of summation:

(P t®)
Z Z PgOHLZ(U)e(O ) Z ”APQOHLZ(J) Z e(a/)

Q'cTree® PeTree® PcTree® Q'cTree®
Pca’ Q'oP

4.7)
S D 1836610, S Mup®R?Y) < oo
PeTree®

The third sum is treated similarly:
“«s? . £(S)? .
> > war’ S)= D> S > Ws > AS) < oo

Q' eTree® SeStop® SeStop® Q' e/‘l’reee SeStop®
sca’ Q'os
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Thus,

D BB = Z S a,,E0%Q" <.

QecTree €{0,1}" QeTree:PgcTree® ]

5 From Approximating Measures to u

To prove Lemma 1.10 we need to pass from the estimates on ava,Z(EO) shown in
Lemma 4.1 to estimates on 6?“,2 (Bg)-

Recall that K > 20 is the constant such that for all Whitney cubes Q € W¢ we
have KONT # @, and ky = ky(n, A) is an integer from Lemma 2.2.

Lemma 5.1. There exists A = A(ky, K, n,d) > 3 such that if M = M(e, A, A, n,d, 1) and
Tree = Tree(), M, ¢) are as in Lemma 4.1, then for all Q € Tree with £(Q) < 2~ %o

1
@,2(B0)® Saria G 2B)® + oy 2Bo)® + W D w@UP?.
PeWa
PCABq

Proof. Let Q € Tree with £(Q) < 2~%0. We will define an auxiliary measure tq- Set
Ip={PeW,: I (P)N3B, # ).

It is easy to check that

U Pc By, (5.1)
Pelg
for A = A(ky, K, n, d) big enough (e.g., A = C(n, d)K2k0 works). It is crucial that all cubes
in I, have sidelength bounded by 2k°£(0), otherwise no such A would exist.
Recall that the functions gp(x) = %ﬂnr(},) (x), P € W, were used to define v,

at the beginning of Section 4. Let

Ao — fwéagp do
)

Note that for P € W, \ I we have ap = 0. The measure u, is defined as

Q = B M + Z apitlp.
Pelg
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First, let us show that if A (the constant from the definition of B, = AB,) is big
enough, then yu| 45, = g 35,.- We need to check the following: if P € W@ is such that
PN3B,y # 9, thenP el,andap=1.

Note that for all such P we have

(2.4 2.3)
¢(P) < diam(P) < r(3By) =9diam(Q) < 27KO,

and so P € W,. Furthermore, the fact that PN3B, # < and (2.4) imply that P C 9B,,. Since
My is V/2-Lipschitz continuous, and B, is centered at I', we get that for A big enough
(e.g., A =9v?2)

M-(P) C AB, =B,. (5.2)

We conclude that P € I, and ap = 1, and so,

.U~|3Ba = MQ|330- (5.3)

Set L = Lg,. We will apply Lemma 3.3 with v = g, By = By, B, = ABy, L =1,
and f = ¢p,. Notice that suppuy, C ABgy by (5.1). Moreover, using the same trick as
in the beginning of the proof of Lemma 3.4, we may assume that L N B, # &. Since
a(Ba) Xy g (AEQ) ~,r £(Q)" by Lemma 4.1, and r(/\ﬁa) = MAT(B(), the assumptions of

Lemma 3.3 are met, and we get that

Wy (paita 0o ") Sapan Walig, agp, A" ,)- (5.4)

Applying the triangle inequality yields

Wy (g, aps, 7" )? S Wylig, ¢5,v0)* + Wal@5,va, 495,74 |,)?

