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We prove prime geodesic theorems counting primitive closed geodesics on a compact

hyperbolic 3-manifold with length and holonomy in prescribed intervals, which are

allowed to shrink. Our results imply effective equidistribution of holonomy and have

both the rate of shrinking and the strength of the error term fully symmetric in length

and holonomy.

1 Introduction

Closed geodesics on a smooth and connected Riemannian manifold M act as important

geometric and dynamical invariants. Closed geodesics support periodic orbits of the

geodesic flow and in turn its invariant measures, whereas the length of the shortest

closed geodesic of M (its systole) acts as the first threshold of global geometry and

dynamics. On locally symmetric spaces, the trace formula connects closed geodesics to

the spectrum of the Laplacian (which quantizes the geodesic flow), just as elliptic ele-

ments of Fuchsian groups enter dimensions of spaces of cusp forms. In arithmetic cases,

lengths and multiplicities of geodesics can often be explicitly related to invariants such

as class numbers and regulators of indefinite binary quadratic forms. Hence, for many
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Ambient Prime Geodesic Theorems 589

reasons, one seeks to understand the set of closed geodesics on M and, in particular, as

in this paper, its size and structure.

1.1 Prime Geodesic Theorems and Holonomy

We will be concerned with compact hyperbolic 3-manifolds M arising as the quotient

M � �\H3 of the hyperbolic upper half-3-space by a uniform, torsion-free lattice

� ⊆ G = PSL2C. Closed geodesics Cγ on M arise from non-identity conjugacy classes

[γ ] in �, with primitive classes corresponding to infinitely many prime geodesics of

increasing lengths �(γ ) → ∞. The celebrated Prime Geodesic Theorem, in the form with

an explicit error term, is due to Sarnak [23, Theorem 5.1] and may be stated as

π�(x) := ∣∣{[γ ] primitive in � : �(γ ) � x
}∣∣ = Ei�(x) + O�,ε

(
e( 5

3 +ε)x)
, (1)

where the main term Ei�(x) may be defined in terms of an absolutely continuous density

measure d�� as

Ei�(x) =
∫ x

2
d��(t), d��(t) =

(
e2t

t
+

k∑
j=1

e(1+νj)t

t

)
dt, (2)

and {0 < νk � · · · � ν1 < 1} correspond to the eigenvalues 1 − ν2
j of the hyperbolic

Laplacian 	 on M in (0, 1) as described in Section 2.1. The set of {νj} depends on �

only and is predicted by Selberg’s conjecture to be empty for arithmetic �. In any case,

Ei�(x) ∼� Ei(2x) = ∫ 2x
2 et/t dt ∼ e2x/2x, recovering the general asymptotics of [19,

Theorems 3, 4] and [10, Proposition 5.4]. Moreover, (1) gives a power-saving asymptotic

for π�(x, x + h) := π�(x + h) − π�(x) as long as h � e−(1/3−δ)x.

Attached to each closed geodesic Cγ is the geometric action of the associated

class [γ ]. For γ ∼
(

e(�+iθ)/2 0
0 e−(�+iθ)/2

)
with � > 0 (recall that � is uniform), this is given by a

shift by � = �(γ ) along Cγ and a rotation around Cγ by the angle θ (which corresponds to

parallel transport along Cγ ). Thus, each Cγ carries two geometric invariants: the length

�(γ ) and the holonomy hol(γ ) := θ ∈ R/2πZ; in this setting of 3-manifolds one often also

talks about the complex length C�(γ ) := �(γ ) + i hol(γ ). It becomes a natural counting

question to refine the count (1) according to holonomy. The equidistribution theorem

of Sarnak–Wakayama [25, Theorem 1, Corollary 1] in the present case of a compact

3-manifold M � �\H3 states that, for every interval J ⊆ R/2πZ,

π�(x; J) = ∣∣{[γ ] primitive in � : �(γ ) ∈ [0, x], hol(γ ) ∈ J
}∣∣ ∼�

|J|
2π

π�(x) (x → ∞). (3)
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590 L. Dever and D. Milićević

We will be interested in asymptotics with precise control on hol(γ ), the “compact

part of the complex length,” in the same way as the sharp cutoff in �(γ ) in the Prime

Geodesic Theorem (1). In particular, our Theorem 6.5 proves the following effective

version of the equidistribution result (3):

π�(x; J) = |J|
2π

π�(x) + O�

(
e5x/3)

, (4)

with the implied constant independent of J. We also remark that the error term in (4) is

a pure exponential. Using dynamical methods, Margulis, Mohammadi, and Oh [20, 21,

Theorem 1.3] proved an asymptotic for π�(x; J) with a small, unspecified power savings

in (3), for a broad class of geometrically finite, Zariski dense � < PSL2(C), including all

lattices.

The asymptotic (4) provides power savings for the refined count with holonomy

in an interval of length |J| � e(− 1
3 +δ)x and is reminiscent of a prime number theorem in

arithmetic progressions with explicit level dependence. Indeed, we deduce it from the

following uniform estimate on “holonomy character sums” (see Proposition 5.1):

Kn(x) :=
∑

[γ ] primitive in �:�(γ )�x

ein hol(γ ) 
� x−1e5x/3 + n2ex (n �= 0), (5)

where the implied constant depends only on �. The decomposition into pure harmonics

of holonomy in R/2πZ implicit in the passage between (4) and (5) (which was also the

key implement in [25]) gives analytic access to automorphic constituents of L2(�\G) via

the trace formula; see Section 1.2. Substantial cancellation in holonomy character sums

in (5), which quickly leads to (4), is in this sense analogous to classical bounds on sums

of Dirichlet characters with explicit conductor dependence.

Theorem 6.5 requires fine control in both �(γ ) and hol(γ ). More broadly, we

argue that, for many purposes including counting in short ranges, the two geometric

parameters �(γ ) and hol(γ ) have the same standing, and that it is most natural to talk

about the joint distribution of the pair (�(γ ), hol(γ )). Such a result might be called

an ambient prime geodesic theorem. In Theorem 6.12, we obtain our main result, an

asymptotic count for primitive closed geodesics on M according to the pair (�(γ ), hol(γ )).
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Ambient Prime Geodesic Theorems 591

Theorem 1.1. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup. Then,

for any intervals I ⊆ [0, x] and J ⊆ R/2πZ,

π�(I, J) := ∣∣{[γ ] primitive in � : (�(γ ), hol(γ )) ∈ I × J
}∣∣

=
�
I×J

d��(t)
dθ

2π
+ O�

(
(|I| + |J|)2/3 e5x/3

x2/3 + e3x/2

x1/2

)
.

In particular, Theorem 1.1 proves the uniform asymptotic (see Theorem 6.5 and

its Corollary 6.7)

π�(I, J) =
�
I×J

d��(t)
dθ

2π
+ O�

(
e5x/3)

, (6)

which provides a power savings as long as |I × J| � e(− 1
3 +δ)x with δ > 0, where each

interval may be short independently of each other; see Remark 6.8. Theorem 1.1 further

extends this range when both intervals I and J are short, down to as short as |I × J| �
e(− 1

2 +δ)x when |I| � |J|; see Remark 6.13 for details.

Joint distribution results such as our Theorem 1.1 may be seen as instances of

spectral geometry on the group quotient �\G, as we explain in Section 1.2. We emphasize

that our results apply regardless of whether the subgroup � is arithmetic or not; for

asymptotics on arithmetic quotients in the length aspect, we refer to [25] as well as to

recent advances on arithmetic hyperbolic 3-manifolds [1–3]. While it would certainly

be of interest to obtain stronger error terms in ambient prime geodesic theorems on

arithmetic hyperbolic 3-manifolds, our goal here is to establish universal, baseline

results.

1.2 Spectral Geometry of �\G, Trace Formulas, and Ambient Counting

Closed geodesics on M are often considered along with the spectrum of the Laplace–

Beltrami operator 	M , which we recall involves averages over infinitesimal balls in M

and thus naturally quantizes the dynamics of the geodesic flow on M. On a rank one

compact locally symmetric space M = �\S, the classical spherical trace formula relates

the eigenvalues of 	M (that is, frequencies of 	S appearing in L2(�\S)) with lengths of

geodesics corresponding to non-identity conjugacy classes in �. This may also be seen

as the correspondence principle of quantum mechanics, relating long-term dynamics on

M with the semi-classical (high-energy) limit of the quantized system on L2(M), or as a

noncommutative version of Fourier duality.
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592 L. Dever and D. Milićević

A key question of spectral geometry is whether isospectral manifolds (having

the same Laplacian spectrum) are also isometric. For hyperbolic 3-manifolds, the

answer is “No”: in 1980, Vignéras [28] found a pair of hyperbolic 3-manifolds that are

isospectral but not isometric; see also [11, 27]. However, Gangolli [9] showed that for a

compact hyperbolic 3-manifold, the Laplacian spectrum determines the set of lengths of

closed geodesics. While for hyperbolic surfaces the Laplacian spectrum also determines

the multiplicities of closed geodesics, in higher dimensions this is an open problem

[14, Remark 0.3]. In the converse direction, Kelmer [14] showed that the length spectrum

(including multiplicities) determines the Laplacian spectrum for compact hyperbolic

manifolds. For arithmetic hyperbolic 3-manifolds, the complex length spectrum (and in

fact, the rational length set) determines the commensurability class [5, 22].

In any case, all structure encoded in the trace formula should be reflected in

the spectral-to-geometric correspondence. In the present case of M � �\PSL2C/PSU2,

regular conjugacy classes [γ ] are parametrized by tγ ∈ T/S2 = {t = ( z 0
0 z−1

)
: z ∈ C

×}/(t ∼
t−1), L2

0(�\PSL2C) is spanned by principal series representations π = indG
T (χν,p) indexed

by unitary characters χν,p : T → S1, and the trace formulas on �\PSL2C (Theorems 2.1,

2.2, and 2.4, below) relate roughly, up to fixed smooth weights,

∑
πν,p⊆L2(�\G)

F̂(χ−1
ν,p) + . . . �

∑
[γ ]⊂�

F(tγ ) + . . . , (7)

for a compactly supported smooth function F : T/S2 → C and its Abel transform

F̂ : T∗/S2 → C; see Section 2.2 for details. Our guiding principle, then, is to view the

spectral geometry of �\H3 as duality between the classical spherical Maass forms and

counts such as the classical Prime Geodesic Theorem (1), essentially specializing (7) to

(PSU2 ∩T)-invariant test functions, and the spectral geometry of �\G as the full duality,

as encoded by (7), between the entire spectrum of all PSU2-types and ambient prime

geodesic theorems such as (4) and our Theorem 1.1.

As an imperfect but convincing analogy, consider a higher rank real symmetric

space, say a compact quotient �\G/K = �\SLnR/SOn, with rank r = n − 1, where

L2
0(�\G/K) decomposes into a direct sum of principal series representations induced

from a character ν in the dual of the Lie algebra of the maximal torus a∗ � R
r. Weyl’s

law is a classical spectral count, central for quantum mechanics or thermodynamics, of

eigenforms in L2(�\G/K) with Laplace eigenvalue up to a given bound, or equivalently

with ‖ν‖2 � X. From the point of view of equidistribution in families of automorphic

forms [4, 16, 24], one is more broadly interested in counting representations π ⊆
L2(�\G/K) in a prescribed region 
 ⊆ Ĝ within the ambient space Ĝ � a∗

C
of all such

representations; a count with r parameters rather than just one (see [4, Proposition 7.2]).
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Ambient Prime Geodesic Theorems 593

The natural dual question to this is to count primitive conjugacy classes [tγ ] occurring

in � not just according to their length ‖ log |tγ |‖2 but simply within prescribed regions

in the r-dimensional space [G] � T/Sn of all regular conjugacy classes of G (see [6]).

An ambient prime geodesic theorem in PSL2C such as our Theorem 1.1 should

similarly count primitive conjugacy classes in � according to their full parameter,

the complex length C�(γ ) ∈ C/{±1}. In a different context, Kelmer [13, Corollary 3.1]

proved effective equidistribution of holonomy for closed geodesics on products of n

hyperbolic planes (corresponding to conjugacy classes in an irreducible co-compact

lattice � < (PSL2R)n that are hyperbolic at one place and elliptic at all others), including

the asymptotic joint length–holonomy count.

This analogy brings about the natural question of using the non-spherical trace

formula of Section 2.2 to count geodesics in more general regions 
 ⊆ [G], the geometric

counterpart to the spectral count of π ⊆ L2(�\G) in regions of Ĝ as in [4, Proposition

7.2]. Passage to the geometric sharp cutoff count and estimates of boundary terms as

in (13) involve estimating contributions on the dual (spectral) side, extending deep into

the tempered spectrum Ĝtemp (in all directions), which is of more moderate growth. This

in turn involves the rate of decay of the Fourier transform χ̂
 and thus the shape of 


and its boundary, as in classical lattice-point counting. We leave this intriguing lead for

future work.

1.3 Overview

For the sake of the reader, we now present an overview of the proof, omitting details.

Throughout, � < PSL2C is a discrete, co-compact, torsion-free subgroup. We refer to

Section 2.1 for background on the geometry and representation theory of G = PSL2C

and its quotients.

