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ABSTRACT
In silico plant modelling is the use of dynamic crop simulation models to evaluate hypothetical plant traits (phenol-

ogy, processes and plant architecture) that will enhance crop growth and yield for a defined target environment and 
crop management (weather, soils, limited resource). To be useful for genetic improvement, crop models must realisti-
cally simulate the principles of crop physiology responses to the environment and the principles by which genetic 
variation affects the dynamic crop carbon, water and nutrient processes. Ideally, crop models should have sufficient 
physiological detail of processes to incorporate the genetic effects on these processes to allow for robust simulations of 
response outcomes in different environments. Yield, biomass, harvest index, flowering date and maturity are emergent 
outcomes of many interacting genes and processes rather than being primary traits directly driven by singular genetics. 
Examples will be given for several grain legumes, using the CSM-CROPGRO model, to illustrate emergent outcomes 
simulated as a result of single and multiple combinations of genotype-specific parameters and to illustrate genotype 
by environment interactions that may occur in different target environments. Specific genetically influenced traits can 
result in G × E interactions on crop growth and yield outcomes as affected by available water, CO2 concentration, tem-
perature, and other factors. An emergent outcome from a given genetic trait may increase yield in one environment but 
have little or negative effect in another environment. Much work is needed to link genetic effects to the physiological 
processes for in silico modelling applications, especially for plant breeding under future climate change.

K E Y W O R D S :   Climate change; CROPGRO-model; crop simulation; crop physiology; genotype-specific-
parameters (GSP); genotype by environment interaction; genetic improvement; phenotype.

1 .   I N T R O D U C T I O N
Genetic improvement of crops is important for increasing world food 
supply, in view of the continued increase in world population on a fixed 
arable land base with limited water and fertilizer resources (Hickey 
et  al. 2019). Enhancing crop yield through science-based breeding 
has occurred over many decades, a task that has been further acceler-
ated in recent years through molecular technologies using DNA-based 
markers (Varshney et al. 2020). Plant breeders, for many years, have 
attempted, and succeeded in many cases, to model plant ideotypes 
that result in higher yields (Donald 1968) starting in the 1960s with 
the shorter semi-dwarf rice (Oryza sativa) cultivars that did not lodge 
under increased N supply (Chandler 1969). With improved tools 
(molecular genetics, more advanced crop models) and an urgent mis-
sion of adapting to climate change and feeding an increased world 

population, it is timely to use these tools to hypothesize genetic 
improvement in yield. With the recent advancements in dynamic crop 
growth simulation (Thorburn et al. 2018; Boote 2019), crop models 
have excellent potential for analysing past genetic improvement from 
experimental data and for proposing plant ideotypes for target environ-
ments (Suriharn et al. 2007, 2011; Peng et al. 2008; Putto et al. 2008). 
Crop simulation models have potential for creating ‘virtual crop culti-
vars’ and for assisting the breeder’s selection criteria as well as integrat-
ing molecular marker-based information (White and Hoogenboom 
2003; Hoogenboom et al. 2004; Chenu et al. 2009; Hammer et al. 2010, 
2016; Muller and Martre 2019; Oliveira et al. 2021), and for genetic 
enhancement of important traits that contribute to yield improvement 
in different target environments (Hammer et al. 2004; Hammer and 
Jordan 2007; Technow et al. 2015; Yin and Struik 2016).
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Using crop simulation models to evaluate traits for genetic improve-
ment is not new and has been attempted a number of times during the 
past 40  years (Duncan et  al. 1978; Landivar et  al. 1983; Elwell et  al. 
1987; Boote and Tollenaar 1994; Hammer et al. 1996; Boote et al. 2001, 
2003; Chapman et al. 2003). What is different is that molecular genet-
ics information was not available during those early efforts and connec-
tion to true genes was not feasible. What is perhaps unique about those 
early efforts is that those models were relatively mechanistic for their 
time. Elwell et al. (1987) used the SOYMOD Soybean model (Curry 
et  al. 1975), which included leaf-level photosynthesis and mass flow 
phloem translocation. Boote and Tollenaar (1994) used an early ver-
sion of CROPGRO that had leaf-to-canopy assimilation, explicit tissue 
compositions, growth respiration and single seed growth dynamics. 
Also during that time, there were attempts at genetic variation with sim-
pler models, although the interpretation of genetic information to alter 
radiation use efficiency (RUE), for example, is difficult because RUE 
is the emergent outcome of the expression of many genes. However, 
even models that used emergent traits as dynamic state variables have 
been successful for simulating genetic variability influences on life cycle 
phase durations, and are useful for defining best cultivar life cycles for 
given target environments (Loffler et al. 2005; Technow et al. 2015).

In the past two decades (2000–20), crop modellers have attempted 
to connect genetic yield improvement more closely to genes and 
quantitative trait loci (QTLs). White and Hoogenboom (1996) were 
among the first to add specific gene effects into a crop model for dry 
bean (Phaseolus vulgaris). Other examples include QTL-based predic-
tors of specific leaf area of rice (Yin et  al. 1999), leaf area expansion 
in maize (Zea mays) (Tardieu 2003), time to flower in rice (Yin et al. 
2005a, b), time to heading in wheat (Triticum) (Zheng et  al. 2013) 
and time to flower, pod-set and maturity of soybean (Glycine max) 
(Messina et al. 2006). Quantitative trait locus connection to reproduc-
tive life cycle progression appears to be convenient and relatively easy 
to achieve. Life cycle is important to fit cultivars to their target environ-
ment, and as Messina et al. (2006) showed, those QTL effects on life 
cycle account for a considerable amount of cultivar yield variability.

Others have tried to connect QTLs and genes in crop models to 
simulate more complex phenotypic outcomes for breeding purposes 
(Yin et  al. 1999, 2004; Chapman et  al. 2003; Hammer et  al. 2004, 
2005, 2010, 2016; Cooper et al. 2005; Chenu et al. 2009). For exam-
ple, Chenu et  al. (2009) linked 11 QTL markers to three genotype-
specific parameters (GSPs) affecting leaf elongation rate (LER) and 
one GSP affecting the anthesis-to-silking interval (ASI) of maize. The 
LER-connected coefficients were temperature sensitivity, vapor pres-
sure deficit (VPD)-sensitivity and water-potential sensitivity. These 
sensitivities for leaf area expansion and grain-set (latter via ASI) were 
placed into a modified Agricultural Production Systems Simulator 
(APSIM)-Maize model, and all possible re-combinations of the QTLs 
were simulated to evaluate maize yield under drought conditions. The 
re-combinations were coded with the same approach as Messina et al. 
(2006) to indicate presence (1) or absence (0) of a given allele. Also 
important in this case, is that these features of hourly leaf elongation 
sensitivity to temperature, VPD and water potential were placed into 
the APSIM model (Hammer et  al. 2010) which already responds to 
management (sowing date, sowing density, irrigation, N fertilization, 
soil characteristics), and environmental conditions (temperature, 

irradiance, rainfall), such that the APSIM model generated emergent 
phenotypic outcomes for simulated drought conditions. They simu-
lated a number of G × E interactions resulting from combinations of 
the QTL markers for maize in different drought environments.

Early crop simulation models were designed to be specific for a 
given crop, with little if any emphasis on genetic differences within a 
species (see BACROS and SUCROS examples in Penning deVries and 
van Laar 1982). Other models such as CERES-Maize and CERES-
Wheat (Ritchie et al. 1998) have cultivar differences but with relatively 
few cultivar-specific parameters (GSPs). Both types of models are 
generic in the sense of simulating crop C, N and water balances, and 
crop life cycle progression using generally accepted principles of biol-
ogy and biogeochemical processes but with minimal consideration for 
real genetics. In these cases, there was little linkage to the true genetics 
(e.g. DNA, molecular markers). Most recent crop models are designed 
to simulate cultivars within a species; nevertheless, those models’ GSPs 
are artificial constructs (parameters) that reproduce different pheno-
typic life cycles, daylength sensitivities, productivities and seed size/
growth rate traits without considering molecular genetics information. 
Although there is a need to link crop models to molecular genetics, fully 
accomplishing this task will take decades due to the complexity and lack 
of sufficient details at the process level that are normally captured by the 
crop simulation models. The goal in this paper is to describe how GSPs 
in current crop simulation models can be used to best consider traits for 
use in genetic improvement. Using crop simulation models to evaluate 
genetic improvement has advantages over pure bioinformatics analy-
sis. This is because the models have embedded in them the functional 
sensitivities of physiological processes to temperature, water deficit, N 
stress and other stresses, and they incorporate C, N and water balances. 
The latter features are missing in pure bioinformatics approaches; thus, 
yield predictions that integrate dynamic crop models in whole-genome 
prediction are more predictive of responses to weather, soil and man-
agement (Technow et al. 2015; Cooper et al. 2016; Messina et al. 2018). 
Weather, soil and management components are very important in order 
to fully understand the dynamic interactions between genetics and 
environmental conditions (Tsuji et  al. 1998). We will briefly review 
general principles of crop simulation models and then introduce ways 
in which the crop models handle cultivar differences and genetic input.

