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ABSTRACT
Dynamic crop simulation models are tools that predict plant phenotype grown in specific environments for genotypes 

using genotype-specific parameters (GSPs), often referred to as ‘genetic coefficients’. These GSPs are estimated using phe-
notypic observations and may not represent ‘true’ genetic information. Instead, estimating GSPs requires experiments 
to measure phenotypic responses when new cultivars are released. The goal of this study was to evaluate a new approach 
that incorporates a dynamic gene-based module for simulating time-to-flowering for common bean (Phaseolus vulgaris 
L.) into an existing dynamic crop model. A multi-environment study that included 187 recombinant inbred lines (RILs) 
from a bi-parental bean family was conducted in 2011 and 2012 to measure the effects of quantitative trait loci (QTLs), 
environment (E) and QTL × E interactions across five sites. A dynamic mixed linear model was modified in this study to 
create a dynamic module that was then integrated into the Cropping System Model (CSM)-CROPGRO-Drybean model. 
This new hybrid crop model, with the gene-based flowering module replacing the original flowering component, requires 
allelic make-up of each genotype that is simulated and daily E data. The hybrid model was compared to the original CSM 
model using the same E data and previously estimated GSPs to simulate time-to-flower. The integrated gene-based module 
simulated days of first flower agreed closely with observed values (root mean square error of 2.73 days and model efficiency 
of 0.90) across the five locations and 187 genotypes. The hybrid model with its gene-based module also described most of 
the G, E and G × E effects on time-to-flower and was able to predict final yield and other outputs simulated by the original 
CSM. These results provide the first evidence that dynamic crop simulation models can be transformed into gene-based 
models by replacing an existing process module with a gene-based module for simulating the same process.

K E Y W O R D S :   CROPGRO-Drybean; DSSAT; mixed-effect model; Phaseolus Vulgaris L.; QTL.

1 .   I N T R O D U C T I O N
Scientific advances in understanding plant genes combined with 
advances in technologies for rapidly and inexpensively identifying 
genetic make-up of plants (Thomson 2014; Rasheed et al. 2017) have 
fuelled considerable interest in using genetic information to predict 

plant phenotypes. Analytical tools are now available to identify the 
genes that are associated with the variation in different plant traits. 
These bioinformatics tools also can identify important gene-by-envi-
ronment (G × E) interactions that contribute to the observed varia-
tion in specific traits (Yin et al. 2018). Rapid progress in genome-wide 
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association studies (GWAS) has enabled researchers to identify genes 
associated with variation in human diseases (Bush and Moore 2012).

Genome-wide prediction models that use GWAS also have become 
powerful tools for improving crops such as tropical rice (e.g. Spindel et al. 
2016). The GWAS approach has been implemented in recent work in 
other crops (Brown et al. 2014; Huang and Han 2014; Cooper et al. 2016). 
Scientists use statistical methods, such as single-locus analysis based on 
ANOVA, linear regression and mixed linear regression models, to detect 
a gene or gene combinations associated with variation in a phenotypic 
trait (White and Hoogenboom 2003; White 2006; Yin and Struik 2010). 
These tools also assist geneticists and plant breeders for prediction and 
selection of lines to improve crop yield.

Concepts have been under development since the early 1970s 
for predicting crop yield variation using dynamic models as affected 
by environmental conditions and management scenarios, and to 
some variation among cultivars ( Jones et al. 2016; Thorburn et al. 
2018). Differences among cultivars are represented by empiri-
cal genotype-specific parameters (GSPs). However, these models 
do not use information on variation in genes among the cultivars. 
Instead, the GSPs for each genotype must be estimated using data 
from laboratory or field studies (Hunt et  al. 1993; Anothai et  al. 
2008; Buddhaboon et al. 2018).

Recognizing the potential for introducing genetic information 
into crop models, White and Hoogenboom (1996, 2003) showed 
that some of the BEANGRO model’s GSPs (Hoogenboom et  al. 
1992, 1994) could be estimated as linear functions of genetic infor-
mation. This approach was also used by Messina et al. (2006) for the 
CROPGRO-Soybean model and by other researchers for different 
crops (Yin et al. 2000, 2003; Reymond et al. 2003; Hammer et al. 2010; 
Gu et al. 2014). Furthermore, this approach of relating existing crop 
model GSPs to molecular markers was shown to provide better yield 
predictions than that of a statistical model for maize (Technow et al. 
2015). More recently, Wallach et al. (2018) showed that genetic effects 
on rate of progress to first flower in common bean can be estimated 
using field data from a multi-environmental trial containing a large 
number of genotypes.

Although GSPs can provide high levels of prediction in crop mod-
els when they are independently estimated for each genotype, these 
parameter may not accurately represent the genetic architecture of the 
associated crop phenotype or process (Hwang et  al. 2017). Acharya 
et  al. (2017) found that commonly used approaches for estimating 
GSPs for the cropping system model (CSM)-CROPGRO-Drybean 
model (Boote et al. 1998; Jones et al. 2003; Hoogenboom et al. 2019a) 
resulted in considerable equifinality among estimated GSPs, which 
means that multiple sets of possible GSP values produced very simi-
lar responses. This was demonstrated by Acharya et al. (2017) using 
a synthetic population based on known GSPs that were used to gen-
erate synthetic field data. Then, blind estimates of GSPs using those 
synthetic data differed from original values. Even though new GSPs 
reliably predicted crop growth and yield, the procedure was unable to 
recover the original GSP values.

The previously discussed studies contain relationships and assump-
tions made by the original crop model developers, including the func-
tional forms used to describe the E and G effects on predicted dynamic 
rates. As a result, this use of existing relationships makes it difficult 

to identify G and G × E effects from field data, which can be seen in 
the expanded original model form published by Wallach et al. (2018). 
Note that this expanded functional form inherently includes many G 
× E interaction terms that may or may not exist. Incorporating genetic 
information into an original model’s functional form entangles G, E 
and G × E effects and, thus, does not enable one to study interactive 
G × E effects on the rate of progress towards flowering. Furthermore, 
we have learned that there is variation among genotypes that was not 
captured in the original model formulations and associated assump-
tions (Boote et al. 2003, 2013; Acharya et al. 2017). One example is 
that some combinations of genes may result in different responses to 
temperature than others, whereas the assumptions imbedded in the 
existing models mostly assume that temperature responses of all geno-
types are the same.

Another issue is that the gene-based approach that thus far has 
evolved in the crop modelling community has not been widely 
embraced by the genetics community, nor have the analytical 
approaches used by geneticists to predict genetic effects on crop traits 
been adopted by the crop modelling community (Boote et al. 2021). 
There have been limited interactions between these science communi-
ties that might lead to more rapid advances in gene-based modelling. 
Hwang et al. (2017) concluded that comprehensive gene-based crop 
models may be developed using existing crop models by replacing 
existing component dynamic modules with gene-based modules as 
they are developed.

Recent progress has helped identify a possible pathway to help con-
verge these communities. A multi-environment trial (MET) that was 
conducted in 2011 and 2012 included 187 common bean (Phaseolus 
vulgaris) recombinant inbred lines (RILs) from a bi-parental family. As 
part of this study, significant quantitative trait loci (QTLs) controlling 
the time-to-flowering in the RIL population were identified (Bhakta 
et al. 2015, 2017), which provided an opportunity to model QTL and 
environmental effects on the time-to-flowering. This study included 
geneticists, biostatisticians and crop modellers asking questions about 
which genes affected different growth and development processes 
across environments and what G × E interactions were important. One 
of the outcomes of this study was a QTL-based mixed model to deter-
mine the G and G × E interactions in order to build a predictive model 
for the time-to-flowering trait (Bhakta et al. 2017).