One of the key tools we use is the non-spherical trace formula. We start with

a version of Selberg’s trace formula, explicated by Lin and Lipnowski [17, Corollary 2],

which captures both the length and holonomy of geodesics. We specialize this, on the

spectral side, to representations of a particular type and, on the geometric side, to a

particular frequency of holonomy, and obtain Theorem 2.2, which states that for every

n ∈ Z and every smooth, even, compactly supported g : R → C,

1

2

∑
ν

(m�(πν,n) + m�(πν,−n))

∫ ∞

−∞
g(u)euν du + δ0(n)

∫ ∞

−∞
g(u)eu du − 1

2
δ±1(n)ĝ(0)

= 1

2π
vol(�\G)(n2g(0) − g′′(0)) +

∑
[γ ]

�(γ0)w(γ )g(�(γ )) cos(n hol(γ )),
(8)
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594 L. Dever and D. Milićević

where the first sum is over the unitary principal and complementary series representa-

tions πν,±n (where ν ∈ iR for principal series) occurring with multiplicities m�(πν,±n)

in L2(�\G), w(γ ) �� e−�(γ ), and the last sum is over the nontrivial hyperbolic and

loxodromic conjugacy classes of �. For purposes of counting the length spectrum,

where one is typically interested in (8) with a test function g of varying and extended

support, it is natural to combine the complementary series and identity terms into

a single integral of g against a measure d� ∗
� related to d��; see (20)–(21). We also

explicate a complementary “odd” trace formula, sampling geodesics with a weight

h(�(γ )) sin(n hol(γ )) for an odd h ∈ C∞
c (R); see Theorem 2.4.

In particular, using the trace formula (8) with a specific g ∈ C∞
c (R) that

emphasizes the spectral terms with R − 1 � |ν| � R + 1 with weight ĝ(iν/2π) � 1

and keeps all spectral terms non-negative, we prove in Proposition 2.5 a bound on

multiplicities of representations in an interval of fixed length:∑
R−1�|ν|�R+1

m�(πν,n) 
 vol(�\G) · (R2 + n2) + O�(1). (9)

The spectral bound (9) is a bound on local spectral densities, whose leading term agrees

with the Plancherel measure. Such a bound is a standard tool in the passage from a

smooth to sharp count of the spectrum in the proof of Weyl’s law (cf. [4, Proposition

10.1]).

As the first step toward a sharp geodesic count, in Lemma 3.1 we use the trace

formula (8) to get a handle on the geometric sum

Tcos
n [gy,η] =

∑
[γ ]

�(γ0)w(γ )gy,η(�(γ )) cos(n hol(γ )) (10)

with a smooth, even function gy,η, which approximates χ[−y,y] and is supported on

[−y − η, y + η]. The principal series terms in (8) are then weighted with its Fourier

transform ĝy,η(iν/2π), which is essentially supported up to roughly |ν| 
 1/η (exhibiting

Schwartz decay past this range); we estimate these terms using (9). In Lemma 3.3, we

majorize the contributions to (10) of classes with �(γ ) ∈ [y − η, y + η] by a suitable non-

negative smooth bump function on [y−2η, y+2η] (whose Fourier transform again extends

to roughly � 1/η), and show with another application of (8) and (9) that these boundary

terms contribute O�(eyη + 1/η2) to (10). Taking the boundary length η = e−y/3, we obtain

in Proposition 3.5

Tcos
n (y) :=

∑
�(γ )�y

�(γ0)w(γ ) cos(n hol(γ )) = δ0(n)

∫ y

−y
d� ∗

�(u) + O�

(
e2y/3 + n2y

)
(11)

and a corresponding asymptotic for Tsin
n (y) (and thus Tn(y) in (34)).
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Counts such as (11) arising from the trace formula naturally involve the weights

w(γ ) (from the Weyl discriminant) and all conjugacy classes [γ ], including imprimitive

ones. In Section 4 we address these two technical aspects and show they are essentially

harmless, namely, using that w(γ ) = e−�(γ ) + O�(e−2�(γ )) and that imprimitive classes

contribute comparatively very few (namely O�(ey)) terms to (11), we prove in Lemma 4.1

that a simpler sum SP
n(y) over primitive geodesics satisfies

SP
n(y) :=

∑P

�(γ )�y

�(γ )e−�(γ )+in hol γ = Tn(y) + O�(y). (12)

Combining (11) and (12) and using integration by parts, we obtain in Proposition 5.1,

as cited above, the estimate (5) on “holonomy character sums” Kn(y). In particular,

Proposition 5.1 for n �= 0 quantifies cancellation among the holonomies of primitive

geodesics with �(γ ) � y and shows that these are equidistributed throughout R/2πZ.

While we have so far in (11), (12), and (5) emphasized the traditional sharp

cutoff �(γ ) � y, we in fact throughout also prove estimates for analogous smooth cutoff

quantities like SP
n[gy,η] and Kn[gy,η], with explicit dependence on η. Moreover, we observe

structural analogies in the length and holonomy aspects, such as in the comparison of

our Lemmata 3.3 and 3.6, which state roughly that

∑
y−η��(γ )�y+η

�(γ0)w(γ ) 
� ηey + 1

η2 ,
∑

�(γ )�y
θ0−η′�hol(γ )�θ0+η′

�(γ0)w(γ ) 
� η′ey + y

η′2 . (13)

This analogy is fundamentally due to the fact that, in each case, the dual (spectral) sum

over πν,n extends up to roughly 1/η or 1/η′ (in the ν- and n-direction, respectively) and

that the Plancherel measure shown in (9) and (23) is symmetric; see Remark 3.7.

With this in mind, in Sections 6.1 and 6.2 we prove 4 = 2×2 asymptotic formulas

for “ambient” prime geodesic counts, beginning with the smooth count (Proposition 6.1)

of the form

π�(gy,η, f ) :=
∑P

[γ ]

f (hol(γ ))gy,η(�(γ ))

= 1

2π

∫ 2π

0
f (θ) dθ ·

∫ ∞

2
gy,η(u) d��(u) + O�,η0

( ey

yη2 ‖f̂ ‖1 + ey‖f̂ ‖2,1

) (14)

for a smooth f : R/2πZ → C, ‖f̂ ‖2,1 := ‖f̂ ‖1 + ‖f̂ ′′‖1, and 0 < η � η0, and then for the

related counts π�(y, f ), π�(gy,η, J), and π�(y, J) (for y > 0 and any interval J ⊆ R/2πZ),

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/1/588/6381506 by guest on 09 April 2024



596 L. Dever and D. Milićević

which have sharp cutoffs in the length, holonomy, and in both aspects, respectively. In

particular, by spectrally expanding f into a Fourier series and estimating Kn(y) using

(5), in Theorem 6.2 we prove that

π�(y, f ) :=
∑P

�(γ )�y

f (hol(γ )) = 1

2π

∫ 2π

0
f (θ) dθ ·

∫ y

2
d��(u) + O�

(
‖f̂ ‖1

e5y/3

y
+ ‖f̂ ′′‖1ey

)
,

which recovers [25, Theorem 1] for a fixed f . However, our explicit dependence on

f allows us to choose a smooth fJ,η′ approximating a sharp holonomy cutoff, while

maintaining explicit dependence on η′, and then estimate the terms with holonomy

within η′ of the boundary of J using the second bound in (13). In exact analogy with the

passage to the sharp count in (11), we choose η′ = e−y/3, which leads in Theorem 6.5

to the effective count (4) for a sharp length and holonomy count, and then to its

consequence (6).

In Section 6.3, we prove asymptotic formulas that provide counts for the number

of geodesics in intervals I and J of length and holonomy, respectively. These counts

feature a combination of sharp and smooth cutoffs in the length and holonomy, in

complete parallel to Section 6.2, but with improvements in the error term when the

lengths of I and/or J are shrinking. After explicating in Lemma 6.9 an asymptotic

analogous to (14) for the count π�(gI,η, fJ,η′) with suitable smooth length and holonomy

cutoffs, we derive as Corollary 6.10 the upper bound

∑
�(γ )∈I

hol(γ )∈J

1 
�,η0
(|I| + η)(|J| + η′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2 , (15)

for every I ⊆ [0, y], J ⊆ R/2πZ and 0 < η � η0, 0 < η′ � 2π . This is a (normalized; recall

that w(γ ) ∼� e−�(γ )) ambiental analogue of (13), where we additionally profit in the first

term when lengths and holonomies are sampled from short intervals. Then, we estimate

the smooth count using Lemma 6.9 and bound the ambiguous regions with (15), which

leads to Proposition 6.11 and our main result, Theorem 1.1.

1.4 Notation

We write f = O(g) or f 
 g to mean that |f | � Cg for some constant C > 0, which may be

different from line to line and is absolute unless explicitly indicated with a subscript.

We also write f � g to denote that f 
 g 
 f , and f ∼ g to denote that lim f /g = 1,

where the direction of the limit is clear from the context, again with dependencies of

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/1/588/6381506 by guest on 09 April 2024



Ambient Prime Geodesic Theorems 597

implied constants and rate of convergence only as indicated. (No confusion should arise

with the usage of ∼ to also denote conjugate elements in a matrix group.)

We use the convention f̂ (ξ) = ∫
R

f (x)e−2π ixξ dξ to denote the Fourier transform

of a Schwartz function f , and we choose the normalization f̂ (n) = ∫
R/2πZ

f (x)e−inx dx for

the Fourier coefficient of a periodic function f on R/2πZ. We also use the shorthand

notation log∗(x) := log(x + 2) for x > 0. Finally, we write δa(n) for the Kronecker

delta-function, that is, δa(n) = 1 if n = a and 0 otherwise (including writing δ±1(n)

as shorthand for whether n = ±1 or not).

2 Non-spherical Trace Formulas and Weyl’s Law

2.1 Background on Groups and Representations

Let G = PSL2C, and let � be a discrete, torsion-free, co-compact subgroup of G.

The group G = PSL2C is in one-to-one-correspondence with the group of orientation-

preserving isometries of the 3-dimensional, hyperbolic upper half space H
3, which we

describe shortly. We are primarily concerned with the geometry of the fundamental

domain M = �\H3, which is a compact hyperbolic 3-manifold, and its covering �\G.

In this section, we collect some background material about the group G, its geometric

action on H
3, the geometry of M, and the representation theory of L2(G) and L2(�\G).

The group PSL2C has the Iwasawa decomposition G = UAK, where

U =
{(

1 z

0 1

)
: z = x + iy ∈ C, x, y ∈ R

}
, A =

{(
eu/2 0

0 e−u/2

)
: u ∈ R

}
,

K = PSU2 =
{(

α β

−β̄ ᾱ

)
: α, β ∈ C, |α|2 + |β|2 = 1

}
/{±1}.

Here, UA is a Borel subgroup of G with the unipotent subgroup U and with A a maximal

torus in G, and K is a maximal compact subgroup of G. The Haar measure on each of

these subgroups is unique up to a constant multiple. We choose the Euclidean measure

dx dy on U, du on A and the volume 1 Haar measure dk on K. This induces a Haar

measure on G.

The quotient G/K may be identified with the upper half space H
3 = {z + ir :

z ∈ C, r > 0}, a 3-dimensional hyperbolic space with the hyperbolic metric ds =
(|dz|2 + (dr)2)1/2/r. The action of G by left multiplication induces an action of G on H

3

by orientation-preserving isometries (preserving the hyperbolic metric), which may also
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be described in terms of (z, r)-coordinates; see [8, Section 1.1]. In fact, the group G is in

one-to-one-correspondence with the group of orientation-preserving isometries of H3.

Elements of G can be classified into identity, parabolic, elliptic, hyperbolic, and

loxodromic, each with a distinct type of geometric action on H
3. Parabolic elements are

conjugate to an element of the unipotent group U described above. All other elements

are diagonalizable. Every diagonalizable element γ ∈ G is conjugate to some

tγ ∈ T :=
{(

e(u+iθ)/2 0

0 e−(u+iθ)/2

)
: u ∈ R, θ ∈ R/2πZ

}
.

We will also refer to a matrix of this form as tu,θ . If u = 0, then γ is elliptic; if θ = 0, then

γ is hyperbolic. All other elements are said to be loxodromic, and this term is sometimes

also applied to hyperbolic elements. Note that we can conjugate tγ by
(

0 −1
1 0

)
to swap the

diagonal elements; therefore, we can and do choose the length/holonomy pair to have

non-negative length.

If γ is hyperbolic or loxodromic, it has two fixed points on the boundary ∂H3 ∪
{∞} = Ĉ and acts on H

3 by a shift along the geodesic connecting these two fixed points

by the length �(γ ) = u, followed by a rotation around the same axis by the holonomy

hol(γ ) = θ . We also talk about the complex length C�(γ ) = u + iθ . A hyperbolic or

loxodromic γ ∈ � corresponds to a closed geodesic in �\H3. Since � is discrete, �\H3

contains a geodesic of minimum length, which we refer to throughout the paper as η0(�).

The group T of diagonal elements of G has a Haar measure du dθ/2π . For ν ∈ C

and p ∈ Z, define the character χν,p on T by

χν,p

((
e(u+iθ)/2 0

0 e−(u+iθ)/2

))
= euν+ipθ . (16)

This is a unitary character for ν ∈ iR.