2 .   D Y N A M I C  C R O P  S I M U L AT I O N 
M O D E L S — P R O C E S S E S  A N D  R E S P O N S E S  TO 

E N V I R O N M E N T
Dynamic crop growth models compute the crop carbon (C) balance 
on a daily (or hourly) basis, based on rates of photosynthesis, C losses 
to growth and maintenance respiration, C losses to senescence/abscis-
sion of plant parts and partitioning of the net C to produce dry matter 
of different plant organs (Boote et  al. 1998). Mathematical relation-
ships for process sensitivities to environmental variations are included 
in the models. Those equations, rules and sensitivities of processes to 
weather and environment have been learned from analyses of measure-
ments and studies of crop physiologists.

In addition to simulating soil N and C balance processes asso-
ciated with organic matter decomposition and mineral N dynam-
ics, the models also simulate the crop N balance on a daily time 

D
ow

nloaded from
 https://academ

ic.oup.com
/insilicoplants/article/3/1/diab002/6119540 by guest on 25 April 2024



Incorporating trait physiology into crop growth models  •  3

step, with N input from root N uptake and/or N2-fixation, N losses 
to senescence/abscission, N partitioning to different organs and 
N mobilization from one organ to another (Boote et  al. 2009). 
Likewise, there are equations and sensitivities of root N uptake, N2-
fixation, cost of N reduction and N mobilization and partitioning 
that are parameterized from measurements. The daily crop-soil N 
balance simulates that tissue N concentrations will vary over time 
and, therefore, affect other processes such as photosynthesis, parti-
tioning and grain growth.

The soil water balance is also extremely important in crop models as 
most crops are grown under rainfed conditions. An important principle 
that links the crop C gain to the water balance is the obligate stomatal 
coupling of CO2 uptake (photosynthesis) to water vapour escape (tran-
spiration) from the stomatal pores. The processes affecting water balance 
include inputs from rainfall and irrigation considering infiltration versus 
run-off, water movement through the soil (leaching and lateral flow), as 
well as evaporative losses from the soil surface and the crop transpiring 
surfaces (Ritchie 1998; Boote et al. 2008). The soil-crop water balance 
usually honours principles of conservation of water and energy, on a 
daily or shorter time step, using evapotranspiration methods such as the 
Penman–Monteith evapotranspiration equations (Allen et al. 1998).

Crop development is a fourth type of process in the models that 
leads to crop growth stage progression and crop phenology, which 
are very important in all dynamic crop growth models. Simply stated, 
crop development is driven by growing degree days (GDD) or photo-
thermal time unit accumulation for successive phases of the crop from 
sowing to maturity, that allows for the crop to fit in a given growing 
season niche.

The word ‘dynamic’ is very important in the context of crop growth 
models. This means that the crop responds dynamically to each day’s 
weather and soil conditions, as influenced by that day’s already exist-
ing crop state (leaf area index (LAI), amount of biomass, root length 
density, etc.). That differs considerably from statistical regression 
models. Some models actually simulate and scale up from leaf-to-can-
opy assimilation on an hourly time step (Boote and Pickering 1994; 
Pickering et al. 1995; Grant et al. 1995) although Class A weather data 
(solar radiation, Tmax, Tmin and rainfall) are typically only available on a 
daily basis.

Finally, crop models integrate over time these multiple process 
rates with sensitivities to environment, and they simultaneously hon-
our C, N and soil water balances as the crops progress through their life 
cycle sequences. Thus, crop models represent inherent resource limita-
tions and environmental sensitivities and illustrate that yield requires 
inputs for water, N and other nutrients, solar radiation, CO2 and tem-
perature over time during growing seasons.

3 .   G E N ET I C S  A N D  G S P S  I N  C R O P 
S I M U L AT I O N   M O D E L S

The above-described process-oriented models are relatively generic 
in their structure and simulation of vegetative and reproductive 
development, photosynthesis, respiration, translocation, parti-
tioning and reproductive growth processes. However, the desire 
to accurately simulate the growth and development of particular 
genotypes within a given species resulted in the incorporation of 
cultivar-specific information in the modelling structure as done with 

the Decision Support System for Agrotechnology (DSSAT) crop 
models beginning in DSSAT V3.5 (Boote et  al. 1998; Tsuji et  al. 
1998) and subsequent versions (Boote et al. 2003; Jones et al. 2003; 
Hoogenboom et al. 2019a, b).

White and Hoogenboom (2003) proposed six levels by which 
genetic details are included in crop simulation models:

	1.	 Generic model with no reference to species.
	2.	 Species-specific model with no reference to genotypes.
	3.	 Genetic differences represented by cultivar-specific 

parameters.
	4.	 Genetic differences represented by specific alleles, with gene 

action represented through linear effects on model parameters.
	5.	 Genetic differences represented by genotypes, with gene 

action explicitly simulated based on knowledge of regulation 
of gene expression and effects of gene products.

	6.	 Genetic differences represented by genotypes, with gene 
action simulated at the level of interactions of regulators, 
gene products and other metabolites (in other words, the 
full genetic architecture relative to current crop state and its 
environment).

Most crop simulation models originated at level 2 for a given crop, 
based on experience with growth measurements and the developer’s 
knowledge of a candidate crop. The early models developed in the 
‘School of de Wit’ were at level 1, including BACROS and SUCROS 
(Bouman et al. 1996). Some models remain at level 2, but many are 
now at level 3, with genetic differences represented by cultivar-spe-
cific parameters (GSPs). No candidate models have approached levels 
5 and 6, while the GeneGro models for common bean (White and 
Hoogenboom 1996; Hoogenboom et  al. 1997; Hoogenboom and 
White 2003) and soybean (Messina et al. 2006) and for wheat (White 
et  al. 2008) have attempted level 4, with actions of specific genes 
(allelic 0 vs. 1). Zheng et  al. (2013) developed a gene-based model 
for time to heading in wheat that was incorporated into APSIM-
Wheat, based on vernalization genes (Vrn-A1, Vrn-B1, Vrn-D1) and 
a photoperiod sensitivity (Ppd-D1) gene. The predictability of head-
ing was 4.3 days for 210 spring wheat lines over many sowing dates 
and locations in Australia. Recently, Hwang et al. (2017) developed 
a simple crop phenology model based on QTL marker information. 
Oliveira et al. (2021) used a similar approach to integrate a dynamic 
QTL-based module (Vallejos, CE., personal communication, 2020) 
into the CSM-CROPGRO-Drybean model for predicting first flower 
appearance.

For most crop models at level 3, there are two types of genetic informa-
tion in the models that allow them to simulate unique growth and develop-
ment responses of specific genotypes under specific environments. First, 
they have crop parameters and relationships (and this represents genetics 
as well) that are hard-wired in the computer code or inputs from species 
files that create the crop species type (maize or soybean or wheat). Species 
traits and relationships are defined in the computer code for CERES-
Maize along with a small read-in species file (Ritchie et al. 1998). By con-
trast, CROPGRO has generic source code that allows the same code to be 
used for many species (up to 18 at present), but the species parameters and 
relationships are specified in a read-in species file. In addition, there are 
GSPs in read-in cultivar files that distinguish differences among cultivars, 
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varieties or hybrids within a species. While model developers may make 
this distinction for convenience of model users, in reality this is all geneti-
cally controlled and there should be no real distinction between species 
traits and cultivar traits within a species. For example, cardinal tempera-
ture parameterization of processes is defined in the CROPGRO species 
file at present, but cultivars may actually differ, for example, in heat tol-
erance of grain-set (see later example). It is a situation of initially being 
parsimonious with cultivar GSPs, especially when information is lacking.