Vallejos et al. (2021) described how one can use a statistical model 
to develop a dynamic mixed model that can predict the time to first 
flower phenotype based on a daily development rates. They devel-
oped a model that predicts the daily development rate and discussed 
its potential integration into an existing dynamic crop model that 
responds to varying environmental conditions. However, integration 
of this model was not attempted by Vallejos et al. (2021). There could 
be unknown or implicit assumptions in the original crop model that 
might lead to erratic responses that would have to be identified and 
addressed when a gene-based module is integrated into an existing 
dynamic crop model that does not rely on genetic data inputs.

The goal of this study was, therefore, to address the questions of how 
this type of integration can be done in a comprehensive dynamic crop 
model and what complications and limitations are likely to occur. The 
first objective was to develop and integrate a dynamic statistical gene-
based module into the CSM-CROPGRO-Drybean model to predict 
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the time of first flower appearance using data obtained from the MET 
bean studies. The second objective was to demonstrate potential appli-
cations of the hybrid dynamic model as a breeding tool for studying the 
G × E interactions using sensitivity analysis and for simulating yield.

2.  MATERIALS AND METHODS
2.1  Genotype population

The bean MET was conducted to collect the time-to-flowering pheno-
types of a RIL population from a cross between the Andean bean culti-
var, Calima, and a Mesoamerican cultivar, Jamapa (Bhakta et al. 2017). 
The Calima parent is a large-seeded, mottled bean Colombian culti-
var with a determinate growth habit, while Jamapa is a small, black-
seeded Mexican cultivar with an indeterminate growth habit. The RIL 
population was developed through single seed descent for 10 genera-
tions, followed by bulk propagation for an additional three generations 
(F11:14) giving rise to 187 RILs. Further details for this RIL population 

can be found in Bhakta et al. (2017), while the QTL-based linkage is 
described by Bhakta et al. (2015).

2.2  Experimental sites
We used the data from the MET study that included five locations, 187 
RILs and the two parents as reported by Bhakta et al. (2017). The five sites 
had been selected to provide contrasting environmental growing condi-
tions, especially those related to temperature and photoperiod. Three of 
the five sites are located in the USA: Prosper, North Dakota (ND); Citra, 
Florida (FL); and Isabela, Puerto Rico (PR), while the other two sites are 
located in Colombia: Palmira (PA) and Popayan (PO). Figure 1 and Table 
1 summarize the seasonal temperature, day length and solar radiation for 
the five sites in the MET study, which are the main environmental vari-
ables that affect the time-to-flowering in common bean. Prosper (ND) 
has longer days than the other environments, while Palmira and Popayan 
are close to the equator and have short days. Within Colombia, Popayan, 

Figure 1. Boxplots of environmental variables observed for all five sites: Prosper, North Dakota (ND); Citra, Florida (FL); 
Isabella, Puerto Rico (PR); Palmira, Colombia (PA); Popayan, Colombia (PO). The boxplots show the distribution of daily values 
of maximum temperature (top left), daily minimum temperature (top right), daily solar radiation (bottom left) and day length 
(bottom right). The day length for all locations is based on the calculations of the CSM-CROPGRO-Drybean model.
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the coolest site, is located at an elevation of 1800 m, while Palmira, the 
warmer site, is located at a 1000 m elevation. The experiment was con-
ducted in 2011 and 2012, depending on the site. Each RIL and the two 
parents were grown in three replicated plots per site, with between 35 and 
50 plants per plot. Six individual plants per plot were tagged at the V1 
(first trifoliate opening) stage to record the vegetative and reproductive 
growth stages, resulting in 18 observations per genotype per site for each 
observation day. The plants were monitored daily to determine the date 
for each individual plant when first flowering occurred.

2.3  Dynamic mixed linear model
Vallejos et al. (2021) described procedures used to develop a dynamic 
mixed linear model to determine the rate of progress towards first flower-
ing. This model was based on earlier work that was conducted by Bhakta 
et al. (2017) who fitted a statistical mixed linear model to predict time-
to-flowering of the RILs based on QTL information and the mean envi-
ronmental variables for each of the five sites. The Bhakta et al. (2017) 
model used a linear function for the effects of maximum and minimum 

temperature, day length and solar radiation, each averaged over the dura-
tion between sowing and first flowering, 12 QTLs, five QTL × E fac-
tors and one QTL × QTL factor. This non-dynamic model was able to 
describe 89 % of the observed variability among the five locations and 
187 RILs, with a root mean square error (RMSE) of 2.52 days.

Vallejos et  al. (2021) used a similar approach to that used by 
Bhakta et al. (2017) to develop their dynamic model [see Supporting 
Information—Fig. S1]. First, the time to first flower data for all RILs 
and environment combinations were transformed into a development 
rate towards first flower appearance, calculated as rate = 1/(days to first 
flower). This approach requires the implementation of a function that 
predicts the daily development rate towards the time to first flower.

We designed a new module (DMLM; see Table 2 for abbreviations) by 
converting the Vallejos et al. (2021) model into a form that could be inte-
grated with the original CSM-CROPGRO-Drybean model. The dynamic 
module computes the fraction of daily progress towards flowering based 
on the developmental rate that is controlled by genotype and daily 
environmental conditions. The time-to-flowering is determined when 

Table 2.  Description of model abbreviations.

Module Dynamic module description

DMLM Dynamic mixed linear model developed by Vallejos et al. (2021).
DMLM-DL Dynamic mixed linear module by Vallejos et al. (2021) using day length calculated with the CSM model
DPLM Dynamic piecewise linear module (integrated into CSM-CROPGRO-Drybean model)

Full crop model Full crop model description

DPLM-CSM DPLM gene-based module integrated into the CSM-CROPGRO-Drybean model using QTL inputs 
CSMG CSM-CROPGRO-Drybean model using genetic specific coefficients (GSPs)

Table 1.  Summary of the meteorological and geographical data for each site in the MET as reported by Bhakta et al. (2017), 
except for the computed day length that is based on the Cropping System Model.

ND FL PR PA PO

Location Prosper, North 
Dakota, USA

Citra, Florida, 
USA

Isabella, Puerto 
Rico, USA

Palmira, 
Colombia

Popayan, 
Colombia

Latitude/longitude 47°00′N/96°47′W 29°39′N/82°06′W 18°28′N/61°02′W 03°29′N/76°81′W 02°25′N/76°62′W
Elevation (m) 280 31 128 1000 1800
Earliest first 

flowering date 
30 June 2012 26 April 2012 6 March 2012 9 December 2011 28 April 2012

Latest first flowering 
date

26 July 2012 16 May 2011 22 March 2012 24 December 
2011

16 May 2012

Seasonal maximum 
temperature (°C)a

27 32 29 28 25

Seasonal minimum 
temperature (°C)a

13 18 19 19 13

Day length 
(hh:mm)b

15:29 12:41 11:33 11:49 12:03

Solar radiation (MJ 
m−2 day−1)c

21.0 20.6 21.5 13.8 15.0

aGrowing season average values for maximum and minimum temperature.
bAverage day length data from sowing to first flower as computed by the CSM of the Decision Support System for Agrotechnology Transfer (DSSAT).
cGrowing season average daily total solar radiation.
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the cumulative addition of the daily progress time steps reaches unity. 
Equation (1) shows the DMLM module that contains four environmental 
variables, one QTL × QTL interaction and seven QTL × E interactions.