The classification of irreducible, unitary representations of G = PSL2C is

classical. Let πν,p denote the representation of G obtained by extending the character

χν,p to B = UT trivially along U and then inducing unitarily to G. The unitary irreducible

representations of G are then as follows:

• the trivial representation;

• the unitary principal series representations πν,p, for ν ∈ iR and p ∈ Z;

• the complementary series representations πν,0, for 0 < ν < 1.
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The only equivalences among the above irreducible representations of G are that

πν,p
∼= π−ν,−p [15, Theorem 16.2]. For a complete description of the principal and

complementary series representations including the G-invariant inner product, see [15,

§II.4], [17, §2.4.1].

Let L2(�\G) be the space of square-integrable functions on �\G. The group G

acts on L2(�\G) by the right-regular representation. Then, we have the decomposition

L2(�\G) =
⊕

π∈Ĝ
m�(π)π , (17)

where Ĝ is the set of irreducible, unitary representations of G and the non-negative

integer m�(π) is the multiplicity of π in L2(�\G). Since � is co-compact, the non-

vanishing terms in (17) form a countable sum that may (after the trivial representation)

be double indexed by πpj � πνpj,p, where, for every p ∈ Z, |νpj| → ∞ (j → ∞).

Decomposition (17) into irreducible representations is fundamentally connected

to the theory of automorphic forms. Each representation π appearing in L2(�\G)

corresponds to an irreducible representation space Vπ . The Casimir element of G acts

on Vπ by scalar multiplication, and Vπ is spanned by �-automorphic functions. For an

explicit description, see [18, Chapter 8].

2.2 Non-spherical Trace Formulas

For a co-compact discrete subgroup � < G, the Selberg trace formula relates spectral

information about the multiplicities of representations in L2(�\G) to geometric informa-

tion about elements of �. This formula results from computing the trace of the resolvent

operator in two ways.

When the underlying kernel is bi-K-invariant, this recovers the classical Selberg

trace formula on the compact hyperbolic manifold M = �\G/K. For example, in the

present rank one case G = PSL2C, the trace formula [8, Theorem 5.1] (after removing

the Eisenstein, parabolic, and elliptic terms) relates the spectrum of the Laplacian on

L2(M) with the lengths of closed geodesics on M; see also [12, Theorem 10.2] for the more

familiar case G = SL2R.

Full control over the holonomy of geodesics on M requires a trace formula on

�\G. The following trace formula was explicated by Lin and Lipnowski for compact,

hyperbolic 3-manifolds. We refer to Section 2.1 for notations.

Theorem 2.1 (Lin–Lipnowski [17, Corollary 2]). Let � < PSL2C be a discrete, co-

compact, torsion-free subgroup. Then, for every smooth, compactly supported function
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600 L. Dever and D. Milićević

F : T → C such that F(t) = F(t−1),

∑
ν,p

m�(πν,p)F̂(χ−1
ν,p) + 1

2

∫
T

|D(t−1)|1/2F(t) dt

= − 1

2π
vol(�\G)

( ∂2

∂u2 + ∂2

∂θ2

)
F
∣∣∣
t=1

+
∑
[γ ]

�(γ0)|D(t−1
γ )|−1/2F(tγ ),

where F̂(χ) = ∫
T F(t)χ−1(t) dt is the Abel transform and D(tγ ) = (1 − eC�(γ ))2(1 − e−C�(γ ))2

is the Weyl discriminant. The first sum is over unitary principal and complementary

series representations πν,p, and m�(πν,p) refers to the multiplicity of a representation

πν,p in L2(�\G). The latter sum is over the nontrivial conjugacy classes [γ ] of �, and

�(γ0) refers to the length of the geodesic corresponding to the primitive element γ0 that

generates γ .

Strictly speaking, there are two elements, γ0 and γ −1
0 , which generate γ ; however,

�(γ0) = �(γ −1
0 ), and so here and henceforth, we ignore this distinction.

Lin and Lipnowski used Theorem 2.1 with F(tu,θ ) = g(u) cos(θ), where g is even,

smooth, and compactly supported, and evaluated the above equation to isolate the

representations πν,±1, which in turn gives a handle on the first eigenvalue of the Hodge

Laplacian acting on coexact 1-forms. From a more analytic perspective, irreducible

representations of K = PSU2 are classified as (2� + 1)-dimensional representations

τ� (� � 0), and according to the right K-action we have the decompositions πν,p|K �⊕∞
�=|p| τ� and

L2(�\G) =
⊕∞

�=0
L2(�\G)�. (18)

In the following two theorems, we similarly specialize Theorem 2.1 to isolate mul-

tiplicities of representations πν,±p ⊂ L2(�\G) whose lowest K-weight vectors occur

in a fixed component L2(�\G)|p|. Theorems 2.2 (which we adapt from [7]) and 2.4 are

the “even” and “odd” trace formulas and should be compared with [25, Theorem 6.5].

Indeed, the intrinsic symmetry in Theorem 2.1 imposes two equalities among the four

quantities m�(π±ν,±p), so that two trace formulas provide for the fullest possible

spectral resolution in (18). Note that p = 0 corresponds to the familiar spherical Maass

forms on �\H3, in which case Theorem 2.2 recovers the classical spherical trace formula

[8, Theorem 5.1] for compact hyperbolic 3-manifolds.
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Theorem 2.2. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and let

n ∈ Z. Then, for every smooth, even, compactly supported function g : R → C,

1

2

∑
ν

(m�(πν,n) + m�(πν,−n))

∫ ∞

−∞
g(u)euν du

+ δ0(n)

∫ ∞

−∞
g(u) eu du − 1

2
δ±1(n)ĝ(0)

= 1

2π
vol(�\G)(n2g(0) − g′′(0))

+
∑
[γ ]

�(γ0)|1 − eC�(γ )|−1|1 − e−C�(γ )|−1g(�(γ )) cos(n hol(γ )).

(19)

The first sum is over unitary principal (for n = 0, also complementary) series

representations πν,±n, m�(πν,±n) refers to the multiplicity of a representation πν,±n in

L2(�\G), and δ0, δ±1 are as in Section 1.4. The latter sum is over the nontrivial hyperbolic

and loxodromic conjugacy classes [γ ] of �, and �(γ0) refers to the length of the geodesic

corresponding to the primitive element γ0 which generates γ .

Remark 2.3. The left-hand side in Theorem 2.2 may be rewritten as

δ0(n)

∫ ∞

−∞
g(u) d� ∗

�(u)

+ 1

2

∑
ν∈iR

(m�(πν,n) + m�(πν,−n))ĝ
( iν

2π

)
− 1

2
δ±1(n)ĝ(0),

(20)

where the sum is now only over unitary principal series representations πν,±n with ν ∈
iR (including for n = 0), and � ∗

� is the absolutely continuous measure on R given by

d� ∗
�(u) =

(
eu +

∑
ν∈(0,1)

m�(πν,0)euν

)
du, (21)

with the latter sum being over the complementary spectrum πν,0 occurring in L2(�\G).

The form (20) is particularly well suited to geodesic counting, with � ∗
� acting as the

density of the length spectrum [γ ] of � (not necessarily primitive and weighted by

�(γ0)w(γ ) with w(γ ) �� e−�(γ ) as in (19) and (25)).
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Proof. Consider the function Fn : T → C defined as Fn(tu,θ ) = g(u) cos(nθ). This

is a smooth, compactly supported function on T invariant under inverses. Therefore,

Theorem 2.1 applies to Fn; we will explicate each term.

On the spectral side,

F̂n(χ−1
ν,p) = 1

4π

∫ ∞

−∞

∫ 2π

0
g(u)

(
euν+i(p+n)θ + euν+i(p−n)θ

)
dθ du

= 1

4π

∫ ∞

−∞
g(u)euν

( ∫ 2π

0

(
ei(p+n)θ + ei(p−n)θ

)
dθ

)
du.

Therefore, for n �= 0, F̂n(χ−1
ν,±n) = 1

2

∫ ∞
−∞ g(u)euν du, and F̂0(χ−1

ν,0 ) = ∫ ∞
−∞ g(u)euν du. If

p �= ±n, then F̂n(χ−1
ν,p) = 0. The contribution of the trivial representation is

1

2

∫
T

|D(t−1
u,θ )|1/2Fn(tu,θ ) dtu,θ = 1

4π

∫ ∞

−∞

∫ 2π

0
|eu+iθ |∣∣1 − e−(u+iθ)

∣∣2g(u) cos(nθ) dθ du

= 1

4π

∫ ∞

−∞

∫ 2π

0
(eu + e−u − 2 cos θ)g(u) cos(nθ) dθ du

= δ0(n)

∫ ∞

−∞
g(u) cosh u du − 1

2
δ±1(n)

∫ ∞

−∞
g(u) du,

(22)

by orthogonality. Note that
∫ ∞
−∞ g(u) cosh u du = ∫ ∞

−∞ g(u)eu du since g is even.

On the geometric side, the contribution of the nontrivial hyperbolic and loxo-

dromic elements is

�(γ0)|D(t−1
γ )|−1/2Fn(tγ ) = �(γ0)|1 − eC�(γ )|−1|1 − e−C�(γ )|−1g(�(γ )) cos(n hol(γ )).

For the contribution of the identity element on the geometric side, we have

− 1

2π
vol(�\G)

( ∂2

∂u2 + ∂2

∂θ2

)
g(u) cos(nθ)

∣∣∣
u=0,θ=0

= 1

2π
vol(�\G)(n2g(0) − g′′(0)). �

Now that we have a formula for the sum of multiplicities m�(πν,n) + m�(πν,−n),

we also require an understanding of the difference in these multiplicities (both subject

to the symmetry πν,n
∼= π−ν,−n). This can be achieved by capturing both the length and

the holonomy with an odd function.
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Theorem 2.4. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and let

n ∈ Z. Then, for every smooth, odd, compactly supported function h : R → C,

1

2
i
∑
ν

(m�(πν,n) − m�(πν,−n))

∫ ∞

−∞
h(u)euν du

=
∑
[γ ]

�(γ0)|1 − eC�(γ )|−1|1 − e−C�(γ )|−1h(�(γ )) sin(n hol(γ )),

where the terms are defined as in Theorem 2.2.

Proof. This time we consider the function Hn : T → C given by Hn(tu,θ ) =
h(u) sin(nθ). This is a smooth, compactly supported function on T invariant under

inverses. Therefore, Theorem 2.1 applies to Hn, and we explicate all terms. As for the

spectral terms, we compute

Ĥn(χ−1
ν,p) = 1

2π

∫ ∞

−∞

∫ 2π

0
Hn(tu,θ )e

uν+ipθ dθ du

= 1

2π
ĥ
( iν

2π

) ∫ 2π

0

1

2i

(
ei(p+n)θ − ei(p−n)θ

)
dθ .

By orthogonality, this vanishes unless p = ±n �= 0, in which case

Ĥn(χ−1
ν,n) = 1

2
iĥ

( iν

2π

)
, Ĥn(χ−1

ν,−n) = −1

2
iĥ

( iν

2π

)
.

Thus, the spectral terms contribute 1
2 i

∑
ν(m�(πν,n) − m�(πν,−n))ĥ(iν/2π), as advertised.

The terms corresponding to the trivial representation and the identity element

vanish. Indeed, using the evaluation (22) from the proof of Theorem 2.2 (which in

particular shows that |D(t−1
u,θ )|1/2 is an even function of θ ),

1

2

∫
T

|D(t−1
u,θ )|1/2Hn(tu,θ ) dtu,θ = 1

4π

∫ ∞

−∞

∫ 2π

0
(eu + e−u − 2 cos θ)h(u) sin(nθ) dθ du = 0,

while

− 1

2π
vol(�\G)

( ∂2

∂u2 + ∂2

∂θ2

)
h(u) sin(nθ)

∣∣∣
u=0,θ=0

= 0. �
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2.3 Plancherel Measure and Bounds on Spectral Densities

Selberg’s trace formula gives a handle on the distribution of the spectrum as the spectral

parameters (such as the Laplace eigenvalue) increase, which on quotients of a group

such as G = PSL2C is guided by a fixed Plancherel measure, depending on G only and

supported on the tempered spectrum of L2(G). In the present situation, keeping in mind

the classification from Section 2.1, let μpl be the absolutely continuous measure on

iR × Z given by

dμpl(ν, n) = 1

4π2 (|ν|2 + n2) |dν|. (23)

Then, the identity term in Theorem 2.2 may be rewritten (using Fourier inversion) in the

form

vol(�\G) · 1

2

∫
iR

( ∫ ∞

−∞
g(u)euν du

)
(dμpl(ν, n) + dμpl(ν, −n)),

which should be compared to the cuspidal term (the first sum on the left-hand side of

(19)) and may be understood as the leading (or global) term in its geometric expansion,

accounting for the spectral density of G, and similarly in Theorem 2.1.

All we need for our application to Theorem 1.1 is a uniform estimate on the

cardinality of the spectrum in a short window (a familiar step in the derivation of Weyl’s

law). In this section, we use the even trace formula from Theorem 2.2 to prove such

a local bound for the density of a particular representation type. We emphasize that,

while the implied constants in Proposition 2.5 depend on the discrete subgroup �, they

are independent of n.