~ur Wollar 95,90)° + @,y ,2(B)*L(Q)" 2. (5.5)

To estimate W,(uq, ¢5,vq) We define the following transport plan:

1
dn(x,y) = ¢5,()dulr (X)ds,(y) + D mdquPm%Q (Vgpy)do (p).
Pelp M@
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Then,

WyGua,v5,70) = [ 1x =y dxxy) £ 3 6P [ 05,1050 ).
Pelg

6.1
< D u@E®? < > u@eP)
Pelg PeWo
PCABq

Putting together (5.3), (5.4), (5.5), and the estimate above, we get

Wy (@ait, a9 " |) Sarpn @ug2Ba)* Q"2+ > u(P)EP)>.
PEVEQ
PCABqg

Finally, we use the triangle inequality, the estimate 1 (3By) =~y 0(By) =~ r(By)", and the

fact that L, minimizes «, ,(Bj), to get

@, 2B Q™2 Ay Wy(pqit, apg ") < Walpgi, apg ™)

d
n (f‘/’a 128

Su Wy(pqu, a‘PQ%nh‘) + Wy(pqo, a¢0%n|L)

1/2
) (Wz(waa,agoaifn|La) + Wz(waa,a¢0%n|L))

S Walpai, apg A" ) + o, ,(Bo)*e(@"2,
and so the proof is complete. |
We are ready to finish the proof of Lemma 1.10.

Proof of Lemma 1.10. Recall that R is a I'-cube with £(R) = 1, and ¢ > 0 is an arbitrary
small constant, and that they were both fixed in Subsection 2.1. Let A, M, Tree, and Stop

be as in Lemma 5.1 and Lemma 4.1. Set

R=R\ (J P

PeStop

By Lemma 4.1, we have u(R") > (1 — ¢)u(R). Our aim is to show that

1
/ / o, 9(X, r)? ﬂ du(x) < oo.
/ 0 ! r

20z udy 60 U0 3senb Aq 9€+99/6/9€68/22/020Z/3101e/ulwWl/Wod dnoolwapede//:sdiy Wolj papeojumoq



Necessary Condition for Rectifiability via Wy 8969

For any x € R’ we have arbitrarily small cubes from Tree containing x. Hence, for
any k> ky+3, re (27%,27k+1] we have 3B(x,1) C B, for the cube Q € Tree containing x
and satisfying £(Q) = 2-k+3 Thus, by Lemma 3.4,

Q,,Bx,1)? <y 8, 2B+, 5By

Integrating both sides with respect to r yields

9—k+1

s

The inequality above holds for all x € QN R/, so

2—k+1

~ 2 dr ~ 2 2y dr 2 2
o, 2(B(x,1)) M ) (a,,2Bg)* +a,2(Bg) )T ~a, 9(Bg)® + o, 5(Bg)”

-k

2—k+1
_ d R
/a . /2 2B A Sy @, 2B + o 2B IH(Q)
NR’ -

~y @,5(Bo)? +a, 5B Q™.

Summing over all Q € Tree with £(Q) = 2-k+3 and then over all k > ky + 3, we get

27k~ dr
/ | / 8,20 T A Sy Y BB Q"+ Y 5BeHQ)"
0 QcTree QcTree
£(@)<2%o £(@)<2%0

(5.6)

On the other hand, for any r > 0 we have

2 < )

@, ,(B(x,1) -

SO

! —_ B 2 dr d
R 2,,(0,2%,2( (x,1)" — du(x) < co.

Thus, in order to prove Lemma 1.10, it suffices to show that the sums on the right hand
side of (5.6) are finite.

The finiteness of

> a,,Br@"

aEDr,aCR
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8970 D. Dabrowski

follows by Theorem 1.1. To estimate the other sum we apply Lemma 5.1:

> GBS D GaBH @+ D, ,(Br)*@"
QcTree QcTree QcTree
£(@)<2%o0 @)y<27%o @)y<2%o

£(P)?

P)——.

+ Z Z M( )5(0)2
QcTree PeWg
(@=27% pc;B,

The first sum is finite by Lemma 4.1, the second by Theorem 1.1. Concerning the last

sum, we may estimate it in the following way:

€(P)2 £(P)?
Z Z M(P)E(O)Z S z Z w(P) Z 5(0)2

QcTree PeWqo e€{0,1}" PeWye QcTree
(@=<27% pc) B, PCABg ABoDP
S > D uP = D pBg) =2"u(Bg) < oo,
ec{0,1}" PeWe ec{0,1)n
PCABg
Thus,

> @,,B*Q)" < .
QeTree ]
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