FRs,g(t) =µ

+ a1 · (DayLs(t)− DayLm)
+ a2 · (DayLs(t)− DayLm) · QTL3,g
+ a3 · (DayLs(t)− DayLm) · QTL7,g
+ a4 · (DayLs(t)− DayLm) · QTL12,g
+ a5 · (Srads(t)− Sradm)
+ a6 · (Srads(t)− Sradm) · QTL12,g
+ a7 · (Tmaxs(t)− Tmaxm)
+ a8 · (Tmaxs(t)− Tmaxm) · QTL5,g
+ a9 · (Tmins(t)− Tminm )

+ a10 · (Tmins(t)− Tminm ) · QTL2,g
+ a11 · (Tmins(t)− Tminm ) · QTL3,g
+ a12 · (QTL1,g · QTL12,g)

+
12∑
q=1

βq.(QTLq,g)

+εs,g,t

�

(1)

where FRs,g(t) is the rate of progress to flowering (1 per day) for 
the gth genotype for the sth site at time t (in days). µ represents the 
overall mean value of the daily development rates across all RILs 
and sites in the MET data set. In the linear function (Equation (1)), 
RILs were treated as random effects and all remaining factors were 
considered as fixed effects. The variance–covariance structure that 
was used was unstructured, which is the default in the lme4 R pack-
age. Note that Equation (1) uses E variables that are centred on the 
mean values from the MET study for each RIL, based on the Vallejos 
et al. (2021) model. The first terms express the effects of the four 
environmental variables and the QTL-by-E effects, in which the 
variables a1 through a11 are estimated coefficients that quantify 
those effects, DayLs(t) is day length on each day t of the experi-
ment at site s. Similarly, Srads(t) is daily solar radiation (MJ m−2),  
Tmaxs(t) is daily maximum temperature (°C) and Tmins(t) is daily 
minimum temperature (°C) for each day t at site s. Mean values for 
each environmental variable (Equation (1)) were used as constants 
to centre the module calculations within the observed variables. 
These values were calculated from sowing to first flower for each 
RIL and all sites in the MET data set, represented by DayLm, Sradm, 
Tmaxm and Tminm. Also, QTL2,g, QTL3,g, QTL5,g, QTL7,g and QTL12,g 
are QTLs that interact with E to affect time to first flower (Bhakta 
et al. 2017). The second part of this equation shows one QTL-by-
QTL interaction (QTL1,g interacting with QTL12,g); a12 is the coef-
ficient for this interaction. The third part of this equation includes 
the sum of all QTL effects, where βq represents the coefficient for 
the qth QTL allele effect for RILg (QTLq,g). Each QTL has a marker 
value numerically assigned according to its allelic identity; Jamapa 
alleles were assigned as −1 and Calima alleles as +1 values [see 
Supporting Information—Table S1].

The daily rates (FRs,g(t)) in Equation (1) are then accumulated 
or integrated over time to predict day of first flower appearance using 
Equation (2) and a daily time step (dt = 1).

SUMFRs,g(t) = SUMFRs,g(t − 1) + FRs,g(t) · dt
� (2)

where SUMFRs,g(t) integrates the flowering rate at time t (in days) 
starting on the day of planting. SUMFRs,g(t) is set to 0.0 at the start of 
the simulation, and when it reaches 1.0, first flowering is simulated to 
occur on that day t for the gth RIL at site s.

2.4  Dynamic piecewise linear module
The CSM-CROPGRO-Drybean model (CSMG; Table 2), which 
is part of the Decision Support System for Agrotechnology Transfer 
(DSSAT; Hoogenboom et al. 2019b), requires daily weather data, soil 
surface and profile characteristics, crop management scenarios and 
cultivar information (GSPs) as input ( Jones et al. 2003; Hoogenboom 
et al. 2019a). The CSMG crop model uses daily weather variables for 
maximum and minimum temperature and solar radiation, and these 
variables have the same units as those used in the DMLM module. 
However, the day length (h) computed and used in the CSMG model is 
slightly different from the one used to develop the Bhakta and Vallejos 
models. The main difference is that the CSMG model accounts for the 
twilight period at sunrise and sunset, which may affect the photoperiod 
response of crops. Thus, in this study we used daily day length values 
computed by the CSMG model as input for the statistical procedures 
to estimate the numerical coefficients in Equation (1). This was done 
to make the daily weather and photoperiod variables identical to those 
used in the CSMG model (Hoogenboom et al. 1994; Boote et al. 1998) 
and to allow incorporation of the new dynamic gene-based module.

A second dynamic module (DMLM-DL) predicts the flowering rate 
(Equation (1)) on a daily basis using the day lengths from the CSMG 
and using a linear response to temperature. However, it is well-known that 
under high-temperature conditions the rate of progression towards flower-
ing does not increase linearly with temperature (White et al. 2005). The 
response is only approximately linear over a specific range of temperatures 
and it plateaus as an optimum temperature is reached. In fact, the effect of 
temperature on development rate can be more accurately represented by a 
beta function (Ritchie and Nesmith 1991). Because the temperature varies 
considerably within a single season, with location, and over time, plants are 
frequently exposed to temperatures outside their linear response range. To 
help account for the non-linearity response of common bean under high 
temperatures, a third module was created that uses a dynamic piecewise 
linear function (referred to as the DPLM module) to ensure that the daily 
simulated development rate is bounded to be within the range of tempera-
tures that were observed in the MET study and used to estimate the coef-
ficients in Equation (1) [see Supporting Information—Fig. S2].

FRMAXg is defined as the rate at which the progress towards flow-
ering proceeds when the environmental conditions, i.e. the daily maxi-
mum and minimum temperature, day length and solar radiation, are 
at ‘optimum’ values that result in a maximum development rate for 
the gth genotype. The FRMAXg values were estimated by selecting the 
maximum rate (1/DURs,g) for each RIL occurring across s environ-
ments, using the observed duration between planting and first flower 
across all s sites using Equation (3):

FRMAXg = max(1/DURs,g) across all s sites� (3)
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This resulted in 189 data points (one for each RIL plus the two 
parental lines). We determined whether the values for FRMAXg were 
affected by the same QTLs that significantly affected the time to first 
flower by estimating a linear relationship shown in Equation (4).

FRMAXg = γg+
12∑
q=1

ρq · (QTLq,g)� (4)

where the variable γg  is the fixed intercept estimated for the gth geno-
type and ρq  is the coefficient that quantifies the allelic effect of the qth 
QTL on the maximum rate of progress. A linear regression analysis was 
used to estimate coefficients of Equation (4).

The final daily rate of first flowering was determined using the 
DPLM module that was integrated into the CSMG model in which 
a maximum rate of development is limited depending on the geno-
type. If the daily flowering rate at time t  computed by FRs,g(t) exceeds 
FRMAXg for any RIL in the DPLM module, FRDs,g(t) limits the maxi-
mum rate of flowering to that set by FRMAXg, Equation (5):

FRDs,g(t) = min(FRs,g(t), FRMAXg)
� (5)

Finally, FRDs,g(t) is integrated daily to predict the day when first flower 
occurs, Equation (6), where SUMFRDs,g(t) integrates the flowering 
rate at time t (in days) in the DPLM module.

SUMFRDs,g(t) = SUMFRDs,g(t − 1) + FRDs,g(t) · dt
� (6)

At the start of the simulation, SUMFRDs,g(t) is set to 0.0 and the day 
when it reaches or exceeds 1.0, flowering is predicted to occur for the 
gth genotype.

2.5  Incorporation of a gene-based module into CSM
The CSMG model (Hoogenboom et  al. 1992, 1994) was developed 
using a modular structure ( Jones et al. 2001), where overall develop-
ment and growth are represented by specific modules, including those 
for vegetative and reproductive development, photosynthesis, respi-
ration, partitioning, vegetative and reproductive growth, and other 
soil and crop processes (Hoogenboom et  al. 2019a). For this study 
the focus was on the phenology module of CROPGRO where the 
developmental and phenological phase transitions are implemented. 
Boote et  al. (1998) described the physiological development rate in 
CROPGRO as a function of temperature, photoperiod and water 
deficit. If these conditions are optimal, one physiological day is accu-
mulated per calendar day. The phenology module in CROPGRO sepa-
rates the vegetative and reproductive routines that calculate the stages 
and individual phase durations.