Proposition 2.5. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup.

Then, for every n ∈ Z and R ∈ R, the multiplicities m�(πν,n) of representations πν,n

in L2(�\G) satisfy

∑
R−1�|ν|�R+1

m�(πν,n) 
 vol(�\G) ·
∫

R−1�|ν|�R+1
dμpl(ν, n) + O�(1)

� vol(�\G) · (R2 + n2) + O�(1).
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Proof. Let g be a smooth, even, non-negative, compactly supported function such that

ĝ(t) � 0 for all t ∈ R ∪ iR, as well as ĝ(t) � 1 for |t| � 1/(2π). Consider the function

gR(x) = 2 cos(Rx)g(x).

Its Fourier transform ĝR(t) = ĝ(t − R/2π) + ĝ(t + R/2π) has the property that ĝR(t) � 1

for R − 1 � 2π |t| � R + 1. Therefore, we have the bound:

∑
R−1�|ν|�R+1

m�(πν,n) �
∑
ν

m�(πν,n)ĝR(iν/2π) + O�(1).

By Theorem 2.2, the right-hand side of this estimate equals

− δ0(n)

∫ ∞

−∞
gR(u)eu du + 1

2
δ±1(n)ĝR(0) + 1

2π
vol(�\G)(n2gR(0) − g′′

R(0))

+
∑
[γ ]

�(γ0)|1 − eC�(γ )|−1|1 − e−C�(γ )|−1gR(�(γ )) cos(n hol γ ) + O�(1).

The first two terms contribute O(1). For the fourth term, gR is a compactly supported

function with supp gR ⊆ supp g and |gR| � |g|, so this sum contains O�(1) terms and

contributes O�(1). Further, we calculate that

g′′
R(x) = 2 cos(Rx)g′′(x) − 4R sin(Rx)g′(x) − 2R2 cos(Rx)g(x),

so that the third term contributes 1
π

vol(�\G) · ((n2 + R2)g(0) − g′′(0)) 
 vol(�\G) · (R2 +
n2 + 1). Thus,

∑
R−1�|ν|�R+1

m�(πν,n) 
 vol(�\G) · (R2 + n2 + 1) + O�(1),

which completes the proof since the remaining claims are immediate. �

An immediate corollary of Proposition 2.5 is the following:

Corollary 2.6. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup. Then,

for every n ∈ Z and R � 1, the multiplicities m�(πν,n) of representations πν,n in L2(�\G)
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satisfy

∑
|ν|�R

m�(πν,n) 
 vol(�\G) · (R3 + n2R) + O�(R).

3 Sampling the Length Spectrum Using the Trace Formula

In this section, we prove estimates on certain sums that naturally appear on the

geometric side of the trace formulas in Theorems 2.2 and 2.4 when one is interested

in sampling geodesics Cγ on M, controlling their length �(γ ) close to or up to a specific

length y and detecting their holonomy with a character ein hol(γ ).

For suitable even and odd sampling functions g, h : R → R, respectively,

Theorems 2.2 and 2.4 give a handle on sums

Tcos
n [g] =

∑
[γ ]

�(γ0)g(�(γ ))w(γ ) cos(n hol(γ )),

Tsin
n [h] =

∑
[γ ]

�(γ0)h(�(γ ))w(γ ) sin(n hol(γ )),
(24)

where the sums are over the nontrivial hyperbolic and loxodromic conjugacy classes [γ ]

of �, �(γ0) refers to the length of the geodesic corresponding to the primitive element γ0,

which generates γ , and

w(γ ) = |1 − eC�(γ )|−1|1 − e−C�(γ )|−1. (25)

Let ψ : R → R�0 be a fixed, smooth non-negative function that is compactly

supported on [−1, 1] and satisfies ‖ψ‖1 = 1 and ψ � 1
2 on [−1

2 , 1
2 ], and for η > 0, define

ψη(t) := 1

η
ψ

( t

η

)
. (26)

For y > 0, define the sampling functions gy,η, hy,η : R → R as convolutions

gy,η = ψη � χ[−y,y], hy,η = ψη � (χ[−y,y] · sgn). (27)

In Section 3.1, we use the non-spherical trace formulas of Theorems 2.2 and 2.4 to prove

estimates on Tcos
n [gy,η] and Tsin

n [hy,η]. In Section 3.2, we execute the passage from these
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smooth counts to the sharp counts

Tcos
n (y) := Tcos

n [χ[−y,y]] =
∑

�(γ )�y

�(γ0)w(γ ) cos(n hol(γ )),

Tsin
n (y) := Tsin

n [χ[−y,y] · sgn] =
∑

�(γ )�y

�(γ0)w(γ ) sin(n hol(γ )).
(28)

3.1 Trace Formula Estimates

In this section, we use Theorems 2.2 and 2.4 to prove in Lemma 3.1 estimates on the

smooth counts Tcos
n [gy,η] and Tsin

n [hy,η] defined in (24).

Lemma 3.1. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, let n ∈ Z,

and let y, η > 0. Then, the sums Tcos
n [gy,η] and Tsin

n [hy,η] defined in (24), with gy,η and hy,η

as in (27), satisfy

Tcos
n [gy,η] = δ0(n)

∫ ∞

−∞
gy,η(u) d� ∗

�(u) + O�

(
1

η2 + (1 + n2)
(

log∗ 1

η
+ y

))
,

Tsin
n [hy,η] = O�

(
1

η2 + (1 + n2)
(

log∗ 1

η
+ y

))
,

where � ∗
� is as in (21) and log∗ x = log(2 + x).

Proof. Using Theorem 2.2 for gy,η, in the form (20), we know that

Tcos
n [gy,η] − δ0(n)

∫ ∞

−∞
gy,η(u) d� ∗

�(u) = 1

2

∑
ν∈iR

(m�(πν,n) + m�(πν,−n))ĝy,η

( iν

2π

)
− 1

2
δ±1(n)ĝy,η(0) − 1

2π
vol(�\G)(n2gy,η(0) − g′′

y,η(0)).

(29)

With our choice of gy,η, the right-hand side of (29) equals

1

2

∑
ν∈iR

(m�(πν,n) + m�(πν,−n))ĝy,η

( iν

2π

)
− δ±1(n)y + O

(
vol(�\G)

(
n2 + 1

η2

))
.

(When η < y, the error term O(vol(�\G)/η2) is not needed here, since then g′′
y,η(0) = 0;

however, we incur this term later regardless.)
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608 L. Dever and D. Milićević

For the spectral contribution, we first compute that the Fourier transform for

ν = it (t ∈ R) is

ĝy,η

(−t

2π

)
= 2ψ̂

(−ηt

2π

)sin(ty)

t
.

Using the Schwartz bound |ψ̂(−ηt/2π)| 
m 1/(1 + η|t|)m with (say) m = 3, we obtain

1

2

∑
ν=it

m�(πν,±n)ĝy,η

( iν

2π

)
=

( ∑
0�|t|<1

+
∑

1�|t|�1/η

+
∑

|t|>1/η

)
m�(πit,±n)ψ̂

(−ηt

2π

)sin(ty)

t


 y
∑

0�|t|<1

m�(πit,±n) +
∑

1�k�1/η

1

k

∑
k�|t|<k+1

m�(πit,±n)

+
∑

k>1/η

1

k

1

(ηk)3

∑
k�|t|<k+1

m�(πit,±n).

Bounding the multiplicities m�(πν,±n) using the uniform local bound of Propo-

sition 2.5, we find that the above is


 vol(�\G)

[
y(1 + n2) +

∑
k� 1

η

(
k + n2

k

)
+

∑
k> 1

η

( 1

η3k2 + n2

η3k4

)]

+ O�

(
y +

∑
1�k�1/η

1

k
+

∑
k>1/η

1

η3k4

)


 vol(�\G)

[
y(1 + n2) + 1

η2 + n2 log∗ 1

η

]
+ O�

(
y + log∗ 1

η

)
.

Putting everything together completes the proof for the even case.

The odd case is completely analogous and in fact easier, since the trace formula

from Theorem 2.4 has only the principal series spectral and non-identity geometric

terms. Indeed, we compute that

ĥy,η

(−t

2π

)
= 4ψ̂

(−ηt

2π

)sin2(ty/2)

it
,

so that using the Schwartz bound |ψ̂(−ηt/2π)| 
m 1/(1 + η|t|)m and | sin2(ty/2)/it| 

min(ty2, 1/t) 
 min(y, 1/t), the estimates proceed as above. �

Remark 3.2. Theorems 2.2 and 2.4 allow for good control over the dependence in �,

as we show in Proposition 2.5 and then using this result in the proof of Lemma 3.1.
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Ambient Prime Geodesic Theorems 609

For example, the dependence in the leading terms is often guided by vol(�\G) only. This

is a very important feature when the group � varies or where uniformity in � is required

(say, for a varying level in a congruence group). Since � is fixed for us, from now on we

combine all dependence on �, as in the statement of Lemma 3.1 and beyond.

3.2 Passage to Sharp Cutoff in Length

In this section, we pass from the smooth counts for Tcos
n [gy,η] and Tsin

n [hy,η] of Lemma 3.1

to a sharp count for Tcos
n (y) = Tcos

n [χ[−y,y]] and Tsin
n (y) = Tsin

n [χ[−y,y] · sgn] as shown in

(28). This passage requires further use of Theorems 2.2 and 2.4 as well as taking η > 0

small in Lemma 3.1, which typically ends up being the main source of the error terms.

The passage to the sharp geodesic count relies primarily on estimating contri-

butions from classes in the transition zone y − η � �(γ ) � y + η, which contains the

range where gy,η(�(γ )) �= χ[−y,y]. This is achieved in the following key lemma, which is

the geometric side analogue, in the length aspect, of Proposition 2.5.

Lemma 3.3. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and let

y, η > 0. Then,

∑
y−η��(γ )�y+η

�(γ0)w(γ ) 

∫ y+2η

y−2η

d� ∗
�(u) + O�

( 1

η2 + η
)
, (30)

where w(γ ) is as in (25) and � ∗
� is as in (21).

Proof. We will sample the geodesics in the range �(γ ) ∈ [y − η, y + η] using an even,

majorant function

fy,2η(x) = ψ
(x − y

2η

)
+ ψ

(x + y

2η

)
, (31)

with a smooth, non-negative bump function ψ as in (26). By the definition of ψ , fy,2η :

R → R is a smooth, even, non-negative, absolutely bounded function supported on ±[y−
2η, y + 2η] and satisfying fy,2η � 1 on ±[y − η, y + η], so that

∑
y−η��(γ )�y+η

�(γ0)w(γ ) 

∑
[γ ]

�(γ0)w(γ )fy,2η(�(γ )).
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610 L. Dever and D. Milićević

Using the even trace formula of Theorem 2.2, with n = 0 and in the form (20), we

obtain

∑
[γ ]

�(γ0)w(γ )fy,2η(�(γ ))

=
∫ ∞

−∞
fy,2η(u) d� ∗

�(u) +
∑
ν∈iR

m�(πν,0)f̂y,2η

( iν

2π

)
+ 1

2π
vol(�\G)f ′′

y,2η(0).

Note that, at this point, we are only using the familiar spherical trace formula. We

estimate the first term using fy,2η 
 1 and the support condition on fy,2η. The third term

may be absorbed in O�(1/η2). (In fact, in a typical application with η < y/2, this term

vanishes.)

For the principal series representations πit,0 (t ∈ R), the Fourier transform

f̂y,2η(t) = 4η cos(2πty)ψ̂(2ηt) satisfies the Schwartz bound |f̂y,2η(−t/2π)| 
 η/(1 + η|t|)4.

Bounding the multiplicities m�(πit,0) using the uniform bound of Proposition 2.5, we

may finally bound the contribution of the principal series representations as

∑
ν=it

f̂y,2η(−t/2π)m�(πit,0) =
( ∑

0�k<1/η

+
∑

k>1/η

) ∑
k�|t|<k+1

f̂y,2η(−t/2π)m�(πit,0)


� η
∑

0�k<1/η

(k2 + 1) + 1

η3

∑
k>1/η

1

k2 
 1

η2 + η.

Combining everything completes the proof. �

Remark 3.4. In the typical regime for the application of Lemma 3.3, when η 
 1 

y − η, we have in (30) simply w(γ ) �� e−�(γ ) and |d� ∗

�(u)/du| �� eu, so that Lemma 3.3

states that

∑
y−η��(γ )�y+η

�(γ0) 
� ey
(
ηey + 1

η2

)
.

This will be the case, in particular, in the proof of Proposition 3.5.
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Ambient Prime Geodesic Theorems 611

Proposition 3.5. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and

let n ∈ Z. Then, for every y > 0, the sums Tcos
n (y) and Tsin

n (y) defined in (28) satisfy

Tcos
n (y) = δ0(n)

∫ y

−y
d� ∗

�(u) + O�

(
e2y/3 + n2y

)
,

Tsin
n (y) = O�

(
e2y/3 + n2y

)
.