In this paper, we will present examples with the DSSAT crop mod-
els, particularly the CROPGRO-Legume model (Boote et  al. 1998; 
Hoogenboom et  al. 2019b) using V4.7 release available from www.
DSSAT.net, to describe genetic traits and how they are simulated 
to evaluate genetic yield improvement for various target environ-
ments. Genotype-specific parameters for the CROPGRO model are 
defined in Table 1. The most important GSPs are those that define 
daylength sensitivities and phase durations (EM-FL, FL-SH, FL-SD, 
SD-PM) that affect crop life cycle (Table 1). For example, soybean is 
daylength-sensitive (critical short daylength (CSDL)  =  12.58  h and 
PPSEN = 0.311 for MG 5 cultivar), whereas peanut (Arachis hypogaea) 
is not daylength-sensitive (PPSEN = 0.000). For simulating phenology 
and life cycle of winter cereals, vernalization parameters are important 
in addition to daylength and phase-duration parameters. For CERES-
Maize, phase durations are described by GDD, while for CROPGRO, 
photothermal days (ptd) are used. CROPGRO has six vegetative 
GSPs affecting early leaf size (SIZFL), specific leaf area under opti-
mum conditions (SLAVR), duration of leaf appearance (FL-VS), rate 
of leaf appearance (TRIFOL), duration of leaf expansion (FL-LF) 
beyond flowering and leaf photosynthesis (LFMAX). Reproductive 
GSPs affect potential seed size (WTPSD), seeds per pod (SDPDV), 
individual grain-growth rate (set by 1/SFDUR), the ptd duration of 
pod addition (PODUR) and threshing percentage (THRSH). Seed 
protein (SDPRO) and lipid (SDLIP) compositions are also defined as 
cultivar GSPs; these have become more important with the emphasis 
on nutrition security, especially under climate change.

Three example species within CROPGRO in Table 1 have dramatic 
differences in life cycle, especially in the duration of the seed-filling 
phase (SD-PM), with dry bean having the shortest and peanut having 
the longest seed-filling phase (Table 1; Fig. 1). Not surprisingly, the 
yield potential of the three crops generally follows that trend, with a 
lower yield for the shorter cycle dry bean crop. There are also differ-
ences in potential yield due to seed composition, with oil and protein 
requiring more energy for synthesis compared to carbohydrates. Dry 
bean has a short life cycle and lower yield, but compensates by having 
more rapid LAI development along with higher sowing density of 25 
plants per m2 compared to 18 plants per m2 for soybean and 16 plants 
per m2 for peanut (Fig. 1A). Peanut, under good fungicide treatment, 
does not self-senesce leaves, while dry bean and soybean have a grand 
senescence of LAI that is rapid after the beginning maturity stage (first 
mature pods). Peanut is an example of an indeterminate crop, with 
a long slow phase of pod addition (PODUR), less than 1.00 parti-
tioning intensity (XFRT) and a long period of seed-filling (SFDUR 
and SD-PM).

The CERES-Maize model has six GSPs (Ritchie et al. 1998) shown 
in Table 2. There are three GSPs related to life cycle and daylength sen-
sitivity (P1, P2 and P5, which describe crop life cycle progression). P1 

is GDD from emergence to end-juvenile, while P2 is daylength sen-
sitivity which affects an internal phase to end of floral initiation. The 
outcome of P1 and P2 affects an internal phase that determines time 
from floral initiation to flowering. There are two reproductive param-
eters, G2 which is genetic potential number of grains per plant, and 
G3 which is single kernel growth rate under optimum conditions. 
PHINT is an additional GSP, which is meant to represent the rate 
of leaf appearance (PHINT being the GDD per leaf tip appearance). 
However, PHINT also re-scales simulated LAI (with a larger PHINT 
value reducing LAI). There are additional coefficients for potential leaf 
size and leaf longevity for the IXIM-Maize model, which is somewhat 
more mechanistic than CERES-Maize. The IXIM-Maize model has 
leaf-to-canopy photosynthesis (Lizaso et al. 2005) and more detailed 
relations for leaf area growth (Lizaso et  al. 2003). Table 2 illustrates 
that longer life cycle hybrids grown in Iowa produce higher biomass 
and grain yield at maturity.

4 .   S O M E  I M P O RTA N T  P R I N C I P L E S  T H AT 
C R O P  M O D E L S  S H O U L D  C O N S I D E R  F O R 

H Y P O T H E S I Z I N G  G E N ET I C  I M P R O V E M E N T
To be truly useful for genetic improvement, crop models must realis-
tically simulate crop physiological responses to environmental factors 
and how genetic variation affects the processes of crop carbon, water 
and nutrient balance. These principles will be discussed in three ways: 
(i) do the models have adequate mechanism to simulate the traits of 
interest; (ii) do the models honour the C, N, water and energy bal-
ance; (iii) do the models consider pleiotropic effects, e.g. physiological 
linkages.

The first important question is whether the current GSPs and the 
mechanisms in the crop models are sufficient to correctly simulate a 
given process and its associated genetics. Does the GSP actually rep-
resent the genetic trait? For example, RUE is an approach used in 
many crop models, but RUE is a complex trait affected by many genes 
(QTLs) and there is no direct connection to leaf-level physiology that 
a molecular geneticist can measure. In other words, RUE-based mod-
els may be too simple for some purposes. That would imply that crop 
models should have a minimum level of physiology, such as leaf pho-
tosynthesis, respiration and organ growth, to enable one to interpret 
genetic effects. That level of detail may be needed for the modeller to 
be able to communicate successfully with geneticists. As Parent and 
Tardieu (2014) stated, the phenotype (in this case variation in RUE) 
must be the emergent outcome of how genes express themselves in 
response to environment. Thus, RUE is an emergent outcome, not a 
genetic trait. This is also true for other GSPs, although some of them 
more closely describe physiological processes than RUE. A goal should 
be to incorporate genetic effects based on known or hypothesized 
pathways for their influence on physiological processes. For a molec-
ular marker effect to be incorporated into a crop model, one should 
know the mode of action of that QTL. What is the specific mode of 
action and environmental sensitivity of a given QTL at its more basic 
level of action? Saying that the QTL affects RUE or yield or harvest 
index (HI) or seed size is not sufficient, as they are the emergent out-
comes. Following the logic of Hammer et al. (2016) and Chenu et al. 
(2018), these are examples of complex traits that should be dissected 
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into component traits at ecophysiology level which are then evaluated 
for their effects on those emergent outcomes.

A second aspect is whether the models honour the C balance, N bal-
ance, water balance and energy balance. Is there a free lunch? This is not 
an easy question to understand, because one might argue that increas-
ing LAI is a simple way to increase early seedling vigour, but in fact, 
allocation to leaf area growth comes at the expense of less assimilate 

allocation to roots, and there are also feed-forward effects to consider. 
Another example is that greater constitutive (all the time) allocation to 
roots may enhance drought tolerance but may come at the expense of 
shoot (and reproductive) growth. Water conservation associated with 
reduced transpiration (reduced leaf conductance) trait is proposed for 
drought conditions. But the ‘no free lunch’ problem to consider here 
is that reduced leaf conductance also reduces leaf photosynthesis, and 

Figure 1. (A) Leaf area index, and (B) total crop mass and grain mass over time for dry bean cv. Porrillo Sintetico, soybean cv. 
Hutcheson and peanut cv. Georgia Green, sown 27 April 1999 at Plains, GA and grown under optimum irrigation.
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the degree of photosynthesis reduction is the critical issue to resolve. 
Messina et al. (2015) showed that a limited transpiration trait increased 
maize drought tolerance, resulting in a yield increase for dry environ-
ments, but a slight yield decrease for well-watered environments. Going 
one step further, the reduced conductance may warm the canopy above 
the optimum temperature for photosynthesis. N balance examples are 
also possible, and at the very least, models that lack a soil-plant N bal-
ance are not useful for hypothesizing genetic variation in environments 
where N is a major limiting factor.

A third consideration is whether the crop models consider built-in 
pleiotropic linkages. For example, increased leaf-level photosynthesis 
is commonly associated with increased specific leaf weight (SLW) 
or specific leaf nitrogen (SLN). That is what we would call a pleio-
tropic linkage because intrinsic rate per unit leaf mass or N mass is not 
increased. If modelled correctly, this may come at a cost. If the plant 
makes high SLW or SLN leaves, the amount of total leaf area will be 
lower and light capture will be less. The net benefit will depend on 
whether the increased leaf rate offsets the decreased light capture. An 
example will be given of this later.