To incorporate the first flower development stage using 
SUMFRDs,g(t) in the CSMG model, we first developed a new gene-
based module to create a link between the DPLM module and the crop 
model (Fig. 4). This module connects daily input data, the DPLM mod-
ule and the CSMG phenology module. The inputs for this DPLM mod-
ule consist of weather data from the crop model and the 12 QTL allelic 
make-up for each RIL (or genotype). The input QTL data for our study 
were those for the 187 RILs plus the two parent cultivars, which are 
processed in a new QTL data subroutine inside the gene-based module. 
A new input file was created for the CSMG model, named BNGRO047.

GEN that contains QTL data for each of the RILs and their two parent 
cultivars [see Supporting Information—Table S1].

The daily weather and QTL data for a particular site and RIL are inputs 
for the DPLM module, enabling it to simulate the daily flowering rate as 
affected by G and E conditions. The integrated development progress 
to first flower, SUMFRDs,g(t) and the day when first flowering occurs are 
passed back to the CSMG phenology routine. The outputs from the gene-
based module are inputs to the reproductive stage component, where the 
variables associated with first flowering are calculated. The day when first 
flowering occurs is set and afterward, progress for subsequent development 
phases is computed using the original CSMG model.

2.6  Sensitivity analysis of simulated variation  
for G × E

A simulation analysis was performed using the DPLM module to 
explore all possible combinations of the 12 QTL variation among 
RILs using the daily weather data across all five sites of the MET 
study, similar to previous ideotype studies (White et al. 2005). This 
resulted in a total of 4096 (212) RILs. The coefficients estimated using 
187 RILs plus the two parents were used to simulate the number of 
days to flowering for the 4096 RILs. The input file BNGRO047.GEN 
containing QTL information was revised by adding inputs for each of 
the 4096 RILs. Crop management including the planting dates and 
the daily weather data were assumed to be same as for the original five 
environments of the MET study. The management input file assumes 
that only the variation in genetics and environments affect the simu-
lated responses, representing potential production for each line. The 
DPLM module was then used to conduct the 20 480 unique simula-
tions across sites and synthetic RILs.

The time to first flower responses of the DPLM module were com-
pared with those of the DMLM-DL module to determine how the 
addition of a maximum rate, FRMAXg affects the simulated results 
under different high-temperature scenarios in a sensitivity analysis 
using the 187 RILs and two parents across all five sites of the MET 
study. The original daily temperature data were used as the base line 
inputs. Then, both the minimum and maximum temperatures for each 
day and each site were incremented at a 1 °C increment to create five 
different temperature scenarios (base, base + 1, base + 2, base + 3 and 
base + 4  °C), assuming that crop management, daily solar radiation 
and day length were the same as for the original MET study. The simu-
lated number of days to flowering were analysed and compared for the 
DPLM and DMLM-DL modules using statistics and a visualization 
of the distributions of number of days to first. Although we did not 
have sufficiently high temperatures in the MET study to account for 
the decrease in development rate as the temperature increases above 
an optimal threshold, the simple addition of the maximum rate in the 
piecewise linear module is expected to provide reliable simulations for 
small increases in temperature.

2.7  Yield prediction
An ultimate goal of dynamic crop simulation models is to be able to 
predict yield. Therefore, we compared the performance of the origi-
nal CSMG model using GSPs with the DPLM module integrated into 
CSM-CROPGRO-Drybean model (DPLM-CSM; Table 2). All 18 
GSPs were available for 144 genotypes, including 142 RILs and the 
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parent material, except for PA, for which GSPs for only 143 genotypes 
were available. The procedures for estimating the GSPs were described 
by Acharya et  al. (2017). Daily simulations, starting at planting and 
continuing until harvest maturity was predicted, were conducted for 
all five sites for either 2011 or 2012, depending on the MET. Crop 
management and local weather and soil data based on the original 
MET study were used as input for the CSMG model (Fig. 1). For the 
DPLM-CSM hybrid model, the flowering dates were predicted based 
on the DPLM module using the QTL information as input, rather 
than the GSPs, while for the other growth and development processes, 
the GSPs for the individual genotypes were used as input.

2.8  Model evaluation
To estimate parameters for the QTL-based modules, we used the lmer 
function of the lme4 package (Bates et  al. 2015) of the R program-
ming language (version 3.6.1). To compare the performance of the 
modules with observed data, we used the estimated parameters for the 
final QTL-based DPLM module for each site. As a measure of fit of 
Equation (1) to the data, we used the RMSE, defined as

RMSE =

ÃÅ
1
n

ã n∑
i=1

(yi − ŷi)
2

� (7)

where yi and ŷi are the ith observed and simulated number of days to 
flowering, respectively, and n is the number of measurements summed 
for all values for all RILs and for each site and all sites combined. The 
adjusted R2 was calculated because it indicates module performance 
adjusted by the number of the terms in the module, defined as

R2
Adjusted = 1−

ï
(1− R2)(n− 1)
(n− k− 1)

ò
� (8)

where R2 represents the coefficient of determination, n is the number 
of measurements and k is the number of independent variables of the 
model. A Nash and Sutcliffe (1970) skill score was also used as a meas-
ure of model error, referred to as model efficiency (ME) (Wallach et al. 
2019) and defined as

ME = 1−
n∑

i=1

(yi − ŷi)
2
/

n∑
i=1

(yi − ȳi)
2

� (9)

If ME = 1.0, the model fits perfectly, and the observed values are equal 
to the simulated values (yi = ŷi) for each i and ME = 1. If ME is less 
than 0.0, the mean of the observed data is a better predictor of the data 
than the model. If the variance for the observed minus predicted val-
ues is equal to the variance of observations from its mean value, then 
ME = 0.0, which means that the model is not good because it is no bet-
ter than using the average of observed values to predict responses. For 
evaluation of the predictive ability of the modules, we also compared 
the contributions to prediction error caused by model bias and stand-
ard deviation. We used the decomposition of the mean square error 
(MSE) into bias, standard deviation differences and residual errors 
that was developed by Kobayashi and Salam (2000), Equation (10).

MSE = (Bias)2 + SDSD+ LCS
� (10)
with

Bias2 =

[Å
1
n

ã n∑
i=1

(yi − ŷi)

]2

SDSD = (SDs − SDm)
2

LCS = 2SDsSDm(1− r)

The first term of Equation (10) is the bias squared, the second term 
SDSD is related to the difference between the simulation standard 
deviation (SDs) and the standard deviation of the measurements 
(SDm). The third term, LCS, indicates the remaining MSE error that is 
not accounted for by bias or standard deviation.

3 .   R E S U LT S  A N D  D I S C U S S I O N
3.1  Dynamic mixed linear module coefficients

The FRs,g(t) function is shown below with estimated parameter values for 
the DMLM-DL module. The values of coefficients in Equation (11) are 
based on the influence of day length, solar radiation, temperature and 12 
QTL alleles for each RIL, showing G, E, G × E and G × G interaction 
effects.