Proof. We will use Lemmata 3.1 and 3.3, with a parameter η > 0 to be suitably chosen

momentarily. According to the definition (27), we have that the functions gy,η and χ[−y,y]

agree outside the set ±[y − η, y + η], on which |gy,η − χ[−y,y]| = O(1). Therefore,

∣∣Tcos
n (y) − Tcos

n [gy,η]
∣∣ =

∣∣∣∣∑
[γ ]

�(γ0)
(
gy,η(�(γ )) − χ[−y,y](�(γ ))

)
w(γ ) cos(n hol(γ ))

∣∣∣∣



∑
y−η��(γ )�y+η

�(γ0)w(γ ).

Therefore, using Lemmata 3.1 and 3.3, we find that

∣∣∣∣Tcos
n (y) − δ0(n)

∫ y

−y
d� ∗

�(u)

∣∣∣∣
�

∣∣Tcos
n (y) − Tcos

n [gy,η]
∣∣ +

∣∣∣∣Tcos
n [gy,η] − δ0(n)

∫ ∞

−∞
gy,η(u) d� ∗

�(u)

∣∣∣∣
+ δ0(n)

∫ ∞

−∞
(
gy,η(u) − χ[−y,y](u)

)
d� ∗

�(u)



∫ y+2η

y−2η

d� ∗
�(u) + O�

(
1

η2 + (1 + n2)
(

log∗ 1

η
+ y

)
+ η

)
.

The statement of Proposition 3.5 is vacuously true for y = O�(1), so we may

assume that y �� 1. As already mentioned in Remark 3.4 and is clear from the definition

(21), d� ∗
�(u)/du �� eu for u � 0 (or u = O�(1)). We will choose η 
� 1; then,

∫ y+2η

y−2η

d� ∗
�(u) �� ηey.

The admissible choice η = e−y/3 optimizes the error terms and yields Proposition 3.5 for

Tcos
n .
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612 L. Dever and D. Milićević

Similarly, if we additionally require 2η to be less than the minimal geodesic

length η0(�), we can show that

∣∣Tsin
n (y) − Tsin

n [hy,η]
∣∣ 


∑
y−η��(γ )�y+η

�(γ0)w(γ ),

and the proof is identical from here on. �

3.3 Passage to Sharp Cutoff in Holonomy

In this section, we prepare the ground for passage to the sharp count in holonomy. The

path to the sharp count is again the geometric counterpart to Proposition 2.5, but this

time in the holonomy aspect.

Lemma 3.6. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and let

y > 0, θ0 ∈ R, and 0 < η′ � 2π . Then,

∑
�(γ )�y

θ0−η′�hol(γ )�θ0+η′

�(γ0)w(γ ) 
 η′
∫ y

−y
d� ∗

�(u) + O�

( y

η′2
)
, (32)

where w(γ ) is as in (25) and � ∗
� is as in (21).

Proof. Since � is discrete, the claim is vacuously true for y < η0(�), so we may assume

that y � η0(�). Consider a majorant function fθ0,2η′ : R/2πZ → R given by

fθ0,2η′(t) =
∑
n∈Z

[
ψ

( t + 2nπ − θ0

2η′
)

+ ψ
( t + 2nπ + θ0

2η′
)]

,

where ψ is a smooth, non-negative bump function as in (26). This is simply a 2πZ-

periodization of the majorant (31) used in the proof of Lemma 3.3; it is a smooth, even,

non-negative absolutely bounded function supported on ±[θ0 − 2η′, θ0 + 2η′] + 2πZ and

satisfying fθ0,2η′ � 1 on ±[θ0 −η′, θ0 +η′]+2πZ. Since the non-negative sampling function

gy+1,1 = ψ1 � χ[−y−1,y+1] given in (27) also satisfies gy+1,1 � 1 for [−y, y], we have

∑
�(γ )�y

θ0−η′�hol(γ )�θ0+η′

�(γ0)w(γ ) 

∑
[γ ]

�(γ0)w(γ )gy+1,1(�(γ ))fθ0,2η′(hol(γ )).
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Using the cosine Fourier expansion for fθ0,2η′ shows that, after a standard

unfolding calculation, the right-hand side equals

∑
[γ ]

�(γ0)w(γ )gy+1,1(�(γ )) · 4η′

2π

∑
m∈Z

cos(mθ0)ψ̂
(η′m

π

)
cos(m hol(γ ))

= 2η′

π

∑
m∈Z

cos(mθ0)ψ̂
(η′m

π

)
Tcos

m [gy+1,1],

using the definition (24). Applying Lemma 3.1 and the Schwartz estimate |ψ̂(η′t/π)| 
k

1/(1 + η′|t|)k with (say) k = 4, this sum evaluates as

2η′

π
ψ̂(0)

∫ ∞

−∞
gy+1,1(u) d� ∗

�(u) + O�

(
η′ ∑

m∈Z

∣∣∣ψ̂(η′m
π

)∣∣∣(1 + m2)y
)


 η′
∫ y+2

−y−2
d� ∗

�(u) + O�

(
η′y

[
1 +

∑
1�m�1/η′

m2 +
∑

m>1/η′

m2

(η′m)4

])


 η′
∫ y

−y
d� ∗

�(u) + O�

( y

η′2
)
,

which completes the proof. �

Remark 3.7. The reader will notice that this device for passage to sharp count in

holonomy requires the use of Lemma 3.1 (and thus Theorem 2.2) with large n. This

mirrors the fact that the passage to sharp count in length requires the use of Lemma 3.1

with small η > 0, which in turn relies on using Theorem 2.2 with large spectral

parameter ν. In both cases, the proof boils down to estimates on the density of the

automorphic spectrum πν,n with spectral parameters increasing in different directions;

these are in turn provided by Proposition 2.5 which works over any ball of spectral

parameters of radius O(1). This structural parallel underlies the agreement between

our results in the length and holonomy aspects.

4 Primitivity and Weights

For y > 0 and n ∈ Z, consider the sums

Sn(y) =
∑

�(γ )�y

�(γ )e−�(γ )+in hol γ , SP
n(y) =

∑P

�(γ )�y

�(γ )e−�(γ )+in hol γ , (33)
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614 L. Dever and D. Milićević

where the summation is over the nontrivial conjugacy classes [γ ] of �, and (here

and throughout) the superscript P indicates that summation is restricted to primitive

nontrivial conjugacy classes. The sum SP
n(y) is of primary interest for counting primitive

geodesics with control on holonomy.

On the other hand, an application of trace formula as in Section 3 (see (28) and

Proposition 3.5) naturally gives a handle on sums such as Tn(y) and its cousin TP
n(y)

defined by

Tn(y) =
∑

�(γ )�y

�(γ0)w(γ )ein hol(γ ), TP
n(y) =

∑P

�(γ )�y

�(γ )w(γ )ein hol(γ ), (34)

where γ0 is the primitive hyperbolic or loxodromic element that generates γ and the

weight w(γ ) �� e−�(γ ) is as in (25). The main result of this section, Lemma 4.1 shows that

all four sums defined in (33) and (34) agree up to a very small error term. In Lemma 4.3,

we record a similar result for sums with a more general length cutoff.

Lemma 4.1. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and let

y > 0, n ∈ Z. Then, the sums defined in (33) and (34) satisfy:

SP
n(y) = Sn(y) + O�(y), (35)

SP
n(y) = TP

n(y) + O�(y), (36)

TP
n(y) = Tn(y) + O�(y), (37)

and, consequently,

SP
n(y) = Tn(y) + O�(y). (38)

Remark 4.2. The bound (38), which follows from (36) and (37), can be thought of as

a statement about removal of unwieldy weights w(γ ) and imprimitive classes from

Tn(y). Since our bounds on Tn(y) in Proposition 3.5 are exponential in y (in particular,

T0(y) �� ey), Lemma 4.1 shows that the error terms introduced by these maneuvers are

very small in comparison, and also that (cf. (35)) all our statements hold if extended to

include imprimitive geodesics. The sources of leading error terms in all our principal

results are elsewhere, notably in the passage from smooth to sharp cutoff.

Lemma 4.1 is similar, both in spirit and quantitative strength, to the relations

between Chebyshev’s functions in the proof of the Prime Number Theorem. The estimate

SP
n(y) = Sn(y) + O�(y) should be compared to the classical estimate |ψ(x) − θ(x)| 
 x1/2
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Ambient Prime Geodesic Theorems 615

for ψ(x), θ(x) ∼ x as x → ∞, bearing in mind the weights �(γ )e−�(γ ) in (33). If those

weights were removed by summation by parts as in the proof of Proposition 5.1, the

corresponding unweighted sums (say S̃n(y) and S̃P
n(y) = Kn(y) in (41)) would satisfy

|S̃n(y) − S̃P
n(y)| 
�,n ey as compared to the main term S̃P

0(y) ∼� e2y/2y.

Essential ideas for Lemma 4.1 are due to Sarnak–Wakayama [25, Lemmata

7.1, 7.2]. As for us, a key element of their proof of the equidistribution result (3) is

to approximate SP
n(y), which appears in the spectral (Fourier) decomposition of the

sum over primitive conjugacy classes, by Tn(y), which can be approximated by the

hyperbolic/loxodromic term in the non-spherical trace formula with an appropriate

choice of test function. For a general rank one locally symmetric space of finite volume

and negative curvature, Sarnak and Wakayama show that all four sums (33)–(34) have

the same asymptotic growth, with a subexponential error term. Lemma 4.1 explicates

and sharpens this error term in the context of compact hyperbolic 3-manifolds.

Proof. Note that since � is discrete, there is a minimum geodesic length η0(�). When

y < η0(�), all of the sums (33)–(34) vanish, and Lemma 4.1 holds vacuously; thus, we

may assume that y � η0(�).

We will require, for k � 2 and y > 0, an estimate on the sum Jk(y) defined by

Jk(y) :=
∑P

�(γ )�y

�(γ )e−k�(γ ).

Since w(γ ) �� e−�(γ ), Proposition 3.5 with n = 0 shows that

J∗(y) :=
∑P

�(γ )�y

�(γ )e−�(γ ) 
� ey.

In fact, a more precise bound J∗(y) 
 ey + O�

(
e

2
3 y + eν1y

)
, with ν1 as in (1) and to be

omitted if � admits no complementary spectrum, follows from Proposition 3.5 with

n = 0 or (essentially) from the Prime Geodesic Theorem (1), but we will not need this.

Using integration by parts,

Jk(y) =
∫ y+

η0(�)−
e−(k−1)t dJ∗(t) = e−(k−1)tJ∗(t)

∣∣∣∣y+

η0(�)−
+ (k − 1)

∫ y

η0(�)

J∗(t)e−(k−1)t dt


� δ2(k)y + e−kη0(�),

(39)
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616 L. Dever and D. Milićević

where δ2 is as in Section 1.4. With the estimate (39) at our disposal, we proceed to prove

(35)–(37).

Proof of (35): Suppose γ̃ ∈ � is not primitive; then, γ̃ = γ k for some primitive γ ∈ � and

k � 2. The length and holonomy are �(γ k) = k�(γ ) and hol(γ k) = k hol(γ ), respectively.

Therefore,

|Sn(y) − SP
n(y)| =

∣∣∣ ∑
k�2

∑P

�(γ )�y/k

k�(γ )e−k�(γ )+ikn hol(γ )
∣∣∣

�
∑
k�2

k
∑P

�(γ )�y/k

�(γ )e−k�(γ ) =
∑
k�2

kJk(y/k),

where in fact the sum truncates at k � y/η0(�). Using the estimate (39), we find that

|Sn(y) − SP
n(y)| �

∑
k�2

kJk(y/k) = O�(y),

as required.

Proof of (36): First, we have that

TP
n(y) − SP

n(y) =
∑P

�(γ )�y

�(γ )
(
w(γ ) − e−�(γ )

)
ein hol(γ ).

To simplify, observe that

w(γ ) = |1 − eC�(γ )|−1|1 − e−C�(γ )|−1 = e−�(γ )|1 − e−C�(γ )|−2

= e−�(γ )
(
1 + O�(e−�(γ ))

)
.

Therefore, using again the estimate (39),

|TP
n(y) − SP

n(y)| 
�

∑P

�(γ )�y

�(γ )e−2�(γ ) = J2(y) 
� y.

Proof of (37): As in the proof of (35), we have

Tn(y) − TP
n(y) =

∑
k�2

∑P

�(γ )�y/k

�(γ )w(γ k)eikn hol(γ ).
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Since w(γ k) = e−k�(γ )(1 + O�(e−k�(γ ))), we thus have that

Tn(y) − TP
n(y) 
�

∑
k�2

∑P

�(γ )�y/k

�(γ )e−k�(γ ) =
∑
k�2

Jk(y/k) = O�(y),

as in the proof of (35). �

For future reference, we also include a version of Lemma 4.1 with more arbitrary

(such as smooth) cutoffs. This presents no serious distinction, as the proof of Lemma 4.1

uses the cutoff only to control the set of geodesics entering the estimates, followed by

term-wise estimates. For n ∈ Z and a bounded, compactly supported function g : R → R,

define

SP
n[g] =

∑P

[γ ]

�(γ )g(�(γ ))e−�(γ )+in hol γ ,

Tn[g] =
∑
[γ ]

�(γ0)g(�(γ ))w(γ )ein hol γ ,
(40)

with notation as in (33) and (34). The following lemma shows that these two sums are

also comparatively very close.