5 .   T H E  R O L E  O F  E N V I R O N M E N T  A N D 
T R A I T  R E S P O N S E  TO  E N V I R O N M E N T  I S 

V E R Y  I M P O RTA N T
The environment plays a major role in influencing ultimate plant phe-
notype (size, height, yield), and the phenotype is, or should be, an 
emergent outcome of how the individual genes and combinations of 
genes respond to environment. Hammer et  al. (2010) indicate that 

crop models should have algorithms for underlying processes that link 
to genetics and lead to simulated phenotypes as emergent properties. 
Likewise, Parent and Tardieu (2014) argued that phenotype should be 
an emergent outcome of the genetic variation in processes as affected 
by environment. An example of this is HI, which plant breeders may 
call a trait, but in reality HI is an emergent outcome of many genes that 
affect the timing, duration, grain-set, grain-growth rate and intensity of 
partitioning to reproductive growth (even those five items are not single 
gene actions). So, how can the crop models be enhanced to get at the 
controllers of the underlying processes, rather than thinking that emer-
gent outcomes are the crop model ‘traits’? For example, Reymond et al. 
(2003) and Chenu et  al. (2009) simulated the effect of genetic mark-
ers linked to thermal rate of leaf area expansion and proposed individual 
QTLs for optimum leaf extension rate, for sensitivity to temperature, 
and sensitivity to vapour pressure deficit. It is important to highlight 
that before QTL/gene effects can be incorporated into crop models, the 
models need to be developed and sufficiently enhanced to allow scaling 
up the impact from the leaf level to the plant level (Chenu et al. 2008). 
In their case, this involved inclusion of an hourly metereological module 
and a leaf area growth module that simulated rate of leaf initiation, leaf 
tip appearance, leaf ligule appearance and leaf expansion rate depend-
ent on hourly temperature, hourly vapour pressure deficit, predawn soil 
water potential and leaf rank position. Other examples are the studies of 
gene effects on cultivar life cycle of dry bean (White and Hoogenboom 
1996; Hoogenboom et al. 1997, 2004; Hoogenboom and White 2003) 
and soybean (Messina et al. 2006). For dry bean and soybean, these are 
well-researched genes that are known to respond differently to daylength 

Table 2.  Definitions of GSPs for the CERES-Maize and IXIM-Maize models with example values for three types of cultivars. 
†Degree days above Tb = 8 °C. Compute with Tmean = (Tmax + Tmin)/2. ††Additional coefficients for IXIM-Maize. †††Simulated 
anthesis, maturity, grain yield and final biomass, for three hypothetical CERES-Maize cultivars sown 27 April 1999, at 7.5 plants 
per m2, 224 kg N ha−1, on a Clarion soil at Ames, IA.

GSP 
name

Cultivar coefficient definition Short  
2500 GDD

Medium  
2600 GDD

Long  
2700 GDD

P1 Thermal time from emergence to end of juvenile phase during 
which plant is not sensitive to photoperiod (GDD†)

160 185 212

P2 Days delay in development per hour increase in photoperiod 
above the critical short photoperiod (days/hour [d/h])

0.400 0.500 0.500

P5 Thermal time from silking to physiological maturity (GDD) 780 850 890
G2 Maximum possible number of grains (kernels) per plant 730 800 840
G3 Grain (kernel) filling rate during linear grain-filling under 

optimum conditions (mg per kernel per day)
8.6 8.5 8.5

PHINT Phylochron interval, thermal time between successive leaf tip 
appearance (GDD)

38.9 38.9 38.9

AX†† Leaf area of largest leaf (cm2 per leaf) — 720 780
LX†† Leaf longevity of most long-lived leaf, from 50 % expansion to 

50 % senescence (GDD)
— 800 800

Simulated output†††    

Time to anthesis (days after sowing) 70 73 78
Time to maturity (days after sowing) 121 129 142
Grain yield (kg ha−1) 10 702 12 746 14 048
Final total biomass (kg ha−1) 20 632 23 124 24 637
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and temperature. Thus, the time to flower and the time to maturity, as 
well as final grain yield are emergent outcomes of individual genes and 
in combinations. A G × E interaction is a probable outcome if a gene for 
strong daylength effect is present, but that will occur only if the crop is 
compared for short versus long daylength environments.

6 . 0   L I N K I N G  Q T L S  A N D  G E N E S  TO 
G E N O T Y P E - S P E C I F I C  PA R A M ET E R S  I N 

C R O P G R O
6.1  Linking QTL markers to GSPs in 

CROPGRO-Soybean
Messina et al. (2006) linked GSPs in the CROPGRO-Soybean model 
to genes with a multiple linear regression approach, where 1 or 0 rep-
resents the presence or absence of the dominant allele. They illustrated 
how six loci related to photoperiod sensitivity and determinacy (E1, 
E3, E3, E4, E5 and E7) in soybean could be translated into GSPs in the 
CROPGRO-Soybean model. For example, CSDL and emergence to 
flowering (EMFL) were defined as a function of number of dominant 
loci (NLOCI) and presence or absence (1 or 0) of critical loci, as follows:

CSDL = 14.33− 0.44 NLOCI+ 0.27E3− 0.48E5+ 0.18(NLOCI)(E5)

For the cultivar Savory this translates into the following value of 14.33

CSDL (Savory) = 14.33− 0.44(0) + 0.27(0)− 0.45(0)
+ 0.18(1)(0) = 14.33

While for the cultivar Vinton 81 this translates into a value of 14.16

CSDL (Vinton 81) = 14.33− 0.44(1) + 0.27(1)− 0.45(0)
+ 0.18(1)(0) = 14.16

The equation for ptd from EMFL is the following

EMFL = 20.77+ 2.1E1+ 1.8E3

The QTL genetic markers associated with these genes were determined 
for a set of cultivars. In the example above, cultivar Savory is e1e2e3e4e5, 
and differs from Vinton 81 which is e1e2E3e4e5. Other cultivar coeffi-
cients, PPSEN, EM-FL, FL-SD, FL-VS, SD-PM, V1-JU and R1PRO, were 
also affected by some of the same loci and number of loci. Putting these all 
together, allowed a different phenotype to be simulated based on absence or 
presence of multiple dominant loci (such as E3). Then, with independent 
data on maturity and yield from seven trial locations in Illinois, USA, over 
5 years, the CROPGRO-Soybean model with genetic coefficients based on 
E genes predicted 75 % of the variation in days to maturity and 54 % of varia-
tion in yield across the 35 site-year combinations (Messina et al. 2006).

6.2  Linking genetic architecture to GSPs in 
CROPGRO-Drybean to develop ideotypes

To connect genes to physiological processes, one can hypothesize 
ideotypes based on either dominant or recessive genes. White and 
Hoogenboom (1996) developed the first gene-based model GeneGro 
from the BEANGRO model (Hoogenboom et  al. 1992, 1994). In 

CSM-GeneGro six known genes were linked to the physiological pro-
cesses of the BEANGRO model through the GSPs. These included the 
Ppd gene for basic photoperiod response, the Hr gene to enhance the 
effect of Ppd, the Fin gene for determinacy, the Fd gene for early flower-
ing and maturity and three seed size genes, i.e. Ssz1, Ssz2 and Ssz3. The 
CSM-GeneGro-Drybean model was calibrated for 46 cultivars and 10 
trials conducted in Canada, USA, Mexico, and Colombia. The same cul-
tivars were then evaluated with an independent data set from 26 trials 
for the same locations for a total of 333 observations (Hoogenboom and 
White 2003; White and Hoogenboom 2003). Following calibration and 
evaluation, 96 genotypes were created for the CSM-GeneGro-Drybean 
model based on either dominant or recessive genes for Ppd * Hr * Fin * 
Fd * SSz1 * Ssz1 * Ssz2 * Ssz3. These 96 genotypes were then evaluated 
for dry bean production environments including Michigan, Idaho, and 
Washington, using standard management practices with at least 30 years 
of historical weather data to determine the G * E interactions and to 
identify the best performing ideotypes for each location. The genotype 
with all genes dominant except for Ssz3 resulted in the highest mean 
yield. With respect to that ranking, Genotype 2 (1111110), Genotype 
1 (1111111) and Genotype 9 (1110111) ranked highest for Michigan, 
Genotype 9 (1110111), Genotype 2 (1111110) and Genotype 
10 (1110110) ranked highest for Twin Falls, ID, and Genotype 10 
(1110110), Genotype 9 (1110111) and Genotype 2 (1111110) ranged 
highest for Prosser, WA. For the three locations, two of the genotypes 
ranked among the top three. These environments differed in growing 
season temperature and, therefore, the Fd gene for early versus late flow-
ering and the Sss3 gene for seed size were the critical genes.

7 .   P R E PA R I N G  TO  S I M U L AT E  G E N ET I C 
I M P R O V E M E N T  W I T H  A  C R O P   M O D E L

7.1  Use a crop model suited to the task. Does the 
model have the desired genetic trait capability?

Modellers and geneticists need to understand the limitations of the crop 
model and determine whether the model, with its GSPs, has the ability 
to simulate desired genetic variations (QTL, genes) in a realistic way. For 
example, if the model cannot simulate heat stress, disease tolerance, salin-
ity, water-logging, soil Al saturation or soil compaction, then conducting 
synthetic breeding studies of those issues is not possible. Furthermore, 
if the genetic traits are related to drought, N fertilization, temperature or 
daylength effects, then it is important that the models be tested beforehand 
and documented for their capabilities to simulate responses to those fac-
tors, especially with respect to actually simulating a soil water and nitrogen 
balance. If the target trait relates to variation in leaf-level photosynthesis, 
then the crop model should simulate leaf photosynthesis at the appropri-
ate temporal scale and scaling up to canopy assimilation in a realistic way.