FRs,g(t) = 2.35148× 10−2

− 1.56357× 10−3 · (DayLs(t)− DayLm)
− 7.66441× 10−4 · ((DayLs(t)− DayLm) · QTL3,g)
− 1.62459× 10−4 · ((DayLs(t)− DayLm) · QTL7,g)
− 1.45956× 10−4 · ((DayLs(t)− DayLm) · QTL12,g)
− 8.50211× 10−5 · (Srads(t)− Sradm)
− 3.06273× 10−5 · ((Srads(t)− Sradm) · QTL12,g)
+ 5.72311× 10−4 · (Tmaxs(t)− Tmaxm)
+ 8.54093× 10−5 · ((Tmaxs(t)− Tmaxm) · QTL5,g)
+ 5.29789× 10−4 · (Tmins(t)− Tminm)
− 2.40896× 10−5 · ((Tmins(t)− Tminm) · QTL2,g)
− 8.59042× 10−5 · ((Tmins(t)− Tminm) · QTL3,g)
+ 3.01579× 10−4 · (QTL1,g · QTL12,g)
+ 9.41278× 10−4 · (QTL1,g)
+ 1.24887× 10−3 · (QTL2,g)
− 6.08364× 10−4 · (QTL3,g)
+ 2.36803× 10−4 · (QTL4,g)
+ 5.67194× 10−6 · (QTL5,g)
+ 5.27617× 10−4 · (QTL6,g)
− 4.11459× 10−4 · (QTL7,g)
− 2.11983× 10−4 · (QTL8,g)
− 4.42610× 10−4 · (QTL9,g)
− 2.50138× 10−4 · (QTL10,g)
+ 3.43389× 10−4 · (QTL11,g)
− 1.53677× 10−4 · (QTL12,g)

� (11)
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where the first term (2.35148 × 10−2) is the overall average daily 
rate of progress, indicating that the average time between sowing and 
appearance of first flowering is 42.5  days (=1/(2.35148 × 10−2)).  
The first coefficient (α1 = –1.56357× 10−3) is the sensitivity to day 
length, indicating that a 1-h increase in day length would result in a 
rate of development that is 1.56357× 10−3 below the average rate 
of 2.35148× 10−2. This 1-h increase in day length simulates that the 
time to first flower would occur 45.6 days after planting, an increase 
of 3.1  days compared to the average days to first flower that was 
observed across the five sites and 187 RILs plus the two parents. This 
rate of development also varies as a function of QTL alleles, which 
can increase or decrease the rate resulting in a decrease or increase in 
the number of days to first flower, respectively. Note that some of the 
QTL coefficients in Equation (11) have a negative sign while others 
have a positive sign. This is because each parental genotype has both 
types of alleles; the allele operator, i.e. Calima = +1 and Jamapa = −1, 

will alter the sign of the coefficient accordingly [see Supporting 
Information—Table S1]. The estimated parameter terms with the 
2.5 % and 97.5 % confidence intervals, P-value and the variance com-
ponents are shown in the Supporting Information—Table S2. The 
fixed effects variance was 1.80182 × 10−5, the random effects variance 
was 6.34775 × 10−7 and the residual variance was 1.3056 × 10−6.

Next, we compared the agreement between simulated and observed 
results for all sites, RILs and parents using the DMLM and DMLM-DL 
modules (Fig. 2A and B; Table 3). Comparisons of RMSE between 
simulated and observed values showed that the errors were only slightly 
different between the two modules (Table 3; DMLM and DMLM-DL 
modules). When all sites and RILS were included in the comparisons, 
the RMSE values were 2.73  days and 2.72  days for the DMLM and 
DMLM-DL, respectively. Similarly, when comparing agreements for 
each site, the RMSE values using the two module versions were within 
0.02 days for ND and 0.04 days for FL. Notably, however, Table 3 shows 

Figure 2. Observed versus simulated time to first flower across all five sites for the dynamic mixed linear module (DMLM) (A); 
the dynamic mixed linear model using the day length computed by the crop module (DMLM-DL) (B); the dynamic piecewise 
linear module incorporated into CSM-CROPGRO-Drybean (DPLM) (C); and the original CSM-CROPGRO-Drybean model 
using genetic specific coefficients (CSMG) (D). For A, B and C, the modules simulated for each RIL and for all sites, while for D 
the simulations were conducted based on the genotype-specific coefficients based on Acharya et al. (2017). Each point represents 
an observed and simulated RIL; the solid 1:1 diagonal line represents equal values for time to first flower. R2

adj for graph D is the 
average of the values across all five sites for each RIL. The five experimental sites are: Prosper, North Dakota (ND); Citra, Florida 
(FL); Puerto Rico (PR); Palmira, Colombia (PA); and Popayan, Colombia (PO).
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relatively large differences in RMSE depending on site, with ND having 
the largest RMSE or 4.58 days in comparison with the lowest RMSE of 
1.61 days for PA. We attributed these differences to the fact that the MET 
did not include a site with long days and low temperatures to contrast the 
long days and high temperatures of ND, which did not adequately cap-
ture the temperature–day length interactions previously documented by 
Wallace and Enriquez (1980) and Wallace et al. (1991).

The comparison of ME between the two module versions (DMLM 
and DMLM-DL) showed that both have the same high ME value of 
0.90. Although ME values for the ND site were lower (0.30 for both 
modules), these positive numbers indicate that the modules are more 
effective than using the mean value of the observations. Table 3 also 
shows that the bias in simulating time-to-flowering was low across all 
sites (less than 0.5 days), and MSE values were low except for ND. 
The remaining error after accounting for bias and standard deviation 
differences was much larger for both module versions at ND than for 
any of the other sites. Overall, the module implementation using the 

CSMG-computed day lengths (DMLM-DL) showed that the agree-
ment indicators were only slightly different from the DMLM module 
using the day lengths from Bhakta et al. (2017).

3.2  Dynamic piecewise linear module
The highest maximum rate for any genotype in the MET data set was 
0.0345 and the lowest observed maximum rate for any genotype was 
0.0222. This means that the duration from planting to first flower var-
ied from 29 to 45 days among genotypes under optimal environmen-
tal conditions. These maximum rates of development occurred at the 
tropical PA and PR locations where temperatures were warm and day 
lengths were relatively short. Although environmental conditions may 
not have been optimal at these locations, most of the maximum rates 
across locations for any RIL occurred in PA; only a few occurred in PR 
where the maximum rates for some RILs were only slightly higher than 
in PA. These results could likely be improved by using other data sets, 
ideally under more controlled environmental conditions.

Table 3.  Measures of agreement between simulated and observed number of days from planting to first flower for all models for 
each individual site and for all sites combined.

Sitea Measures of agreementb

 Genotypes (#) Observed mean Simulated mean Bias RMSE ME MSE (Bias)2 SDSD LCS

DMLMc

ND 149 57.74 58.36 −0.62 4.58 0.30 21.08 0.38 0.04746 20.65
FL 170 42.46 42.96 −0.50 2.51 0.72 6.32 0.25 1.02153 5.05
PR 163 36.42 36.88 −0.45 1.97 0.70 3.89 0.21 0.62889 3.05
PA 173 36.65 37.15 −0.50 1.62 0.72 2.63 0.25 0.02306 2.36
PO 173 45.96 46.15 −0.19 2.26 0.81 5.16 0.04 0.09782 5.02
All sites 828 43.54 43.99 −0.45 2.73 0.90 7.45 0.20 0.04168 7.20

DMLM-DL
ND 149 57.74 58.32 −0.57 4.56 0.30 20.90 0.33 0.09217 20.48
FL 170 42.46 43.03 −0.56 2.55 0.71 6.53 0.32 1.11594 5.10
PR 163 36.42 36.88 −0.45 1.97 0.70 3.89 0.21 0.58810 3.09
PA 173 36.65 37.18 −0.53 1.61 0.73 2.61 0.28 0.01977 2.31
PO 173 45.96 46.08 −0.12 2.23 0.81 5.02 0.01 0.10511 4.90
All sites 828 43.54 43.98 −0.44 2.72 0.90 7.42 0.20 0.05778 7.17