Lemma 4.3. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and let

g : R → R be a bounded function supported in [−y, y]. Then, the sums SP
n[g] and Tn[g]

defined in (40) satisfy

SP
n[g] = Tn[g] + O�(‖g‖∞y).

Proof. Defining Sn[g] and TP
n[g] in the obvious way, we find that

∣∣Tn[g] − TP
n[g]

∣∣ =
∣∣∣∣( ∑

−
∑P )

[γ ]
�(γ0)g(�(γ ))w(γ )ein hol(γ )

∣∣∣∣
� ‖g‖∞

( ∑
−

∑P )
�(γ )�y

�(γ0)w(γ ).

From here, an identical proof to the proof of (37) in Lemma 4.1 shows that

Tn[g] − TP
n[g] 
� ‖g‖∞y.
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618 L. Dever and D. Milićević

The proofs that all four sums Sn[g], SP
n[g], TP

n[g], and Tn[g] are within O�(‖g‖∞y) of

each other follow in the same way by bootstrapping the proof of Lemma 4.1, mutatis

mutandis. �

5 Holonomy Character Sums

In this section, we prove estimates on the “holonomy character sums”

Kn[gy,η] =
∑P

[γ ]

gy,η(�(γ ))ein hol(γ ), Kn(y) =
∑P

�(γ )�y

ein hol(γ ), (41)

where y, η > 0, the cutoff function gy,η is as in (27), and the summation is over all

nontrivial primitive hyperbolic and loxodromic conjugacy classes [γ ] of �.

The sums Kn[gy,η] and Kn(y) capture the primitive length spectrum of � with a

smooth and sharp cutoff up to around y > 0, respectively, weighted by characters χ0,n

(see (16)) on the holonomy group T ∩ PSU2 � R/2πZ. They play an analogous role to that

of Dirichlet character sums in the context of the Prime Number Theorem in Arithmetic

Progressions; in particular, asymptotics for the sum K0(y) recover the Prime Geodesic

Theorem, whereas for n �= 0 the sums Kn(y) feature substantial cancellation, as shown

in the following proposition.

Proposition 5.1 (Holonomy character sums). Let � < PSL2C be a discrete, co-

compact, torsion-free subgroup, and let y > 0, n ∈ Z, and 0 < η � η0. Then, the sums

Kn[gy,η] and Kn(y) defined in (41) satisfy

Kn[gy,η] = δ0(n)

∫ ∞

2
gy,η(u) d��(u) + O�,η0

(
ey

( 1

yη2 + n2 + 1
))

,

Kn(y) = δ0(n)

∫ y

2
d��(u) + O�

(e5y/3

y
+ n2ey

)
,

(42)

where δ0 and �� are as in Section 1.4 and (2).

Proof. We begin with Kn(y), which is technically simpler. Recall the sum SP
n(y) defined

in (33). Combining Proposition 3.5 and Lemma 4.1, we may write

SP
n(y) =

∑P

�(γ )�y

�(γ )e−�(γ )+in hol(γ ) = δ0(n)

∫ y

−y
d� ∗

�(u) + sP
n(y),

sP
n(y) = O�

(
e2y/3 + n2y

)
. (43)
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Ambient Prime Geodesic Theorems 619

Since � is discrete, there is a minimum geodesic length η0(�). With an eye toward

summation by parts, we first rewrite Kn(y) as an integral, separating out the principal

part:

Kn(y) =
∫ y+

η0(�)−
et

t
dSP

n(t) = δ0(n)

∫ y+

η0(�)−
et

t

d

dt

∫ t

−t
d� ∗

�(u) dt +
∫ y+

η0(�)−
et

t
dsP

n(t). (44)

Recalling (2) and (21), the first term equals

δ0(n)

∫ y

η0(�)

et

t

(d� ∗
�

du

∣∣∣
u=t

+ d� ∗
�

du

∣∣∣
u=−t

)
dt = δ0(n)

∫ y

2
d��(u) + O�

(
log∗ y + e(1−νk)y

y

)
, (45)

recalling from (21) the definition of d� ∗
� and from (2) the notation 1 − ν2

j for the

exceptional eigenvalues of the Laplacian, with 0 < νk � · · · � ν1 < 1 (and we set formally

ν0 = 1 if k = 0). Using integration by parts and the estimate (43), the second term in (44)

is

et

t
sP

n(t)

∣∣∣∣y+

η0(�)−
−

∫ y

η0(�)

(et

t
− et

t2

)
sP

n(t) dt 
�

e5y/3

y
+ n2ey +

∫ y

η0(�)

(e5t/3

t
+ n2et

)
dt


�

e5y/3

y
+ n2ey.

(46)

Combining (45) and (46) gives the desired asymptotic for Kn(y).

Now, we turn to Kn[gy,η]. This case presents a minor technical difficulty in that

the first step in summation by parts (44) does not work as cleanly. To address this, we

rework the proof of Lemma 3.1 by adjusting the choice of the test function gy,η from (27)

to a slightly different test function gλ
t,η : R → C given, for 0 < η � η0 � t and λ ∈ [0, 1] as

follows:

ψλ
η (x) = ψη(x)eλx, gλ

t,η = χ[−η,t] � ψλ
η + χ[−t,η] � ψ−λ

η , (47)

where ψη is as defined in (26). We remark that the asymptotic for Kn[gy,η] in (42) holds

trivially for y = O(1) (due to the discreteness of �), so from now on we may assume that

y � η0. We compute, using the Schwartz bound for ψ̂ ,

ĝλ
t,η(ξ) =

∑
± χ̂±[−η,t](ξ)ψ̂±λ

η (ξ) =
∑

±
e±2π iηξ − e∓2π itξ

±2π iξ
ψ̂

(
ηξ ± iηλ

2π

)

η0,N min

(
t,

1

|ξ | ,
1

|ξ |(η|ξ |)N

)
.
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620 L. Dever and D. Milićević

The function gλ
t,η : R → R defined in (47) is smooth, even, and compactly

supported, so it may be used in the trace formula of Theorem 2.2. It also satisfies

ĝλ
t,η(0) = 2(t + η)ψ̂(iηλ/2π), gλ

t,η(0) = 2ψ̂(iλη/2π) = Oη0
(1), (gλ

t,η)
′′(0) = 0. Running the

proof of Lemma 3.1 with gλ
t,η in place of gy,η gives

Tcos
n [gλ

t,η] = δ0(n)

∫ ∞

−∞
gλ

t,η(u) d� ∗
�(u) + O�,η0

(
1

η2 + (1 + n2)
(

log∗ 1

η
+ t

))
. (48)

Defining analogously hλ
t,η = χ[−η,t] � ψλ

η − χ[−t,η] � ψ−λ
η , we find as in Lemma 3.1 that

Tsin
n [hλ

t,η] = O�,η0

(
1

η2 + (1 + n2)
(

log∗ 1

η
+ t

))
(49)

and note that hλ
t,η = gλ

t,η · sgn outside [−2η0, 2η0].

Note that ‖gλ
t,η‖∞ � 2ψ̂(iηλ/2π) = Oη0

(1) and supp gλ
t,η ⊆ [−t − η, t + η], and recall

the sum SP
n[gλ

t,η] defined in (40). Combining (48), (49), and Lemma 4.3, we may write

SP
n[gλ

t,η] =
∑P

[γ ]

�(γ )gλ
t,η(�(γ ))e−�(γ )+in hol(γ ) = δ0(n)

∫ ∞

−∞
gλ

t,η(u) d� ∗
�(u) + sP

n[gλ
t,η],

sP
n[gλ

t,η] = O�,η0

(
1

η2 + (1 + n2)
(

log∗ 1

η
+ t

))
. (50)

From the definition (47), we have that

(dgλ
t,η/dt)(�) = ψλ

η (� − t) + ψ−λ
η (� + t)

= ψη(� − t)eλ(�−t) + ψη(� + t)e−λ(�+t).

Therefore,

K̃λ
n[gy,η] :=

∫ y

η0+
eλt d

dt
SP

n[gλ
t,η] dt = Kλ

n[gy,η] + O�,η0
(1), (51)

where

Kλ
n[gy,η] =

∑P

[γ ]

�(γ )gy,η(�(γ ))e(λ−1)�(γ )+in hol γ

and the O�,η0
(1) term accounts for classes [γ ] with �(γ ) � 2η0 (in particular, this

harmless term may be omitted if η0 � 1
2η0(�)). Following the argument in (44), we

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/1/588/6381506 by guest on 09 April 2024



Ambient Prime Geodesic Theorems 621

separate the integral representing K̃λ
n[gy,η] as

K̃λ
n[gy,η] = δ0(n)

∫ y

η0

eλt d

dt

∫ ∞

−∞
gλ

t,η(u) d� ∗
�(u) dt +

∫ y

η0+
eλt d

dt
sP

n[gλ
t,η] dt,

where the first term equals, with notation as in (45),

δ0(n)

∫ ∞

2
gy,η(u)eλu d� ∗

�(u) + O�,η0

(
y + 1λ>νk+1/y

e(λ−νk)y

λ − νk

)
. (52)

For the second term, we use integration by parts and estimate (50) to find that it

equals

eλtsP
n[gλ

t,η]

∣∣∣∣y
η0+

− λ

∫ y

η0

sP
n[gλ

t,η]eλt dt 
�,η0
eλy

(
1

η2 + (1 + n2)
(

log∗ 1

η
+ y

))
. (53)

Combining (51), (52), and (53) gives an asymptotic for Kλ
n[gy,η]. Finally, we recover

the desired sum Kn[gy,η] defined in (41) as

Kn[gy,η] =
∑P

[γ ]

ein hol(γ )gy,η(�(γ ))�(γ )e−�(γ )

[ ∫ 1

0
eλ�(γ ) dλ + 1

�(γ )

]

=
∫ 1

0
Kλ

n[gy,η] dλ + O�,η0

(ey

y

)
= δ0(n)

∫ ∞

2
gy,η(u) d��(u) + O�,η0

(
ey

y

(
1

η2 + (1 + n2)
(

log∗ 1

η
+ y

)))
, (54)

keeping in mind the definition (2), and using, for example, the already proved asymptotic

(55) for K0(y) at the second step. We may assume that log∗(1/η) = O�(y) since otherwise

(in light of (2) and (55)) the error term for Kn[gy,η] in (42) clearly dominates all other

terms. With this, (54) completes the proof of Proposition 5.1. �

Remark 5.2. As already remarked, Proposition 5.1 contains as a special case the Prime

Geodesic Theorem in the form

π�(y) = K0(y) =
∫ y

2
d��(u) + O�

(e5y/3

y

)
, (55)

which we record here for future reference.

It is also instructive to consider how the asymptotic obtained in Proposition 5.1

for Kn[gy,η] evolves as η > 0 varies from η of constant size, a case we may think of as a

model of summation with a smooth cutoff in length on a O(1) scale, down to η = e−y/3,
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622 L. Dever and D. Milićević

which essentially corresponds to the sharp cutoff in Kn(y) (cf. proof of Proposition 3.5).

For η = η0 of constant size, Proposition 5.1 states that

Kn[gy,η0
] = δ0(n)

∫ ∞

2
gy,η0

(u) d��(u) + O�,η0

(
(n2 + 1)ey)

. (56)

Thus, for a fixed n �= 0, the sum Kn[gy,η0
] consisting of ∼�,η0

e2y/2y terms of unit

size exhibits essentially square-root cancellation as y → ∞. In fact, power-saving

cancellation in Kn[gy,η] and Kn(y) persists in the range n 
 e(1/2−δ)y, a statement which

should be compared with the range of uniformity in the prime number theorem for

arithmetic progressions to large moduli.

As η decreases and the cutoff in Kn[gy,η] becomes steeper, the first error term

(which is independent of n) becomes more pronounced and, for η = e−y/3, essentially

recovers the first error term in the asymptotic for the sharp count Kn(y). This term,

which dominates for a fixed n ∈ Z and y → ∞, is rooted in the passage to the sharp

count. The second error term detects for large n ∈ Z the influence of the oscillating

holonomy factor ein hol(γ ).

6 Ambient Prime Geodesic Theorems

In this section, we prove our principal results providing counts for prime geodesics on

M with control on their length and holonomy simultaneously.

The first of the two main results of this section is the Ambient Prime Geodesic

Theorem (Theorem 6.5), which features a sharp cutoff both in length �(γ ) � y and

holonomy, as in (4). For many analytic purposes, including the existence and properties

of various limiting distributions (see, e.g., Corollary 6.3 of Theorem 6.2), smooth cutoff

results suffice. Since the passage to the sharp count is the leading contributor to

error terms, and to emphasize the parallel between length and holonomy aspects, we

provide 4 = 2 × 2 propositions in Sections 6.1 and 6.2, featuring each combination of

smooth/sharp counts in length/holonomy, with explicit error terms depending on the

steepness of the smooth cutoff. Further, in the concluding Section 6.3, we consider the

short-range ambient counting problems and show how a consistent ambiental passage

from smooth to sharp counting leads to stronger corresponding short-range counts with

smooth/sharp cutoffs, including our second main result, Theorem 6.12.