7.2  Clearly define the target environment (weather, 
soils and anticipated crop management, whether 

irrigated or rainfed, or well-fertilized or not).
Target environments will vary by region, rainfall, temperature, soils 
and management. It is important to carefully characterize the crop 
environment of interest, especially considering the major production 
areas the breeding is targeted for (Chenu 2015; Cooper et al. 2016). 
For example, the crop cycle may be defined by intermittent droughts, 
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or terminal drought, or limited by killing frosts, or by a desire for two 
(rice) crops in a season.

7.3  Obtain data (phenological data, final yields, 
time-series data on biomass, LAI and reproductive 

growth) for baseline crop cultivars for the target 
regions along with the weather, soils and manage-
ment inputs needed simulate the model. Do some 

initial calibration to start from a realistic yield level.

7.4  Consult with plant breeders and geneticists to 
jointly decide upon the genetic traits to vary (and 

likely range possible) to improve yield or modify life 
cycle or other goal.

Chenu et  al. (2018) proposed that consultation with breeders and 
geneticists should be iterative with feedback, to avoid misconcep-
tions on what is possible. They recommended an integrated approach 
that combines insights from crop modelling, physiology, genetics and 
breeding to characterize traits contributing to yield gain for target 
environments. Furthermore, they recommended that complex traits 
such as RUE or HI or transpiration efficiency should be broken down 
into component traits that contribute to the complex traits, to allow 
improved physiological understanding.

It is important that the extent of variation in a genetic trait be lim-
ited to ranges documented in the literature or known by plant breeders/
geneticists. Knowledge of the possible genetic variability will prevent 
simulating unrealistic results that are outside the range of genetic feasi-
bility. For example, RUE is thought to be a relatively conservative trait. 
So, under that constraint, RUE should not be varied much, because 
models show large almost 1:1 increases in yield with increased RUE.

7.5  Determine whether the GSPs and parameters 
available in the crop model have the ability to simu-

late those desired genetic traits in a realistic manner. 
This may require comparison to known response 

data.
Are there linkages among traits? These may occur genetically or 
because of conservation of C and N. First, there are true genetic link-
ages (where two genes reside in close proximity on the chromosomes) 
and therefore the outcome illustrates true linkage. The Fin gene in 
common bean is an example of this. It affects determinacy as well as 
time to first flower appearance and is possibly thought to be just a sin-
gle gene (Bhakta et al. 2017). But in a secondary viewpoint, there are 
pleiotropic linkages that can be understood from a physiological or 
C or N balance approach. For example, a 1 % increase in either seed 
protein or seed oil for soybean is simulated to reduce yield by about 
0.6–0.8 %, simply because of the additional energy needed to produce 
proteins in contrast to producing starch compounds that require lower 
energy to produce (Boote and Tollenaar 1994). Seed protein concen-
trations of soybean cultivars have declined by about two absolute per-
centage units over the past three decades in accordance with cultivar 
release date even while grain yield has increased (Naeve and Miller-
Garvin 2019, US Soy Quality Report). It is possible that plant breeders 

selected for yield without paying sufficient attention to maintaining 
seed protein. Hammer et al. (2016) provide an example of pleiotropic 
linkage related to both a physiological trait and to the conservation bal-
ance of N, in which the stay-green outcome of sorghum (Sorghum 
bicolor) can be a simulated outcome of a dwarfing trait which results 
in less N in stem, but more N in leaf which sustains LAI longer during 
grain-filling. Likewise, pleiotropic linkage of a physiological trait and 
water balance/conservation can be demonstrated by simulated toler-
ance to terminal drought being an emergent outcome of lower early 
leaf area (less tillering in sorghum, Hammer et al. 2016) or less early 
plant vigour in wheat (Bourgault et al. 2020).

Another example of pleiotropic linkage not caused by ‘pure’ genet-
ics, but by C balance and leaf physics, is the strong relationship of 
increased leaf photosynthesis (Amax) to increased SLW which occurs in 
many species including soybean (Dornhoff and Shibles 1970; Buttery 
et al. 1981; Morrison et al. 1999). This creates a pleiotropic linkage not 
caused by ‘specific’ genetics, but it affects seasonal LAI, light intercep-
tion and canopy assimilation. As simulated by Boote et  al. (2003), 
increasing leaf photosynthesis with strict coupling to SLW gives much 
less benefit to canopy photosynthesis and yield than a pure increase 
in leaf rate not coupled to SLW. The reason is that increases in SLW 
increase leaf photosynthesis rate but reduce leaf area expansion and 
early season LAI. The net effect on growth and yield is complex and 
interactive effects occur depending on row spacing, sowing density, 
crop life cycle and elevated CO2 (Boote et al. 2003; Boote 2011).

The ‘limited transpiration’ traits proposed by Sinclair et  al. 
(2010) and Gilbert et  al. (2011) provide another example of 
whether models are able to realistically simulate a trait. In one case 
the limited transpiration is routinely proposed to occur relatively 
soon when the crop experiences mild stress, while in another case 
limited transpiration is induced only under high VPD. These traits 
can give complex responses, because they influence C balance, 
water balance and energy balance, and additionally depend on 
time-series timing of rainfall events and soil water depletion. At its 
core, the action of the constitutive ‘all-the-time’ limited transpira-
tion trait is that a small reduction in leaf conductance will reduce 
leaf transpiration and canopy transpiration, thereby allowing some 
soil water conservation prior to water deficit periods. The water 
conservation effect is hypothesized to maintain or increase yields 
because the crop extends better into a future rainfall period. But, 
an important issue here is that reduction in stomatal conductance 
also reduces leaf photosynthesis and the extent of the reduction 
in leaf rate is the crux of the problem. The reduction of photosyn-
thesis (case 1) during good rainfall season may reduce yield, even 
while the same trait may increase yield under severe drought sea-
sons. This is what Battisti et al. (2017) found with that approach in 
CROPGRO-Soybean, although Sinclair et al. (2010) with a simpler 
model (SSM) proposed greater benefits under water-limitation and 
very small negative effect under good rainfall environment. Both 
of these simulated cases represent G × E interactions (same gene 
action, but effect depends on environment). Case 2 with the photo-
synthetic reduction under high VPD is a more adaptive response 
since it does not act under moderate evaporative demand environ-
ments. Nevertheless, the reduction in photosynthesis associated 
with reduced conductance (transpiration) under high VPD may 
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approach unrealistic simulations of internal CO2 (Ci). The data of 
Gilbert et al. (2011), if taken to the stronger conductance sensitivi-
ties to VPD, can give an internal Ci/Ca ratio approaching 0.4 (like 
C-4 crops) under high VPD which is a concern because that has not 
been reported previously and tends to violate theory. As an inde-
pendent example of this, Cuadra et al. (2021) incorporated the high 
VPD effect on photosynthesis and conductance into the hourly 
energy balance version of CROPGRO, and reductions in canopy 
transpiration were obtained, although the benefits to growth and 
yield have not yet been investigated. In that hourly energy balance 
model, with strong sensitivities of conductance to high VPD using 
the Ball–Barry–Leuning sensitivity to VPD (Leuning 1995; Miner 
et al. 2017), the simulated Ci/Ca ratio fell as low as 0.4 under extreme 
large VPD, although it was between 0.6 to 0.8 most of the time. The 
message is that the modellers and their models must honour water 
balance (nothing is free) and resulting effects on crop C balance 
and energy balance (canopy temperature rises under large VPD) 
which pushes canopy transpiration back up somewhat. Sinclair 
et  al. (2010) conducted simulations illustrating that reduction in 
transpiration at high VPD gave a soybean yield gain near 200 kg ha−1 
in the USA. Battisti et al. (2017) using a similar approach with the 
CROPGRO-Soybean model simulated a gain of 1–75  kg ha−1 for 
most regions in Brazil, although the gain was 75–150  kg ha−1 for 
some regions. He suggested that differences between the two exam-
ples could be attributed to either climate of the regions or the level 
of model penalization on transpiration and photosynthesis.

7.6  Conduct the hypothetical trait simulations for 
multi-year weather across differing target environ-
ments (weather, soils and management) to deter-

mine the genetic improvement and any genotype by 
environment by management interactions. Examples 

follow.