DPLM
ND 149 57.74 57.37 0.38 4.55 0.30 20.82 0.14 0.11116 20.57
FL 170 42.46 42.14 0.32 2.49 0.72 6.22 0.10 0.96639 5.15
PR 163 36.42 36.01 0.41 1.93 0.71 3.75 0.17 0.44665 3.13
PA 173 36.65 36.36 0.29 1.56 0.74 2.44 0.08 0.00026 2.36
PO 173 45.96 45.07 0.89 2.41 0.78 5.84 0.79 0.10968 4.94
All sites 828 43.54 43.08 0.46 2.73 0.90 7.46 0.21 0.06855 7.17

CSMG
ND 144 57.59 56.35 1.24 1.38 0.94 1.90 1.545 0.00366 0.35
FL 144 41.85 40.47 1.38 2.20 0.76 4.85 1.891 0.41912 2.54
PR 144 36.31 34.32 1.99 2.30 0.58 5.31 3.972 0.01996 1.32
PA 143 36.29 34.87 1.43 1.95 0.56 3.83 2.035 0.38940 1.41
PO 144 45.54 43.27 2.27 3.00 0.66 9.03 5.157 0.47913 3.40
All sites 719 43.53 41.87 1.66 2.23 0.94 4.98 2.762 0.00011 2.21

aProsper, North Dakota (ND); Citra, Florida (FL); Isabella, Puerto Rico (PR); Palmira, Colombia (PA); and Popayan, Colombia (PO).
bME = Nash and Sutcliffe (1970) model efficiency; MSE = mean squared error; (Bias)2, SDSD and LCS present the decomposition of MSE.
cDMLM = dynamic mixed linear module; DMLM-DL = dynamic mixed linear module with day length from the CSM model; DPLM = dynamic piecewise linear module as 
integrated in CSM-CROPGRO-Drybean for flowering prediction; CSMG = original CSM-CROPGRO-Drybean model using GSPs.
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Figure 4. Overview of the DPLM-CSM model developed to integrate the CSM-CROPGRO-Drybean model (CSMG) with the 
dynamic piecewise linear module (DPLM) using a new gene-based module. The DPLM simulates the first time of first flowering 
module developed from the dynamic mixed linear model first developed by Vallejos et al. (2021). The integrated model uses QTL 
data, which contains the 12 QTL allele information to simulate the daily rate of development towards first flowering, in addition 
to the other input data used by the original CSMG.

The main purpose of Equation (12) is to prevent predictions of 
excessively high values for the development rate that could lead to 
unrealistically low predictions for the number of days to first flower 
appearance under environmental conditions with a high temperature, a 
short day length and a high solar radiation values that are likely to occur 
in many environments. This equation was incorporated in the DPLM 
module and integrated into the full DPLM-CSM hybrid model.

FRMAXg = 2.79856× 10−2

+ 1.07126× 10−3 · QTL1,g
+ 1.24937× 10−3 · QTL2,g
− 3.53505× 10−4 · QTL3,g
+ 3.99455× 10−4 · QTL4,g
+ 7.08516× 10−5 · QTL5,g
+ 5.63062× 10−4 · QTL6,g
− 4.28549× 10−4 · QTL7,g
− 2.35099× 10−4 · QTL8,g
− 6.09052× 10−4 · QTL9,g
− 2.97020× 10−4 · QTL10,g
+ 6.35384× 10−4 · QTL11,g
− 2.31698× 10−4 · QTL12,g

� (12)

The fitting of FRMAXg using Equation (12) resulted in predicted caps 
on the rate of progress for the 187 RILs plus the two parents of our data 
set with a RMSE of 1.66 days, ME of 0.77 days and MSE of 2.78 (Fig. 

Figure 3. Maximum observed versus simulated time to first 
flowering for each RIL across all five sites based on a linear 
model of maximum development rates dependent on the 
12 QTLs alleles for the 187 RIL plus the two parental lines. 
RMSE = root mean square error; ME = model efficiency (Nash 
and Sutcliffe 1970). The solid 1:1 diagonal line represents 
equal values of maximum simulated/observed time to first 
flowering.
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3). These values indicate that the maximum developmental rates were 
affected by the genetic factors (12 QTLs).

3.3  Structural changes of the 
CSM-CROPGRO-Drybean model

The new gene-based module operates on a daily time step in the 
DPLM-CSM phenology module to simulate the rate of development 
towards first flowering for a particular RIL or cultivar and for a spe-
cific site, as shown in Fig. 4. This gene-based module incorporates the 
DPLM module and processes the QTL data obtained from the revised 
BNGRO047.GEN file, while weather data are passed to the DPLM 

module from the CSMG routines. When the value of SUMFRDs,g(t) 
reaches 1.0 (Equation (6)), the day of first flower is simulated to occur 
and this date is passed back to the phenology module for its use in 
updating first flowering in the reproductive development module.

The DPLM module was designed to be flexible, operating in paral-
lel with the original CSMG using GSPs. This allows the CSMG model 
to work in a hybrid mode using either the original cultivar coefficients 
or the QTL input data to simulate the development of first flowering. 
Regardless, all other stages in the DPLM-CSM model are simulated 
using inputs from the original cultivar coefficient file. This option was 
added as a new switch in the crop management input file (FileX). 

Figure 5. Density plots of time to first flower in days across five sites. Distribution of simulated time to first flower using the 
dynamic piecewise linear module (DPLM) (left panel) and the distribution of observed time to first flower (right panel). The 
parental lines Jamapa and Calima are highlighted at the top of each distribution. The five experimental sites are: Prosper, North 
Dakota (ND); Citra, Florida (FL); Puerto Rico (PR); Palmira, Colombia (PA); and Popayan, Colombia (PO).
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When this switch is set to ‘Y’ the DPLM-CSM model uses the DPLM 
module and the QTL input data to simulate the time of first flower. 
Otherwise if the switch is set to ‘N’, the DPLM-CSM model uses the 
original GSPs for all phenological development stages, including the 
prediction of flowering, and the DPLM module is ignored. These 
changes do not affect any other phenological processes in the crop 
growth model. In this way, additional dynamic gene-based modules 
can be added to the gene-based module to simulate other vegetative 
and reproductive processes.

3.4  Comparing simulated and observed frequency 
distributions of time-to-flower

The simulated and observed frequency distributions of days between 
sowing and first flower are presented in Fig. 5 for the DPLM module 
simulations (left panel) and for observed data from the MET study 
(right panel). The shapes of the simulated distributions appeared to 
be bimodal for all locations except for ND where it showed a distri-
bution close to normal. The distributions for the observed data did 
not exhibit bimodal characteristics, except for the PO site, which had 
cooler temperatures than the other sites. QTL2, which is associated 
with the growth habit gene Fin, shows interaction with Tmin and is likely 
responsible for this bimodality (Bhakta et al. 2017). Also, on average, 
the indeterminate growth habit RILs generally flowered later than the 
determinate growth habit RILs. These graphs showed that Calima 
flowered earlier than Jamapa except for the ND site. The time-to-flow-
ering pattern of the two parents was captured by the module. Bhakta 
et al. (2017) detected this transgressive behaviour of some RILs, those 
flowering earlier or later than the parents, a phenomenon explained 
by the presence of genes that accelerate development and others that 
retard development in both parents.