To effectuate the transition from a smooth to sharp cutoff in holonomy, we will

use, for an arbitrary interval J ⊆ R/2πZ and 0 < η′ � 2π the function fJ,η′ : R/2πZ → R

given by

fJ,η′(t) =
∑
n∈Z

∫
J
ψη′(t + 2nπ − θ) dθ , (57)
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Ambient Prime Geodesic Theorems 623

with ψη′ as in (26). In other words, fJ,η′ is the 2πZ-periodic convolution χJ �ψη′ and plays

for holonomy the role of gy,η and hy,η of (27) for lengths. In particular, f[θ ,θ ′],η′ is a smooth,

non-negative cutoff function of height 1, which is supported on [θ − η′, θ ′ + η′] + 2πZ and

agrees with χ[θ ,θ ′] outside the set ([θ − η′, θ + η′] ∪ [θ ′ − η′, θ ′ + η′]) + 2πZ.

6.1 Smooth Count

We prove our prime geodesic theorems in holonomy classes by spectrally decom-

posing the holonomy and then invoking estimates on holonomy character sums in

Proposition 5.1. We observed in Proposition 5.1 and Remark 5.2 that, when lengths are

weighted with a smooth function gy,η with not too small η > 0 (say, of fixed size), so that

the cutoff is not too steep, one obtains strong asymptotics for holonomy character sums

with very modest error terms, such as essentially square-root cancellation in (56).

Our first proposition is the baseline count for sampling geodesics with a

smooth function in both the length and the holonomy. For cutoffs of fixed steepness

(equivalently with fixed “uncertainty windows,” which we denote by η, η′ > 0) in both

the length and the holonomy, Proposition 6.1 features an error term of essentially

square-root strength, well sharper than the sharp cutoff counts in either direction in

Proposition 6.4 and Theorems 6.2 and 6.5 below.

Proposition 6.1. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup.

Then, for every smooth function f : R/2πZ → C and every y > 0 and 0 < η � η0,

π�(gy,η, f ) :=
∑P

[γ ]

f (hol(γ ))gy,η(�(γ ))

= 1

2π

∫ 2π

0
f (θ) dθ ·

∫ ∞

2
gy,η(u) d��(u) + O�,η0

( ey

yη2 ‖f̂ ‖1 + ey‖f̂ ‖2,1

)
= 1

2π

∫ 2π

0
f (θ) dθ · π�(gy,η) + O�,f ,η(e

y),

where �� is as in (2) and ‖f̂ ‖2,1 = ‖f̂ ‖1+‖f̂ ′′‖1. In particular, for every interval J ⊆ R/2πZ,

0 < η′ � 2π , and fJ,η′ : R/2πZ → R as in (57),

π�(gy,η, fJ,η′) = |J|
2π

∫ ∞

2
gy,η(u)d��(u) + O�,η0

( ey

yη2 log∗ 1

η′ + ey

η′2
)
.

Proof. Using the Fourier expansion f (θ) = (1/2π)
∑

n∈Z f̂ (n)einθ and applying Proposi-

tion 5.1 to estimate the resulting holonomy character sums Kn[gy,η] defined in (41), we
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624 L. Dever and D. Milićević

find that

∑P

[γ ]

f (hol(γ ))gy,η(�(γ )) = 1

2π

∑P

[γ ]

gy,η(�(γ ))
∑
n∈Z

f̂ (n)ein hol γ = 1

2π

∑
n∈Z

f̂ (n)Kn[gy,η]

= 1

2π
f̂ (0)π�(gy,η) + O�,η0

( ∑
n�=0

|f̂ (n)|ey
( 1

yη2 + n2 + 1
))

,

which completes the proof for a general smooth f : R/2πZ → C, keeping in mind that

π�(gy,η) = K0[gy,η] and Proposition 5.1. For the specific function fJ,η′ defined in (57), we

compute its Fourier coefficients by the usual unfolding argument as

f̂J,η′(n) = χ̂J(n)ψ̂(η′n) = e−inθ ′ − e−inθ

−in
ψ̂(η′n),

where J = [θ , θ ′]. Using the Schwartz estimate |ψ̂(η′n)| 
k 1/(1 + η′|n|)k, we can bound

∑
n∈Z

|f̂J,η′(n)| 
 |J| +
∑
n�=0

|ψ̂(η′n)|
n



∑

n�1/η′

1

n
+

∑
n>1/η′

1

η′2n3 
 log∗ 1

η′ ,

∑
n∈Z

(1 + n2)|f̂J,η′(n)| 
 |J| +
∑
n�=0

n|ψ̂(η′n)| 

∑

n�1/η′
n +

∑
n>1/η′

n

η′4n4 
 1

η′2 .

(58)

This completes the proof. �

6.2 Passage to Sharp Counts and Prime Geodesic Theorems

In this section, we replace the smooth cutoff in Proposition 6.1 by a sharp cutoff in

one or both of the length and holonomy. Theorem 6.2 features the familiar sharp cutoff

in length, a hallmark of a traditional Prime Geodesic Theorem, and implies effective

equidistribution of holonomy in short intervals of length. To stress the conceptual

symmetry between the two parameters, we also prove Proposition 6.4, an asymptotic

count with a sharp cutoff in holonomy and smoothly sampled length. Finally, in

Theorem 6.5 and its Corollary 6.7, we prove ambient prime geodesic counts with a sharp

cutoff in both length and holonomy.
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Ambient Prime Geodesic Theorems 625

Theorem 6.2. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and let

f : R/2πZ → C be an arbitrary smooth function. Then, for y > 0,

π�(y, f ) :=
∑P

�(γ )�y

f (hol(γ )) = 1

2π

∫ 2π

0
f (θ) dθ ·

∫ y

2
d��(u) + O�

(
‖f̂ ‖1

e5y/3

y
+ ‖f̂ ′′‖1ey

)

= 1

2π

∫ 2π

0
f (θ) dθ · π�(y) + O�,f

(e5y/3

y

)
,

where �� is as in (2). In particular, for every interval J ⊆ R/2πZ, 0 < η′ � 2π , and

fJ,η′ : R/2πZ → R as in (57),

π�(y, fJ,η′) = |J|
2π

π�(y) + O�

(e5y/3

y
log∗ 1

η′ + ey

η′2
)
.

Proof. Using the Fourier expansion f (θ) = (1/2π)
∑

n∈Z f̂ (n)einθ and applying Propo-

sition 5.1 to estimate the resulting holonomy character sums Kn(y) defined in (41), we

find that

∑P

�(γ )�y

f (hol(γ )) = 1

2π

∑P

�(γ )�y

∑
n∈Z

f̂ (n)ein hol γ = 1

2π

∑
n∈Z

f̂ (n)Kn(y)

= 1

2π
f̂ (0)π�(y) + O�

(e5y/3

y

∑
n�=0

|f̂ (n)| + ey
∑
n�=0

n2|f̂ (n)|
)
,

which completes the proof for a general smooth f : R/2πZ → C, keeping in mind (55).

The final claim follows by specializing these bounds to fJ,η′ and using estimates (58). �

For a fixed smooth f : R/2πZ → C, Theorem 6.2 recovers [25, Theorem 1]

in the present setting of compact hyperbolic 3-manifolds. An immediate corollary of

Theorem 6.2, coupled with the Prime Geodesic Theorem (55), is the following equidistri-

bution statement.

Corollary 6.3 (Equidistribution of holonomy). Let � < PSL2C be a discrete, co-

compact, torsion-free subgroup. Then, the holonomy of geodesics on �\H3 of length

�(γ ) � y is equidistributed in R/2πZ as y → ∞. In fact, given any collection of intervals

In = [y′
n, yn] (0 � y′

n � yn) satisfying |In| / e−yn/3 → ∞,

1

π�(In)

∑
�(γ )∈In

δ{hol(γ )}
weak∗

−−−−→ 1

2π
dθR/2πZ (n → ∞).

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/1/588/6381506 by guest on 09 April 2024



626 L. Dever and D. Milićević

Now we transition from a smooth function on the holonomy to a sharp cutoff,

while still using a smooth function on the length. We do so using the smooth cutoff

function fJ,η′ defined in (57) and then optimizing the choice of η′.

Proposition 6.4. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup.

Then, for every interval J = [θ , θ ′] ⊆ R/2πZ and every y > 0 and 0 < η � η0,

π�(gy,η, J) :=
∑P

hol(γ )∈J

gy,η(�(γ )) = |J|
2π

∫ ∞

2
gy,η(u) d��(u) + O�,η0

(e5y/3

y2/3 + ey

η2

)

= |J|
2π

π�(gy,η) + O�,η0

(e5y/3

y2/3 + ey

η2

)
.

Proof. Our starting point is Proposition 6.1, with a parameter 0 < η′ � 2π to be

suitably chosen soon, which yields the estimate

π�(gy,η, fJ,η′) = |J|
2π

∫ ∞

2
gy,η(u)d��(u) + O�,η0

( ey

yη2 log∗ 1

η′ + ey

η′2
)
.

According to definition (57), the smooth cutoff function fJ,η′ for J = [θ , θ ′] agrees with

χJ outside the set ([θ − η′, θ + η′] ∪ [θ ′ − η′, θ ′ + η′]) + 2πZ, on which |fJ,η′ − χJ | = O(1).

We also recall that, according to definition (27), the cutoff function gy,η is supported on

[−y − η, y + η] and satisfies |gy,η| � 1. Therefore,

∣∣π�(gy,η, J) − π�(gy,η, fJ,η′)
∣∣ =

∣∣∣∣ ∑P

[γ ]

(χJ − fJ,η′)(hol(γ ))gy,η(�(γ ))

∣∣∣∣



∑P

�(γ )�y+η

θ−η′�hol(γ )�θ+η′

1 +
∑P

�(γ )�y+η

θ ′−η′�hol(γ )�θ ′+η′

1.

The latter terms are of the form ready to be estimated using Lemma 3.6, which for every

θ ∈ R/2πZ yields

∑P

�(γ )�y+η

θ−η′�hol(γ )�θ+η′

1 
 ey+η

y

∑
�(γ )�y+η

θ−η′�hol(γ )�θ+η′

�(γ0)w(γ ) 
�,η0
η′ e2y

y
+ ey

η′2 . (59)
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Using Proposition 6.1 and the input from Lemma 3.6 in the form (59), we have

that

∣∣∣∣π�(gy,η, J) − |J|
2π

∫ y

2
gy,η(u) d��(u)

∣∣∣∣ (60)

�
∣∣π�(gy,η, J) − π�(gy,η, fJ,η′)

∣∣ +
∣∣∣∣π�(gy,η, fJ,η′) − |J|

2π

∫ ∞

2
gy,η(u)d��(u)

∣∣∣∣

�,η0

η′ e2y

y
+ ey

η′2 + ey

yη2 log∗ 1

η′ .

Taking the admissible choice η′ = min(y1/3e−y/3, 2π) completes the proof of the first

claim, since for y = O(1) the left-hand side is trivially O�,η0
(1).

The second claim follows immediately, keeping in mind that by Proposition 5.1

π�(gy,η) = K0[gy,η] =
∫ ∞

2
gy,η(u) d��(u) + O�,η0

( ey

yη2 + ey
)
,

or alternatively by adapting the use of Proposition 6.1 in (60). �

Our main result, the following Theorem 6.5, features a sharp cutoff in both

length and holonomy. Such a theorem can be proved by passing from the remaining

smooth to sharp cutoff in either Theorem 6.2 or Proposition 6.4; we choose the former

route.

Theorem 6.5 (Ambient Prime Geodesic Theorem). Let � < PSL2C be a discrete, co-

compact, torsion-free subgroup. Then, for every y > 0 and every interval J ⊆ R/2πZ,

π�(y, J) := ∣∣{[γ ]P : �(γ ) � y, hol(γ ) ∈ J
}∣∣

=
�

[2,y]×J

d��(u)
dθ

2π
+ O�

(
e5y/3) = |J|

2π
π�(y) + O�

(
e5y/3)

,

where �� is as in (2).

Proof. We begin with Theorem 6.2, with a parameter 0 < η′ � 2π to be suitably chosen

soon. Recall from (57) that the smooth cutoff function fJ,η′ for J = [θ , θ ′] agrees with χJ

outside the set ([θ −η′, θ +η′]∪ [θ ′ −η′, θ ′ +η′])+2πZ, on which |fJ,η′ −χJ | = O(1). Arguing
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628 L. Dever and D. Milićević

as in the proof of Proposition 6.4, we find using Lemma 3.6 that

∣∣π�(y, J) − π�(y, fJ,η′)
∣∣ 


∑P

�(γ )�y
θ−η′�hol(γ )�θ+η′

1 +
∑P

�(γ )�y
θ ′−η′�hol(γ )�θ ′+η′

1


 ey

y

∑
�(γ )�y

θ−η′�hol(γ )�θ+η′
or θ ′−η′�hol(γ )�θ ′+η′

�(γ0)w(γ ) 
� η′ e2y

y
+ ey

η′2 . (61)

Using Theorem 6.2 and the input from Lemma 3.6 in the form (61), we have that

∣∣∣∣π�(y, J) −
�

[2,y]×J

d��(u)
dθ

2π

∣∣∣∣
�

∣∣π�(y, J) − π�(y, fJ,η′)
∣∣ +

∣∣∣∣π�(y, fJ,η′) − |J|
2π

∫
[2,y]

d��(u)

∣∣∣∣

� η′ e2y

y
+ ey

η′2 + e5y/3

y
log∗ 1

η′ .