8 .   I N  S I L I C O  M O D E L L I N G  O F  T R A I T S  F O R 
G E N ET I C  I M P R O V E M E N T

Assume that you have defined the target environment (multiple years 
of weather for a site and the soils), along with the basic cultivar type to 
define season length and the crop management (rainfed or irrigated, 
and N fertilization level). A crop simulation model for the given crop 
would be simulated with those soils and 20–30 weather years, with a 
baseline cultivar and crop management. The outcome would be a mean 
yield with the distribution of yields depending on weather variability. 
This defines your baseline yield case. Ideally, one should have yield 
trial data that verify that the model simulations compare reasonably to 
field-observed yields for the baseline cultivar. It is important to know 
that the future hypothetical evaluations are well-grounded. Caution is 
needed if yield trial data experience pest and disease losses, because 
most crop models do not account for pest, disease and other biotic 
stress effects.

Next, one would create hypothetical genetic traits. Assume that 
one wants the same season length, with earlier anthesis but longer 
grain-filling duration. This would require decreasing the GSP input of 
photothermal unit requirement to anthesis, and increasing the trait for 

photothermal units from anthesis to physiological maturity. These two 
traits would be considered as ‘genetic coefficients’ for the crop model. 
The model would be simulated for the new virtual cultivar with the same 
weather and soils, to see how the two newly modified traits affect the 
percent change in mean yield, as well as the resulting yield variability.

The simulations should be conducted with multiple target environ-
ments, to evaluate whether the new trait is best in just some environ-
ments or all environments (Loffler et al. 2005; Putto et al. 2008; Loison 
et al. 2017). This would be equivalent to testing for a G × E effect. The 
target environments should be described in terms of weather (over 
multiple seasons), water availability, soil physical and chemical con-
straints, desired crop life cycle and even management constraints. 
The target environments can be: (i) low N or high N level, (ii) rainfed 
versus irrigated, (iii) altered management, (iv) current versus future 
climate (higher CO2, increased temperature or altered rainfall). The 
advantage is that virtual crop modelling can quickly evaluate trait 
effects on yield responses for multiple weather and soil environments 
(or future climate change), without actually doing the multi-location 
field trials. This can save years and millions of dollars in conducting 
multi-location trials. However, there are important things to consider 
when these computer experiment exercises are conducted: (i) What is 
the degree of confidence in the crop model ability to simulate that trait 
or to simulate yield response to weather and management generally? 
(ii) What is the knowledge of the range of genetic variability in the trait 
that one is simulating and what is possible?

8.1  Evaluating possible range of a GSP compared to 
literature-reported range

Crop models can be used to evaluate the quantitative response over the 
entire possible range of a single trait, such as rate of root depth progres-
sion. Crop models can also be used to evaluate response to multiple 
combinations of traits. In such evaluations, it is essential that the feasi-
ble genetic range for each given GSP be considered relative to reported 
literature. Figure 2 from Boote et al. (2003) illustrates soybean yield 
response to simulated rate of root depth progression for MG 3 soy-
bean grown on a deep Nicollet clay loam at Ames, IA. The published 
range of variation in this trait comes from Kaspar et al. (1978, 1984). 
This figure illustrates several important points: (i) that the response to 
a given trait over its whole range may become asymptotic or saturat-
ing (responses are not necessarily linear), (ii) that the response within 
the feasible published range of variation may be relatively modest as 
shown here and (iii) that yield variability may be influenced by the 
trait, in this case, deeper rooting leads to less variability in yield.

The full range of yield response to another frequently studied 
genetic trait, light-saturated leaf photosynthesis (LFMAX) is illus-
trated in Fig. 3 from Boote et al. (2003). The published literature for 
soybean indicates that most of the genotypic increase in light-saturated 
leaf rate is associated with increase in SLW (or reciprocal of SLA) 
(Dornhoff and Shibles 1970; Buttery et al. 1981; Morrison et al. 1999). 
So, one cannot simply propose increases in leaf photosynthesis with-
out considering this pleiotropic relationship to SLW. In other words, 
there is a cost (of crop dry matter) to pay for making thicker leaves, 
which results in smaller canopy LAI and reduced light interception. 
As a result, the optimistic picture of increasing yield with increasing 
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single leaf photosynthesis is made more complex by this pleiotropic 
connection of leaf photosynthesis to SLW. In Fig. 3, the yield response 
to the LFMAX with coupling to SLW is really quite modest (rising, 
but only slowly), while the response to LFMAX with no coupling to 
SLW is much more optimistic and is only slowly asymptotic. Also 
important is the range of measured genetic variation in light-saturated 
LFMAX of soybean (shown as a horizontal bar in Fig. 3) shows rela-
tively modest potential for improving yield based on increased leaf 
photosynthesis. The net effect (of increased SLW to obtain increased 
LFMAX) on growth and yield is complex and interactive effects occur 
depending on row spacing, sowing density, crop life cycle and elevated 
CO2 (Boote et al. 2003; Boote 2011). The increased SLW trait can give 
neutral or negative effects under low sowing density, wide row spac-
ing and ambient CO2, but becomes increasingly more positive for yield 
at narrow row spacing, high sowing density and elevated CO2 (all of 
which compensate for the reduced LAI).

8.2  Evaluating single and multiple combinations of 
traits for genetic yield improvement

We can use crop models to evaluate single effects of traits as well as 
combinations of multiple genetic traits to improve yield. Plant breed-
ers, in their selection process, will happily accept all traits that con-
tribute to increased yield unless quality and disease resistance are 
compromised. Particularly with past traditional plant breeding, breed-
ers may not have known all the specific traits of their improved culti-
vars, or what the traits may be contributing, but they were happy to 
accept the improvement in yield. Thus, we need to consider that crop 
modelling for yield improvement should also consider the degree of 
additivity of multiple traits. It is important to evaluate the traits in dif-
ferent environments, e.g. water-limited, elevated temperature, elevated 
CO2 and management conditions, to appreciate G × E interactions, as 
shown in the simulation examples below.

Boote et al. (2001) analysed the growth patterns of old and new 
soybean cultivars and concluded that there were multiple traits (up 
to five or six, as interpreted from the CROPGRO-Soybean analy-
sis), which contributed to the observed yield gains of 12–23  % for 
the improved cultivars. These traits included earlier onset of pod-set, 
faster pod addition, longer grain-filling, increased leaf photosynthesis 
and slower N mobilization. Later crop model simulations by Boote  
(2011) evaluated the effect of combining multiple traits on soybean 
yield and suggested that the effects of traits were generally additive 
(Table 3). Of particular interest is that some traits were management- 
and climate-dependent. For example, some traits such as determinacy, 
early anthesis and increased SLW gave modest or no yield improve-
ments in ambient CO2 and low management (wide rows, low sow-
ing density, low input) conditions, but the same traits when placed 
in high CO2 and/or high management were contributors to increased 
yield. Traits such as early anthesis and determinacy that reduce LAI 
are not a disadvantage under conditions that favour abundant veg-
etative growth. This message is particularly important for breeding 
for crop yield improvement under present and future CO2 increase. 
In fact, some GSPs gave a greater response under elevated CO2 than 
under 350 ppm CO2 (see highlighted increases in bold in Table 3). 
The additivity of multiple GSPs in two-, three- and four-way combi-
nations progressively increased yield above the base MG 3 cultivar. 
A  single trait of longer filling period gave 5.3  % yield increase, fill-
ing period plus high SLW gave 6.3  % and filling period plus slower 
N mobilization gave 10.2 % increase in yield (these are conservative 
possibilities). Staying within feasible genetic range, the three-way 
combination of 15  % longer filling period, 10  % higher LFMAX 
and 10 % slower N mobilization from vegetative organs gave 17.7 % 
increase in yield. Pushing the envelope for somewhat greater changes 
(such as 15 % increase in LFMAX) in three- or four-way combinations 
resulted in a yield increase of 20.6–23.9 %, approaching what the plant 
breeders have achieved since the Williams 82 cultivar was released in 

Figure 2. Simulated soybean yield (solid line) and standard 
deviation (dashed line) as affected by average simulated rate 
of root depth progression over 17 rainfed seasons at Ames, IA. 
Horizontal dashed bar represents published genetic range for 
rate of root depth progression. From Boote et al. (2003).

Figure 3. Simulated soybean yield response to LFMAX, 
coupled (dashed line), and not coupled (solid line), to SLW. 
Averaged over 17 rainfed seasons at Ames, IA. Horizontal bar 
represents published genetic range. From Boote et al. (2003).
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1982 (Williams 82 is the baseline in Table 3, which also corresponds 
approximately to the period when CO2 was about 350  ppm). The 
responses to GSPs and the additivity of GSPs continued to be present 
at the higher CO2 concentration of 500 ppm.