Table 3 shows a comparison using various measures of agreement 
between the simulated and observed data for DMLM, DMLM-DL, 
DPLM and CSMG. The simulation results of the DPLM module dis-
played a strong agreement between the simulated and observed time 
to first flower (Fig. 2C; Table 3). Simulated results showed an average 
bias of 0.55, a RMSE of 2.73 days, a ME of 0.90, a MSE of 7.46 and 
an adjusted R2 of 0.905. The differences between the simulated and 
observed values were larger for ND than for the other sites. The aver-
age bias for ND was 0.38, the RMSE was 4.55 days and the ME was 
0.30, whereas the corresponding values for the other four sites showed 
a much closer agreement between the simulated and observed days to 
first flower. Comparisons of these agreement indicators with those for 
the DMLM and DMLM-DL modules showed nearly identical bias, 
RMSE and ME values, demonstrating that the implementation of the 
DPLM module provided simulated results that were nearly identical to 
the other two module versions listed in Table 3.

The original CSMG mostly produced simulated days to first flower 
that were in closer agreement with observed results across all sites than 
the other modules (Table 3; Fig. 2D). However, these results are mis-
leading in that the GSPs that produced these results were estimated 
for each individual RIL, which means that only five data points were 
used to estimate three GSPs for each RIL, and thus the agreements 
were forced in the GSP estimation process. The adjusted R2 was cal-
culated using five parameters for each RIL; the 113 RILs that had 

observations for all five sites resulted in estimating 339 GSP param-
eters. The adjusted R2 averaged for the RILs was 0.866, ranging from 
0.321 to 0.997 with a standard deviation of 0.129. However, note that 
the adjusted R2 values were lower than all of those for the gene-based 
modules for each site except at ND. As Acharya et al. (2017) point out, 
the estimated GSPs were highly uncertain and that different combina-
tions of the GSPs could provide the same fit to observed data (showing 
equifinality in the estimation process) such that the GSP estimates are 
not reliable even though they can nearly reproduce the data. Estimating 
three parameters with only five data points, then repeating this process 
for each of the RILs, results in estimates that reliably reproduce the 
data used to estimate them but should not be interpreted as values that 
can be used for other environments or genotypes. Estimation of these 
coefficients also requires considerable effort and resources, which has 
to be repeated every time a new cultivar is released. Instead statisti-
cal gene-based modules can estimate independently phenotypic traits 
using as input G, E and G × E interactions data. By contrast, estimat-
ing the 25 coefficients in the dynamic linear module (Equation (11)) 
used all data across the five sites and 189 (RILs plus parents); thus, 945 
observations were used to estimate 25 coefficients. Therefore, using 

Figure 6. Density plots of distributions for simulated time 
to first flower (in days) using the dynamic piecewise linear 
module (DPLM). Simulated days between planting to first 
flower shows the responses to increasing the base maximum 
and minimum temperature from 1 °C through 4 °C. The five 
experimental sites are: Prosper, North Dakota (ND); Citra, 
Florida (FL); Puerto Rico (PR); Palmira, Colombia (PA); and 
Popayan, Colombia (PO).
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the dynamic mixed linear module estimation process has potential for 
a more robust use of the module across environments and genotypes, 
especially for a new genotype that has QTL information but does not 
have field phenotype data.

The frequency distributions associated with genetic variation in 
the RIL population for simulated time to first flower at each site and 
for the five temperature scenarios are shown in Fig. 6. The compari-
sons of the means and standard deviations of the populations for each 
four-temperature/site combination are summarized in Table 4. These 

results demonstrate the effects of including the maximum rate of 
development (FRMAXg) for each genotype in the DPLM module for 
comparison with the module without this upper limit. The largest dif-
ferences in simulated days to first flower occurred when the tempera-
ture was increased by 4 °C (Table 4) at sites with higher temperatures. 
For example, for the PR site, increasing the daily Tmin and Tmax values 
by 4  °C only decreased the mean days to first flower by 0.6  days for 
the DPLM module, whereas the increase in temperature by 4 °C unre-
alistically decreased the mean days to first flower by 5.1 days for the 

Table 4.  Temperature sensitivity analysis for the simulated number of days to first flower for the dynamic piecewise linear module 
(DPLM) and the dynamic mixed linear module with CSM-CROPGRO-Drybean day length (DMLM-DL) using the original 
weather data from the five sites.

Sitea DPLM DMLM-DL

 Simulated mean Minb Maxb Standard deviation Simulated mean Min Max Standard deviation

Base temperature
NDa 57.37 46 76 5.14 58.32 47 77 5.17
FL 42.14 35 51 3.74 43.03 36 51 3.67
PR 36.01 31 43 2.94 36.88 32 43 2.85
PA 36.36 31 44 3.07 37.18 32 43 2.94
PO 45.07 37 55 4.87 46.08 38 56 4.88
All sites 43.08 31 76 8.56 43.98 32 77 8.58

Base temperature + 1 °C
ND 54.74 45 72 4.81 55.66 46 73 4.83
FL 40.29 34 49 3.53 41.04 35 49 3.38
PR 35.48 30 43 2.97 35.40 31 41 2.55
PA 35.77 30 44 3.10 35.69 31 41 2.65
PO 42.87 36 52 4.20 43.86 37 53 4.21
All sites 41.54 30 72 7.77 42.03 31 73 8.02

Base temperature + 2 °C
ND 52.37 43 68 4.49 53.13 44 69 4.58
FL 38.81 33 48 3.36 39.29 34 47 3.07
PR 35.39 30 43 2.99 34.09 30 39 2.33
PA 35.69 30 44 3.13 34.29 30 40 2.41
PO 40.81 34 49 3.78 41.80 35 50 3.78
All sites 40.34 30 68 6.97 40.24 30 69 7.51

Base temperature + 3 °C
ND 50.03 42 64 4.26 50.70 42 65 4.39
FL 37.67 32 46 3.21 37.68 33 45 2.71
PR 35.36 30 43 3.00 32.85 29 38 2.14
PA 35.68 30 44 3.13 33.07 29 38 2.20
PO 39.03 33 46 3.31 40.01 34 47 3.30
All sites 39.31 30 64 6.21 38.60 29 65 7.00

Base temperature + 4 °C
ND 47.91 40 62 4.08 48.48 41 63 4.14
FL 36.88 32 45 3.06 36.21 32 43 2.46
PR 35.36 30 43 3.00 31.77 28 36 1.96
PA 35.68 30 44 3.13 31.95 28 37 2.01
PO 37.50 32 45 3.12 38.34 33 45 3.01
All sites 38.44 30 62 5.57 37.10 28 63 6.54

aProsper, North Dakota (ND); Citra, Florida (FL); Isabella, Puerto Rico (PR); Palmira, Colombia (PA); and Popayan, Colombia (PO).
bMinimum/maximum simulated number of days from sowing to first flower.
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DMLM-DL module. In contrast, results for the cooler sites (PO and 
ND) were similar for both module versions. The frequency distribu-
tions (Fig. 6) visually demonstrate the effect of the FRMAXg on days to 
first flower. The distributions for PO and ND shifted to the left for each 
temperature increase of 1 °C, indicating a more rapid rate of develop-
ment for each site, whereas the distributions of responses of the same 
populations at the warm sites (PR and PA) changed very little even for 
the 4 °C temperature increase.

We are not suggesting that use of the upper limit on develop-
ment rate is robust for broad use, but instead that the MET should 
include more sites that have a wider range of temperatures and day 
lengths to enable non-linear responses to be estimated. For example, 
improvements could be attained using a beta function for temperature 
response, in addition to controlled environment experiments with a 
wider range of genetic material to develop non-linear functions to rep-
resent the full range of environmental responses in this crop species.