Taking the admissible choice η′ = min(e−y/3, 2π) completes the proof, noting that for

y = O(1) the left-hand side is O�(1), and keeping in mind (55). �

Remark 6.6. Observe that Proposition 6.4, which features a sharp cutoff in holonomy

and a smooth cutoff in length, parallels Theorem 6.2, which has a smooth cutoff in

holonomy and a sharp cutoff in length. This strengthens the perspective that length

and holonomy should be counted as a pair. Compared with the smooth cutoff in

Proposition 6.1, the smooth to sharp transition in either direction yields a significant

contribution to the error term; however, the further passage to a sharp cutoff in both

directions in Theorem 6.5 leads to minimal or no increase in the error term.

Conceptually (and tracing through the proofs confirms this rigorously), this is so

because using smooth functions (27) and (57) to approximate sharp cutoffs essentially

mimics what would be the use of Theorem 2.1 with an (ineligible) sharp cutoff test

function χR(t) for a target rectangle R ⊆ R× (R/2πZ) of length and holonomy. The effect

of a smooth cutoff of wall length η 
 1 in one direction is that the essential support (in

the sense of Schwartz decay) of the Fourier transform extends up to � 1/η in the dual-

spectral direction. Since typically χ̂R(χν,p) �R ((1+|ν|)(1+|p|))−1, the contribution of the

principal series terms is guided roughly (up to logarithmic factors) by the supremum of

the Plancherel measure (23) over the said spectral support, which is in turn symmetric

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/1/588/6381506 by guest on 09 April 2024



Ambient Prime Geodesic Theorems 629

in spectral parameters ν and p and does not increase if the support extends in both

parameters rather than just one.

Already as an immediate consequence of Theorem 6.5, we obtain the following

ambient short-range count for primitive geodesics on M, with the length and holonomy

simultaneously restricted to short intervals. We will further improve upon this asymp-

totic in Theorem 6.12.

Corollary 6.7. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup. Then,

for any intervals I = [y′, y] (0 � y′ � y) and J ⊆ R/2πZ,

π�(I, J) := ∣∣{[γ ]P : (�(γ ), hol(γ )) ∈ I × J
}∣∣

=
�
I×J

d��(u)
dθ

2π
+ O�

(
e5y/3)

.

Remark 6.8. Corollary 6.7 provides an exponent-saving asymptotic for π�(I, J) as long

as |I × J| � e(−1/3+δ)y for some δ > 0. We emphasize that the lengths |I| and |J| may be

short independently of each other in any regime satisfying this combined lower bound.

When Corollary 6.7 gives an asymptotic, this may be rewritten (with obvious

shorthand notation) as π�(I, J) ∼� π�(I) · |J|/(2π) ∼� Ei�(I) · |J|/(2π), which can in

turn be restated as an effective equidistribution statement for either the lengths or the

holonomies in shrinking intervals of lengths, holonomies, or both.

6.3 Ambient Prime Geodesic Theorems for Shrinking Intervals

Results of Section 6.2 establish structural parallels between the length and holonomy

aspects in geodesic counting and indicate that the “ambiental” joint count of primitive

classes [γ ] ∈ [�] according to the pair (�(γ ), hol(γ )) is perhaps the most natural

counting object. In this section, we demonstrate how consistently executing “ambiental”

passage from smooth to sharp count leads to ambient prime geodesic theorems, which

improve upon the results of Section 6.2 when both intervals of length and holonomy are

shrinking. To emphasize the symmetry and analogy to Section 6.2, in Proposition 6.11

we prove counts that are smooth (but possibly steep) in one of the parameters and sharp

in the other, and in Theorem 6.12 our headline count that is sharp in both aspects.

For the smooth length cutoff, we use

gI,η = ψη � (χI + χ−I), (62)
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630 L. Dever and D. Milićević

where ψη is defined as in (26) and χI and χ−I are characteristic functions, to sample the

geodesics with length in an interval I ⊆ [0, y]. For the smooth holonomy cutoff on an

interval J ⊆ R/2πZ, we use the function fJ,η′ defined in (57), which is the periodization

of ψη�χJ . Further, for I = [a, b] and η > 0, we will write I−
η = [a−η, a+η], I+

η = [b−η, b+η],

and Iη = I−
η ∪ I ∪ I+

η = [a − η, b + η].

To begin, we modify a consequence of Proposition 6.1 to obtain a smooth count

in both the length and holonomy aspects.

Lemma 6.9. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup. Then,

for every two intervals I = [y′, y] (0 � y′ < y) and J ⊆ R/2πZ, and every 0 < η � η0 and

0 < η′ � 2π ,

π�(gI,η, fJ,η′) = |J|
2π

∫ ∞

2
gI,η(u) d��(u) + O�,η0

( ey

yη2 log∗ 1

η′ + ey

η′2
)
,

where gI,η and fJ,η′ are smooth cutoff functions defined in (62) and (57), and �� is the

density (2).

Proof. The result follows immediately from subtracting two instances of Proposition

6.1, noting that gI,η = gy,η − gy′,η. �

The following corollary, which may be thought of as the ambient analogue of

Lemmata 3.3 and 3.6, will be used to give an upper bound on the boundary terms

when transitioning from a smooth to a sharp cutoff. In our typical application of

Corollary 6.10, at least one of the intervals I and J will be very short, and we pick

η � min(|I|, η0) or η′ � |J|.

Corollary 6.10. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup. Then,

for every two intervals I = [y′, y] (0 � y′ < y) and J ⊆ R/2πZ, we have

π�(I, J) 
�,η0
(|I| + η)(|J| + η′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2

for every choice of 0 < η � η0 and 0 < η′ � 2π .

Proof. It is clear from definitions (57) and (62) that χI∪(−I) � gIη,η and χJ+2πZ � fJη′ ,η′ .

Combining this observation with Lemma 6.9, and keeping in mind that gIη,η is supported

D
ow

nloaded from
 https://academ

ic.oup.com
/im

rn/article/2023/1/588/6381506 by guest on 09 April 2024



Ambient Prime Geodesic Theorems 631

inside I2η ∪ (−I2η), we obtain

π�(I, J) � π�(gIη,η, fJη′ ,η′)


�,η0

|Jη′ |
2π

∫ ∞

2
gIη,η(u) d��(u) + ey

yη2 log∗ 1

η′ + ey

η′2


�,η0
(|I| + η)(|J| + η′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2 . �

In the following proposition, we pass from the smooth result of Lemma 6.9 to

asymptotic counts of geodesics with a sharp cutoff in one of the length and holonomy

parameters, retaining a smooth cutoff in the other. We pass to the sharp count using

Corollary 6.10, which involves finding an upper bound in the two rectangular regions

of ambiguity with at least one short side length, and thus improves on the error term

compared with Theorem 6.2 and Proposition 6.4 (see Remark 6.13 below).

Proposition 6.11. Let � < PSL2C be a discrete, co-compact, torsion-free subgroup, and

let �� be the density (2). Then, for any intervals I = [y′, y] (0 � y′ < y) and J ⊆ R/2πZ:

(a) For every 0 < η′ � 2π and for fJ,η′ as in (57),

π�(I, fJ,η′) :=
∑P

�(γ )∈I

fJ,η′(hol(γ ))

= |J|
2π

∫
I

d��(u) + O�

(
(|J| + η′)2/3 e5y/3

y

(
log∗ 1

η′
)1/3 + ey

η′2
)
.

(b) For every 0 < η � η0 and for gI,η as in (62),

π�(gI,η, J) :=
∑P

hol(γ )∈J

gI,η(�(γ ))

= |J|
2π

∫ ∞

2
gI,η(u) d��(u) + O�,η0

(
(|I| + η)2/3 e5y/3

y2/3 + ey

η2

)
.

Proof. We approximate π�(I, fJ,η′) using the smooth cutoff count π�(gI,η, fJ,η′), with

0 < η � η0 to be suitably chosen later. These counts differ at most by the number of

primitive classes [γ ] with (�(γ ), hol(γ )) ∈ (I−
η ∪ I+

η ) × Jη′ . By Corollary 6.10, we have the
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bound

|π�(I, fJ,η′) − π�(gI,η, fJ,η′)| � π�(I−
η , Jη′) + π�(I+

η , Jη′)


�,η0
η(|J| + η′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2 .
(63)

Combining the estimate of Lemma 6.9 for π�(gI,η, fJ,η′) with the estimate (63) on

the region of ambiguity, we have that

π�(I, fJ,η′) = |J|
2π

∫ ∞

2
gI,η(u) d��(u) + O�,η0

(
η(|J| + η′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2
)

= |J|
2π

∫
I

d��(u) + O�,η0

(
η(|J| + η′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2
)
.

Taking, say, η0 = 1, the essentially optimal choice η = min
(
e−y/3(log∗ 1

η′ )1/3/(|J|+
η′)1/3, η0

)
completes the proof of (a).

The proof of (b) is similar: approximating π�(gI,η, J) with the smooth count

π�(gI,η, fJ,η′), with 0 < η′ � 2π to be suitably chosen later, we have that |π�(gI,η, J) −
π�(gI,η, fJ,η′)| � π�(Iη, J−

η′ ) + π�(Iη, J+
η′ ), so that combining Corollary 6.10 and Lemma 6.9

we conclude

π�(gI,η, J) = |J|
2π

∫ ∞

2
gI,η(u) d��(u) + O�,η0

(
(|I| + η)η′ e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2
)
.

Choosing η′ = min
(
y1/3e−y/3/(|I| + η)1/3, 2π

)
completes the proof. �

Finally, we present our main theorem, which provides a count of length and

holonomy in intervals I and J, respectively. When I = [0, y] and J is fixed, this recovers

Theorem 6.5. However, when the lengths of I and J are shrinking, we have a significant

improvement.

Theorem 6.12 (Ambient Short-Range Prime Geodesic Theorem). Let � < PSL2C be a

discrete, co-compact, torsion-free subgroup. Then, for any intervals I = [y′, y] (0 � y′ <

y) and J ⊆ R/2πZ,

π�(I, J) := ∣∣{[γ ]P : (�(γ ), hol(γ )) ∈ I × J
}∣∣

=
�
I×J

d��(u)
dθ

2π
+ O�

(
(|I| + |J|)2/3 e5y/3

y2/3 + e3y/2

y1/2

)
,

where �� is the density (2).
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Proof. We use the smooth count π�(gI,η, fJ,η′), with parameters 0 < η � η0 and

0 < η′ � 2π to be suitably chosen later, to approximate the sharp cutoff count π�(I, J).

Using Corollary 6.10 to estimate the boundary terms, as in the proof of Proposition 6.11,

we obtain

|π�(I, J) − π�(gI,η, fJ,η′)| � π�(I−
η , Jη′) + π�(I+

η , Jη′) + π�(Iη, J−
η′ ) + π�(Iη, J+

η′ )


� (η|J| + η′|I| + ηη′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2 .

Then, using Lemma 6.9 for π�(gI,η, fJ,η′), we achieve the estimate

π�(I, J) = |J|
2π

∫ ∞

2
gI,η(u) d��(u) + O�,η0

(
(η|J| + η′|I| + ηη′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2
)

= |J|
2π

∫
I

d��(u) + O�,η0

(
(η|J| + η′|I| + ηη′)e2y

y
+ ey

yη2 log∗ 1

η′ + ey

η′2
)
. (64)

To obtain the result, we use the essentially optimal choices

η = min
(y1/3e−y/3

|J|1/3 , y1/4e−y/4, η0

)
, η′ = min

(y1/3e−y/3

|I|1/3 , y1/4e−y/4, 2π
)
,

taking a fixed η0 = 1. Here we note that a brief comparison of the three latter summands

in the error term in (64) shows that indeed the term e3y/2/y1/2 in Theorem 6.12 is the best

possible following (64). �

Remark 6.13. As already remarked, Theorem 6.12 recovers the long-range Theorem 6.5

and its Corollary 6.7. It provides a substantial improvement as soon as both I and J are

short, which is particularly strong if the total boundary length � |I| + |J| is favorably

small. For example, if |I| � |J|, Theorem 6.12 gives a power-saving asymptotic as long

as |I| � |J| � e(−1/4+δ)y, with the error term potentially as small as O�,δ(e
(3/2+δ)y). In

general, Theorem 6.12 yields a power-saving asymptotic whenever |I × J|3/(|I| + |J|)2 �
|I × J| · min(|I|2, |J|2) � e(−1+δ)y for some δ > 0.

Proposition 6.11 similarly improves upon Theorem 6.2 and Proposition 6.4. For

example, when sampling geodesics with a sharp cutoff in length in an interval of size

|I| � 1 and a “mild” holonomy cutoff with η′ � |J|, Proposition 6.11 improves upon

Theorem 6.2 for all e(−1/3+δ)y � |J| � e−δy, with the error term as good as O�(e3y/2) for

|I| � 1 and η′, |J| � e−y/4.
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