Yield improvements with single and multiple GSP trait variations 
were simulated with the CROPGRO-Peanut model using 15 years of 
rainfed conditions in Ghana under hypothesized increase in CO2 and 
a +3 °C increase in temperature (Table 4). The short-season cultivar, 
Chinese, had been well-calibrated for multiple seasons in Ghana and 
the soil water-holding characteristics were also well-established by 
comparison to observed data (Naab et  al. 2004; Naab et  al. 2005). 
Because this is a short-season cultivar with a relatively low LAI, yield 
increased 4.2 % with delayed flowering (+10 % EM-FL) and increased 
9.0 % with longer grain-filling duration (+10 % SD-PM), and 12.4 % 
with both traits. Likewise, with a relatively low LAI, an increase in 
photosynthesis (+10  % LFMAX) caused a 7.3  % increase in yield, 
while an increase in SLA (decreased SLW) increased yield by only 
0.5 %. An increase in partitioning intensity increased yield by 3.4 % 
because this cultivar is relatively indeterminate. Moreover, combina-
tions of traits such as delayed flowering, longer grain-fill, higher par-
titioning (+10  % XFRT) and higher photosynthesis were additive 
and increased yield by 24.7 %. Of particular interest is that three traits 
(delayed flowering, longer grain-filling and increased partitioning) 
increased yield more under the +3  °C temperature scenario than at 
ambient conditions. This would be a G × E interaction. Under future 

climate change, a temperature increase of this magnitude is probable 
and would cause a shorter life cycle, which the increased EM-FL and 
increased SD-PM help to offset. Zheng et  al. (2016) also suggested 
that genetic alleles for longer life cycle would be needed for crops 
such as wheat under the rising temperature anticipated with climate 
change. In addition, the peanut model simulates a reduced rate of pod 
addition and partitioning under elevated temperature (relationship in 
model is based on observations under elevated temperature (Prasad 
et al. 2003; Boote et al. 2018)), and the increased partitioning helps 
to bring that back.

Crop growth models can be used to investigate traits contrib-
uting to past genetic yield improvement by comparison to pheno-
typing data collected on old versus improved cultivars. This was 
accomplished by Narh et al. (2015) who evaluated improved pea-
nut cultivars released by ICRISAT for use in West Africa, by com-
parison to cv. Chinese the baseline cultivar in that region. Narh et al. 
(2015) used the CSM-CROPGRO-Peanut model as an analysis tool 
to evaluate possible genetic contributions to yield increase among a 
set of 19 cultivars that included improved cultivars from ICRISAT 
plus local cultivars. Data on phenology, biomass, pod mass, pod 
HI and final yield were collected on 19 cultivars over two seasons 
at four sites in Burkina Faso and Ghana. Optimization techniques 
were used with the model to solve GSPs. The two highest yielding 
lines Nkatesari and ICGV-IS 96814, both ICRISAT-released geno-
types, yielded 76–80  % more than Chinese. The model was able 

Table 3.  Simulated soybean yield with GSP trait modifications with CO2 rise from 350 to 500 ppm at Ames, IA with long-term 
historical weather (20 years) using CSM-CROPGRO-Soybean. Sown 1 May at 25 plants per m2 with a 0.20-m row spacing 
on a Nicollet clay loam with 2.0-m deep rooting profile. Adapted from Boote (2011). Values in bold illustrate genotype by 
environment interactions for a given trait or combination of traits.

Carbon dioxide concentration

Genetic trait 350 ppm 500 ppm

 kg ha−1 % increase kg ha−1 % increase

Standard (MG 3) 3403  4084  
Determinate (Dt) 3413 0.30  2.25
+10 % filling period (FP) 3583 5.29  6.00
+10 % SLW 3439 1.06  1.37
+10 % LFMAX 3605 5.94  4.93
10 % slower N mobilization 3517 3.36  2.81
Dt + 10 % FP 3481 2.30  5.26
Dt + 10 % FP + 10 % SLW 3496 2.74  5.81
Dt + 10 % FP + 10 % LFMAX 3709 9.00  11.30
10 % FP + 10 % SLW 3619 6.34  7.31
10 % FP + 10 % LFMAX 3800 11.67  11.43
Dt + 10 % FP + Nmob 3629 6.65  9.71
Dt + 10 % FP + 10 % SLW + Nmob 3650 7.26  10.27
Dt + 10 % FP + 10 % LFMAX + Nmob 3869 13.70  15.82
10 % FP + 10 % SLW + Nmob 3750 10.19  10.87
10 % FP + 10 % LFMAX + Nmob 3920 15.19  14.77
+15 % FP + 10 % LFMAX + Nmob 4006 17.73  17.45
+15 % FP + 15 % LFMAX + Nmob 4104 20.59  19.84
+15 % FP + 15 % LFMAX + Nmob  
and +10 % leaf N conc

4217 23.93  21.82
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to successfully mimic this yield increase with the GSPs described 
in Table 5. Traits important to yield under this no-fungicide rain-
fed production included longer life cycle, higher photosynthesis, 
higher partitioning, longer grain-fill and modest leafspot resistance. 
Leafspot resistance was partial, but certainly contributed to the 
higher leaf photosynthesis (greater crop growth rate) along with 
extended life cycle. The longer life cycle, longer grain-filling and 
higher partitioning were also documented in the phenology and 
pod HI observations.

8.3  Simulating genotype by environment 
interactions

Genotype by environment interactions are of great interest to 
plant breeders because this helps select cultivars and cultivar traits 
for different target environments. Table 6 illustrates strong G × E 

interactions for the case of simulated GSP traits with the CSM-
CROPGRO-Chickpea model for crops grown either under full 
irrigation or under water-limited terminal drought (Boote et  al. 
2013). Chickpea (Cicer arietinum) in India is typically sown at 
the end of the monsoon and depends on stored residual water on 
high-clay soils (Singh et al. 1999a, b). The target environment, irri-
gated versus rainfed, is important, because the responses to GSPs 
were often opposite and large for contrasting soil water availabil-
ity. For example, the effect of increased SLW was to decrease yield 
11 % under irrigation but to increase yield 18 % under water-limi-
tation. Increased SLW had a negative effect on yield under irriga-
tion because it reduced LAI and light interception. But the same 
higher SLW trait was beneficial under rainfed conditions because it 
reduced LAI, light interception and transpiration, thus conserving 
water for grain growth later in the life cycle. Later flowering acted 

Table 4.  Simulated peanut seed yield response to GSP trait combinations under two CO2 and temperature levels, grown rainfed 
with 15 years of weather at Wa, Ghana using CSM-CROPGRO-Peanut. Values in bold illustrate genotype by environment 
interactions for a given trait or combination of traits. †For definitions of GSP traits, see Table 1.

Cultivar trait modified† Ambient CO2  
380 ppm

CO2  
500 ppm

+3 °C temp +3 °C  
500 ppm  
−20 % RF

 % change

Chinese (90-d std) (kg ha−1) 1841 2248 1553 1770
+10 % LFMAX (leaf Ps) 7.3 6.4 6.9 5.4
+10 % specific leaf area 0.5 0.5 0.5 0.0
+10 % EMFL 4.2 3.6 4.3 3.9
+10 % SDPM 9.0 8.3 12.6 12.4
+10 % EMFL & SDPM 12.4 11.1 16.1 14.6
+10 % WTPSD (wt/sd) 0.7 0.8 0.7 0.5
 −10 % pod adding duration 0.1 0.7 3.9 3.6
+10 % XFRT (partitioning) 3.4 3.8 5.3 5.7
+10 % SIZLF (veg. vigour) 1.5 1.4 0.9 0.8
EMFL, SDPM, XFRT 16.5 15.5 21.3 19.7
EMFL, SDPM, LFMAX 20.4 18.0 22.7 20.3
EMFL, SDPM, XFRT, LFMAX 24.7 22.6 28.6 25.8

Table 5.  Observed pod yield and observed pod HI over two seasons at four sites, and GSPs of peanut cultivars derived from data 
using the CROPGRO-Peanut model with an optimizer (from Narh et al. 2014, 2015). Only the three highest yielding cultivars 
and the three local check cultivars are shown here. †PD, photothermal days.

Cultivar Observed pod 
yield (kg ha−1)

Observed 
pod HI

Cultivar GSP traits†

LFMAX XFRT 
(fraction)

PODUR 
(PD)

SFDUR 
(PD)

THRSH 
(%)

EM-FL 
(PD)

FL-SD 
(PD)

SD-PM 
(PD)

ICGV-IS 
96814

1760a 0.405a 1.60 0.72 20.7 25.0 72.8 21.0 23.4 50.70

NKATESARI 1720a 0.400ab 1.57 0.70 15.0 23.0 73.9 20.0 25.0 50.00
ICGV-IS 

92093
1580b 0.425a 1.55 0.71 18.0 24.0 74.9 21.0 26.0 48.00

CHINESE 980def 0.330de 1.17 0.59 7.5 20.0 71.5 19.9 22.7 35.14
DOUMBALA 960d-g 0.355cd 1.16 0.58 9.5 22.5 70.0 19.0 20.0 39.50
TS 32-1 890fh 0.370bc 1.10 0.59 8.0 24.0 72.0 20.0 20.5 38.20
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Table 6.  Grain yield response to varying GSPs, simulated for 22 years for Annigeri chickpea grown under either rainfed or 
irrigated conditions at Patancheru, India. Sown on 29 September (day 302) on a very fine montmorillonitic clay soil, starting at 
field capacity. Simulated with the CSM-CROPGRO-Chickpea model as developed by Singh and Virmani (1994) and modified by 
Singh et al. (2014). Table used with permission from Boote et al. (2013).