3.5  Simulating response distributions for all poten-
tial genotype combinations

The performance of DPLM module across the five experimental 
sites was simulated for RILs with all possible allelic combination 
(4096) of the 12 QTLs used by the dynamic time-to-flower mod-
ule. Frequency distributions for the number of days from planting 
to first flower were produced for each location (Fig. 7). The dots in 
the figure highlight the number of days required for the Jamapa and 
Calima parents to reach the stage of first flowering. The simulated 
first flowering dates at the ND site were later (mean of 59.1 days) and 
had a larger standard deviation (9.10 days) compared to the other 
sites. The spread of simulated days to first flower ranged between 41 
and 94 days at ND due to its longer day lengths and some days with 
cooler temperatures than other sites. The smallest average number 
of days to first flower was for sites with high-temperature condi-
tions and short day lengths (PR and PA), where simulated means 
were about 36 days for both locations, and standard deviations of 
2.6 and 2.6 days, respectively, with response ranges varying from 34 
to 39 days for each location. The FL and PO sites with their warm 
conditions showed simulated means of 42 days and 45 days, respec-
tively, and standard deviations of 3.5 days and 3.9 days, respectively. 
The shapes of the distributions were bell-shaped across all sites 
except for ND which showed the flattest shape due to the G, E, G × 
E and G × G interactions in the mixed piecewise dynamic module. 
The altered behaviour of the parental lines was also found in these 
simulations, where Jamapa flowered earlier than Calima for the FL, 
PA, PO and PR sites and Calima flowered earlier than Jamapa for 
the ND site.

3.6  Yield prediction
For each of the five sites, we simulated yield using the original CSMG 
model and the original GSPs that were calibrated by Acharya et  al. 
(2017) for each individual RIL. For the MET crop management prac-
tices and 1 year of environmental conditions (Fig. 1), simulated mean 
yield by CSMG was lowest for PA (190.0 ± 89 kg ha−1) and highest 
for ND (637.3  ± 242  kg ha−1) while for the other three sites mean 
yield ranged from 304.7 ± 135 kg ha−1 for FL, 505.0 ± 270.0 kg ha−1 

for PO and 540.0 ± 244.8 kg ha−1 for PR (Fig. 8). For the DPLM-CSM 
hybrid model, simulated yield ranking among the five sites was similar. 
The highest mean yield was obtained for ND (720.0 ± 291.0 kg ha−1), 
while the lowest mean yield was obtained for PA (234.4  ± 104.2  kg 
ha−1). Mean yield for FL was 354.8 ± 156.4 kg ha−1, for PO was 625.0 ± 
311.2 kg ha−1 and for PR was 673.3 ± 264.7 kg ha−1 (Fig. 8). The differ-
ences in yield were due to the slight differences in simulated flowering 
dates between the original CSMG model and the DPLM-CSM hybrid 
model (Figs 2 and 5), while all other growth and development pro-
cesses were simulated exactly the same as the CSMG model using the 
same inputs (Fig. 4).

3.7  Further advancement in gene-based modelling
This work presents an approach for incorporating gene-based 
modules into an existing crop growth model for simulating days 
to first flower (by the DPLM module) and simulating all other 
processes and final yield using original components of the CSMG. 
It builds on the approach discussed by Vallejos et  al. (2021). 
Only minor modifications were needed to enable their dynamic 

Figure 7. Density plots for simulated time to first flower (days) 
across the five sites showing all possible genetic combinations. 
The distribution of simulated days to flower by site includes all 
RIL combinations (212 = 4096) as simulated by the dynamic 
piecewise linear module (DPLM), while dots at the top of each 
distribution represent the simulated parental lines Jamapa 
and Calima. The five experimental sites are: Prosper, North 
Dakota (ND); Citra, Florida (FL); Puerto Rico (PR); Palmira, 
Colombia (PA); and Popayan, Colombia (PO).
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Figure 8. Density plot for simulated yield using the original CSM-CROPGRO-Drybean model and genetic specific coefficients 
(CSMG) (left panel) and the dynamic piecewise linear module (DPLM) integrated with the CSM-CROPGRO-Drybean model 
(right panel). The five experimental sites are: Prosper, North Dakota (ND); Citra, Florida (FL); Puerto Rico (PR); Palmira, 
Colombia (PA); and Popayan, Colombia (PO).

model to be integrated as a module into the existing CSMG model 
(Hoogenboom et  al. 1994; Jones et  al. 2003). There were only 
small differences between results from the dynamic piecewise lin-
ear module integrated into the CSMG model from our work and 
model results published by Vallejos et al. (2021). We recognize the 
need for use of independent data to evaluate the predictive capa-
bilities in other environments and are working on that. In addi-
tion, there is a need to use a more diverse population to evaluate 
the ability of the model to predict first flower occurrence across 
genetic variation that may not be in the population used in the 
MET data set.

The model integration approach used here is different from pre-
viously published approaches because it incorporates a gene-based 
dynamic model to replace an existing dynamic component in a com-
prehensive crop growth simulation model. The approach used for 
integrating the gene-based first flower module into the CSMG model 
possibly can be used to incorporate other gene-based modules to sys-
tematically transition from a GSP-based model to a gene-based model 
(Hoogenboom et al. 2004). In this work, we only added one type of 
input data, the genetic information for each RIL and parent. All of the 
other inputs in the original crop model were not modified, and infor-
mation on planting date and daily weather data were used by the new D
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gene-based time to flower module, ensuring consistency in inputs 
across all existing and new components of the model.

This work also shows that integrating the genetic information is a prom-
ising approach to predict plant development stages of new genotypes and 
new environments. Instead of estimating GSPs for a specific trait, it requires 
less effort when a new cultivar is released in that only QTL information is 
required, saving time and resources that would be otherwise needed for 
phenotyping. The long-term expectation associated with most QTL studies 
is the replacement of each QTL linked marker with the gene responsible for 
that particular QTL effect. This work further shows that genetic modules 
for other processes can be based on statistical methods that are routinely 
used by geneticists, if they are developed to replace equivalent modules in 
existing dynamic crop models.

However, it is clear that considerably more progress is needed to 
identify other issues that might occur by combining these two types of 
models. There is a need to extend gene-based modules to cover the full 
genetic variability of a crop and to introduce other process modules 
into existing models (Boote et al. 2021). Further work is required to 
improve the gene-based module and to add other processes that are 
linked dynamically with the crop model.

4 .   C O N C LU S I O N S
This study showed the potential for integrating a process-oriented gene-
based module that only requires genetic input information into an exist-
ing comprehensive crop model with its empirical cultivar inputs without 
changing other modules or inputs. The CSM-CROPGRO-Drybean model 
with the integrated gene-based module was able to not only predict flower-
ing date using only QTL and weather information, but also final yield using 
the original GSPs for all processes except rate of progression to first flower. 
This approach can be extended to other processes by using procedures that 
are similar to those described in this study to obtain genetic and phenotypic 
information and to estimate dynamic model parameters as a function of 
QTL and environmental data.

S U P P O RT I N G  I N F O R M AT I O N
The following additional information is available in the online version 
of this article—
Table S1. Recombinant inbred lines for common bean (Phaseolus 
vulgaris). Each Quantitative trait loci (QTL) has a marker value 
according to its allelic identity, assigned as ‘+1’ for the Calima alleles 
and ‘−1’ for the Jamapa alleles. This information was used as input 
for the dynamic piecewise linear module (DPLM) coupled with the 
CSM-CROPGRO-Drybean model.
Table S2. Estimated values in the dynamic QTL effect module show-
ing the estimated parameters with confidence intervals and p-values 
for the rate of progress from planting to flowering.
Figure S1. Parameter estimation process for predicting first flowering 
across all sites using the dynamic mixed linear module (DMLM).
Figure S2. Computer code for the dynamic piecewise linear module 
(DPLM) coupled with the CSM-CROPGRO-Drybean model.
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