Rainfed Irrigated

Cultivar GSP modified Mean   
yield

Percent   
change

Mean   
yield

Percent 
change

 kg ha−1 % kg ha−1 %

Standard simulation (Annigeri) 773  2614  
Rooting/SLW/LFMAX traits
  +10 %, rate of root depth progression 791 2.3 2614 0.0
  +10 % leaf photosynthesis (LFMAX) 783 1.3 2961 13.3
  +10 % specific leaf weight (SLW) 916 18.5 2328 −10.9
Life cycle traits
  10 % longer from emergence to anthesis 669 −13.5 3016 15.4
  10 % longer seed-fill (first seed to maturity) 787 1.8 2893 10.7
Seed size/partitioning
  10 % larger potential seed size 746 −3.5 2709 3.6
  10 % faster pod addition 774 0.2 2717 3.9

to increase LAI, and gave 15.4 % yield increase under irrigation, but 
reduced yield 13.5  % under the terminal drought. The common 
factor was the amount of LAI produced and amount of soil water 
conserved and left at the time seed growth began. Likewise, higher 
photosynthesis had a much larger benefit under irrigation; while 
under terminal drought, it had little benefit because it increased 
early LAI and water extraction too much. Bourgault et  al. (2020) 
suggested that an early vigour trait in wheat could similarly predis-
pose the crop for yield reduction under terminal drought because of 
early depletion of soil water caused by the earlier LAI.

It is important to understand how and when crop models repro-
duce G × E interactions. It is proposed that G × E interaction can come 
from a ‘normal’ single gene or gene package where the effect of that 
gene is neutral in one environment but negative or positive in another 
environment, as in the example for chickpea grown under irrigation or 
terminal water deficit. The point here is that there is not a need for a 
‘special’ G × E ‘gene’, but rather that a given gene or gene package may 
be beneficial in one environment, but negative in another, as also sug-
gested by Chapman (2008), Chenu et al. (2009), Tardieu (2012) and 
Hammner et al. (2016).

In the examples so far, we have illustrated that simulated G × 
E can be an emergent outcome for environments differing in water 
availability, CO2, temperature and crop management. G × E effect 
for locations (L) can occur if the location varies in soil water-hold-
ing capacity, rainfall and temperature. Putto et  al. (2013) found 
G × L effects in different locations as GSPs were varied with the 
CROPGRO-Peanut model. G × E interaction for management can 
occur if the management varies in irrigation, N fertilization, row 
spacing and plant population. For all the water supply-based envi-
ronments, deep rooting trait will benefit only if water deficit occurs. 
Even different cultivar life cycles can result in a G × E interaction 
if the environment is different during the non-common part of the 
life cycle.

8.4  Simulating adaptation to climate change factors
Crop models are useful for evaluating genetic traits for adaptation to 
climate change factors (Boote 2011; Singh et al. 2012, 2017; Hammer 
et  al. 2020). In a project funded by the International Food Policy 
Research Institute, K.J.B.  modified the code of the CERES-Pearl 
Millet model to account for elevated temperature effects on grain-set. 
Then, the model was calibrated by Singh et al. (2017) to pearl millet 
(Pennisetum glaucum) data from six sites in India and two sites in West 
Africa, followed by simulating response to climate change scenarios 
(increased temperature, rainfall change, CO2 increase) for those sites 
(Table 7). Traits involved a 10 % shorter life cycle, a 10 % longer life 
cycle, increased productivity, deeper more effective water extraction 
and heat tolerance for grain-set and single grain-growth rate. Life cycle 
was modified by changing P1, P2O and P5 (definitions are similar to 
those of CERES-Maize in Table 2). Simulated productivity trait was 
accomplished by 10 % increases in G1, G4, GT and RUE parameters. 
For drought tolerance, the shape of rooting depth was made deeper 
and the lower limit of the soil water-holding traits was reduced to give 
5 % more available soil water. The grain-set sensitivity to temperature 
was based on field observations of grain-set at an elevated temperature 
location (Gupta et al. 2015). For the model, the temperature thresh-
olds were set to give no reduction in grain-set below 33 °C, but with a 
linear reduction in grain number between 33 to 39 °C, and zero grain-
set at 39 °C. The grain number in the millet model is determined by 
the assimilate supply and cumulative biomass, and the daily mean tem-
perature during the ISTAGE4 phase. To hypothesize a heat tolerance 
trait for an improved cultivar, both the threshold and the ceiling failure 
temperature for grain-set were increased by 2 °C to 35 and 41 °C.

Simulations with the CERES-Pearl Millet model for the sites 
in India (Hisar, Jaipur, Jodhpur, Bikaner, Aurangabad and Bijapur) 
and in West Africa (Sadore and Cinzana) revealed that a shorter life 
cycle was not a successful strategy under climate change, although a 
longer life cycle increased yield for about half of the sites (Table 7). 
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The increased productivity trait (four combined GSPs listed above) 
increased yield at most sites, but were not uniformly consistent 
across all sites, but we have concerns for the reality of modifying all 
those traits at once, and whether plant breeders can achieve them. 
The drought tolerance trait (deeper more effective water extrac-
tion) gave more response for the low-yielding water-limited sites of 
Bikaner and Sadore. The heat tolerance trait (+2 °C more tolerance) 
gave no yield benefit for the cool sites (Aurangabad, and Bijapur), 
but gave 17–18  % increases for the warmest sites. This would be 
a G × E interaction. The simulated combination of droughts and 
heat tolerance traits was additive. In a similar manner, Singh et al. 
(2012) evaluated GSPs of CROPGRO-Peanut for peanut adapta-
tion to climate change across multiple sites in India. A 2 °C increase 
in heat tolerance of pod-set and seed growth rate resulted in larger 
yield responses (3–12 %) under climate change than under current 
climate, except for two cool sites where there was little difference. 
Responses to multiple traits were also generally additive.

9 .   L O O K I N G  TO  T H E  F U T U R E  R O L E 
O F  C R O P  M O D E L S  I N  G E N ET I C 

I M P R O V E M E N T
There is great opportunity to use dynamic crop simulation models as 
tools to evaluate past genetic improvement, to evaluate virtual cultivars 
for future yield improvement in target environments, to hypothesize 
traits that account for G × E responses in many environments and to 
assist plant breeder trait selection for yield improvement. We agree 
whole-heartedly with Muller and Martre (2019) that crop models are 
important tools at the cross-roads needed to link physiology, genetics 
and phenomics. With the rapid advance in genotyping and QTL analy-
sis, the most limiting factor now is the phenotyping of crop traits and 
performance in multiple environments (Furbank and Tester 2011). 
The significant amount of resources directed to phenotyping and QTL 
analysis (Tardieu et  al. 2017)  will benefit considerably if combined 
with crop simulation modelling and physiological understanding as 
a way to integrate those many phenotypic outcomes over multiple 
environments (Chenu et al. 2018). There is good opportunity to inte-
grate crop growth models with genome wide prediction to improve 

genomic prediction accuracy, in particular when G × E interactions 
are an important determinant of performance (Technow et al. 2015; 
Cooper et al. 2016; Messina et al. 2018).

However, for linking crop models to genes and QTLs, it is impor-
tant to consider the correct physiological mode of action and to consult 
with plant breeders on the feasible genetic range for a given trait. Most 
traits of interest to plant breeders are emergent outcomes of multiple 
genes and physiological processes, which implies that crop models may 
need improvement to include more detailed representation of processes 
and dissection of traits into component traits at ecophysiology level to 
better simulate those emergent outcomes (Hammer et al. 2016; Chenu 
et al. 2018). Evaluating traits with crop growth models reveals that G × 
E interactions are associated with environments differing in water sup-
ply, temperature, CO2 level, soil water-holding characteristics and crop 
management. Models often mimic G × E because a single trait (gene) 
that is beneficial in one environment may be negative in another. The 
crop models will need a certain depth of physiological detail, genotypic 
information and understanding of genetic direct (G) and interactive (G 
× E and G × G) effects on dynamic physiological processes to robustly 
incorporate QTLs and genes into dynamic crop models.
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